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MOTIVATION

THE SCHRODINGER EqQ. IN R?
) iOpu + Au+ ¥ (x, t,u)u =0, (z,t) € R x RT
u(z,0) = uo(z), z €RY
o wu(x,t) : complex wave function
@ ¥ potential and/or nonlinearity : ¥ = V(z,t) + f(|u|)u

@ wup compact support in 2

PROBLEM : Mesh an unbounded domain (here in 1D) R? x [0; 7]
t

T

\ =r

x 0 At a8
e Truncation R X [0; T] — Qg := |z, zr[x[0; T
e Introduction of a fictitious boundary ¥ := 0Q = {z;, z,}

@ The boundary condition on z; must represent the effect of the potential on | — oo, z;].

(=] = =
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MOTIVATION

WHAT HAPPENS WHEN ONE DOES NOT TAKE CARE OF BCs?

Potential V(z) =z
a0 g 2 2 z .
Initial datum : gaussian ug(z) = e~% 10 e Evolution of |u]

Homogeneous Dirichlet BCs : u|s; = 0.

Exact solution
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MOTIVATION

WHAT HAPPENS WHEN ONE DOES NOT TAKE CARE OF BCs?

Potential V(z) =z

a0 g 2 2 E“ .
Initial datum : gaussian ug(z) = e~% 10 go Evolution of |u|
Homogeneous Dirichlet BCs : u|s; = 0. o

= Parasistic reflexions
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DERIVATION OF BCs

Schrodinger equation (SE)

u(z,0) = ug(x),

Approximation: 3 ways

Derivation of BC
Tools : Fourier analysis,
¥DO

’ Continous BC ‘

Semi-discretization of (SE),

R —Q+ X%
i0pu + Au+ V(z,t)u+ f(lu))u =0, x€R%t>0,
z € R%.
by
SE
Semi
discret
ization Full
of (SE) discret
e me ization
’Seml—dlscrete SE‘ of (SE)
Tool: FDM

quadrature rules for BC

’ Semi-dis

crete SE ‘

FEM

Z-transform

’ Semi-discrete BC ‘

FEM

’ Fully-discrete SE ‘

Tool:
Z-transform

’ Fully-discrete SE ‘

’ Fully-discrete SE ‘

’Fully—discrete BC ‘
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DERIVATION OF BCs

Greengard & Jiang

approximation of

(rational) approximations { convolution kerneJ discretized TBCs
of symbol Vs

- Mayfield
:;:;‘tzlau & Di Menza ‘\ . Baskakov & Popov
Shibata Papadakis 1982
E:\f:r?s & Jiang analytical TBCs
[ spatially discrete TBCs } [ temporally discrete TBCs ] [ fully discrete TBCs }
Alonso-Mallo & Requera Arnold, Ehrhardt, Schulte,

Sofronov & Zisowsky

Perfectly Matched : q -
Layer (PML) [ discrete convolution } [ Pole Condition ]
Collino Schmidt & Deuflhard Schmidt, Ruprecht,

Antoine & Besse Schéadle & Zschiedrich

Lubich & Schadle
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INTRODUCTION

+OAL : to derive artificial boundary conditions in order to approximate the exact solution u
of (5), restricted to Q.

@ absorbing boundary conditions (ABC) : well posed problem + "energy functional "
absorbed at the boundary

e transparent boundary conditions (TBC) : approximate solution coincides with u on
Qrp.

@ ABC : local in space and/or in time

e TBC : non local in space and time
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FORMULATION

Which formulation for the BC?

o The boundary condition is formulated with the Dirichlet-to-Neumann map :
Onu+iAtu=0, onZp

o Interesting in a variational formulation for a finite element method.

/Ampdwﬂf/Vu-deerv/anm/zda.
Q Q b

o AT brings into play fractional operators

FRACTIONAL OPERATORS

25
o210 = ~=au [ T g,
o ﬁl 0 ) t—s P
1500 = g | 6= 97/ @) ds,
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TBCS FOR LINEAR S. IN 1D

TBCs are non local w.r to t and connect Oy u(zy,,,t) with u(zy ,,t).

DIRICHLET-TO-NEUMANN (DTN) MAP

e ', 3 [t u(z,T)eVirT
8uazt:—7e_lvlwrt—/ —2 < dr inz=ux,7
n ( ) ) \/E ot q \/t—iT 1y Lr,

where n denotes the outwardly unitary normal vector in z;, z,.

NOTATIONS AND HYPOTHESIS :
o Q =|xy, x|, Q =] — 00,27, Qp = [@r,00[, T = {27, 2}

o Continuity of u and dyu through T’
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TBCS FOR LINEAR S. IN 1D

Interior problem Exterior problem

(10t + 02)v =0,z € Q, t > 0, (10 + 82)w =0, © € Q,t > 0,
O0zv = 0zw, x €T, t >0, w(z,t) =v(x,t), x =x,, t >0,
v(z,0) = ul(z), z € Q. lim w(z,t) =0,¢>0,

|| —o0

w(z,0) =0, z € Q.

Laplace in Q. iQw+02w=0 — iwd+d2w=0

Solution :  W(z,w) = At (w)e V—twz | A= (w)e™ V=iwz
with the determination of the square root s.t. Re( {/-) > 0.
weL?(Qr) = At =0

w(z,w) =e” m(x_xr)ﬁ(w(xm N(w),

then, taking derivative and thanks to continuity

O (2, W) |e=z, = — V—iwi(z,w)s=c,

7i7r/4ww(x7 w)‘l':wr

= —e \/a
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TBCS FOR LINEAR S. IN 1D

Inversee Laplace transform

8:L‘w(x7t)|x=:cr _ —z7'r/48 (f/ Md ) e—iﬂ'/4az-/2w(xr’t)

t—s

Similar condition in xz;
; 1 [t w(,s)|em .
—0pw(z,t)| =z, = _e— /4y, (7 WC@ - —67”/48,51/211;(901,15)

BOUNDARY CONDITION :
(On + e /49! /?)y =0 on T x [0, TT.

Remark

i0y + 02 = (9 + v/—i0%) (D — v/—10%). J
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WHAT 1S KNOWN IN 1D

LINEAR EQUATIONS WITH TIME DEPENDENT POTENTIALS
e ¥ =0 : Dirichlet-to-Neumann map

Onu + e_”/48tl/2u =0, onXr

Tool : Fourier analysis
Factorization : i, + 82 = (ax + i\/iat) (ax - i\/iat)

e Variant : 7 = V] ,. constant outside of
o ¥ =V(t) : Gauge change
) t
vz, t) = u(w, t)e?®  with V() :/ V(s)ds
0

v is solution to the free Schrodinger equation. We have access to the exact BC (see
above). Therefore, the TBC is for u :

O+ e—im/4 eiV(t)atl/Z (e—iv(t)u> =0 onZp
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TBCS FOR LINEAR S. IN 1D

SUMMARY : derivation of the analytic TBCs

© To separate the original problem as a system of two coupled equations : interior and
exterior problems

@ To apply the Laplace transform in time ¢
To solve the ODE in x

@ To authorize only the outgoing waves by selecting the decaying solution when
T — Foo

©

@ To identify the values of Dirichlet and Neumann in z; ..

@ Inverse Laplace transform
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EXTENSION TO NLS 1IN 1D

NONLINEARITIES AND GENERAL REPULSIVE POTENTIALS 20,V > 0 FOR = €
J. Szeftel (04), X. Antoine - C.B. - S. Descombes (06), X. Antoine - C. B. - P. Klein (09)

Y = f(‘Lv u)

o ¥ = f(z,u) and V(z,t) fo z,u(z, s))ds
o Absorbing boundary conditions (ABC), tool : ¥DO

) : N . 9.V . .
ABCi1 : Onu+ e_”/4e7’vf);/2 (eﬂvu> — i(nTe’VIt (eﬂvu) =0

ABCY:  Onu—iNids + Vu+ %an/’y(iat + )" lu=0

Examples : ¥ = q|u|?, ¥ = az? +,8|u\2, a>0,....

|u| in the (z,t)-plane V (z) = x>
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SEMI-DISCRETE IN TIME BCs FOR 1D S. EQ.

Semi-discrete discretization in time of

SCHRODINGER EQUATION IN 1D
i0u = —2u, (w,t) € Ry x RIT

A-stable method : time step At, u™ approx. of u(z,nAt).

o UK K
éZaju ZBJ( 82 n > K.
=0 j=0

Example : Crank-Nicolson K =1, ap = 1, a1 = —1, Bo,1 = 1/2.

‘un+1 —un 5 un+1 o um”
7 = -9
x )
At 2

z €R,Vn €N,
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SEMI-DISCRETE IN TIME BCs FOR 1D S. EQ.

One proceed like for analytic TBCs : splitting in interior and exterior problems.

Instead of Laplace :

Z-TRANSFORM

Z")=d(z) =Y u"z"", z€C, |z >R(Z@m")),
n=0

where R(Z(u™)) is the radius of convergence of the Laurent series. Z(u™).
Interesting property :

Z(up+t1) = z0(z) — zu
L) (T) = sii(r) — u(0+) i ’ J

Z(upt1 £ un) = (2 £ 1)a(z) — zuo
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SEMI-DISCRETE IN TIME BCs FOR 1D S. EQ.

Application of the Z-transform to the numerical scheme with the hypothesis
supp(w?) C [z, zr], 0< 7 < K —1:

(ag + z%) w(2)

where

is the generating function of the time integration scheme.

Examples :
. z—1
e Crank Nicolson : §(z) = 2
z+1
.. =1
o Implicit Euler : §(z) =
z
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SEMI-DISCRETE IN TIME BCs FOR 1D S. EQ.

Solution of the ODE (8925 + z%) w(z) =0inz

.J{/.a(z) _. 1/ 8(=»)
W(z,z) = AT VAT P+ A=e " VAT T 2> .

One has w™ € L%(]zy,,oo[). But, A-stable method = § sends {|z| > 1} into {Re(z) > 0}

Re(—i+\/i(5('z)>>0 Vlz|>1 A= =0
At

Derivation of w(z, z) w.r.t =

Z(0zw™)(2) = —e~ /4 %) Z(w™)(2),

in £ = z,, then inverse Z transform.
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SEMI-DISCRETE IN TIME BCs FOR 1D S. EQ.

Example for Crank-Nicolson (Schmidt-Deuflhard 95, Antoine-Besse 03, ...)

CRANK-NICOLSON

ot 2 pntl + o™
t—————— = —-0;————, z €Q,Vn € Np,
At T ¢

() =ul(z), zeQ,

n+1
ananFl = Zwil’T)anﬁlikv in =y, Tr,

k=0 9

_im k ~
wp = —€ 4 —/—— —1)%@g, keN,
ZAt( ) 111-31-3

~7~7~7~7~7~7"' :17177777 : ) : g ooojo
(B0, G, @2, 88, 64,85, --) = (L1, 2, 50 575 5750 ) |

1/2
CONSISTANT QUADRATURE RULE WITH SEMI-DISCRETE NUMERICAL SCHEME FOR Bt/
STABILITY
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DISCRETIZATION OF THE CONVOLUTION OPERATOR

Othe possibilities :
o Quadrature rule : Mayfield (89), Baskakov & Popov (91)

d [t u(ze,T) /tn+1 Ur (T, T)
— ——=dr = ——dr
dt 0 Vt—T t=tnt1 0 \/tn+1 =

n t
Z RHL ok / WPt dr
k=0 th Viny1 — 7

22

Still non local in time

= & = 2011/12/06 — PARIS



DISCRETIZATION OF THE CONVOLUTION OPERATOR

Othe possibilities :
o Quadrature rule : Mayfield (89), Baskakov & Popov (91)

d [t u(ze,T) tnt1l yr(xp,T)
— ——=dr = ——dr
dt 0 Vt—T t=tnt1 0 \/tn+1 =

tht1 dr

n
k=0 th tnt1 —7

22

Still non local in time
e Rational approximation of the symbol Bruneau & DiMenza (95), Szeftel (04) To solve
Orii(@y,7) = —e /4 iz a(zr, 7).
Approximation of {/it by
altiT e o, dRdr
Ry, (iT) = ag* + Ly = ap' — s
m( ) 0 ZZT+dm Z k Z’L’T-{-d;’:

k=0 k=1
ap’ >0, kE{O -,m}, di* >0, ke{l,---,m}.
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DISCRETIZATION OF THE CONVOLUTION OPERATOR

The equation becomes

e R
deitor,r) = = | (D ) atorsr) = 52 it
Lindmann trick (85) ; auxiliary functions ¢y = @ (t)x=1,... ,m Which satisfy
! i(zr) = @ k=1
——a(xr) = Pr, =1,---,m.
it +dp " Pl

Inverse Laplace transform : ODE for ¢

dp
7‘7+d vr =u(zr,t), ¢r(0)=0, k=1,---,m.

dt
so, the BC is

m

Onu = —e -7 |:<Zak) u—ZaL"dZIgok:| , inx=x,, t>0,
k=1

dep

Z?"’dkﬁok—u(fﬁmt), t>0,k=1,---,m,

01(0) = 0, t>0,k=1,---,m.
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@ STRAIGHT BOUNDARY : EXTENSION OF THE 1D STUDY

Domain Q = {z < 0}

10t + 65 plays the part of 0; in 1D
92 plays the part of 02

TBC : Bnu—i,/iat—i-aauzo.

@ FACTORIZATION :

0+ A =1i0; +0; + 02 = (Bz-i-i‘/iat-f—a;) (az—i,/iat+ag)+R

o PROBLEMS :
Junction problems located on the corners

Nonlocal operator both in time and space

o]
w

@

problems >

G
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GEOMETRICAL ASPECT : CONSEQUENCES

o TAKE INTO ACCOUNT THE GEOMETRY : convex set with general boundary, smooth,
with curvature k.

o GENERALIZED COORDINATES SYSTEM of the boun-
dary with respect to normal variable r and curvilinear
abscissa s

A =02+ ke +h710s (h105)

kr = h~ 1k : curvature of a parallel surface 3, to &
h(r,s) =1+rk

= L=02+kKOr +i0 +h 105 (h710s) +V

Schrédinger equation with variable coefficients :
pseudo-differential calculus

°
t e~ ot dual variable 7
T e T
Yy e~ S dual variable ¢
[m] = =
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TWO STRATEGIES

STRATEGY 1 : GAUGE CHANGE
o Change of unknown (which solves the case ¥ = V/(t))

) t
v=e"Yu with V(rs,t)= / V(r,s,o0)do
0

o We work on the equation with unknown v :

10w + 020 + (ki + F)Orv + h™10s(h10sv) + Gu =0

STRATEGY 2 : DIRECT METHOD

o Equation sets in generalized coordinates

10ru + 83u + krOpu + h_las(h_lasu) +Vu=0

GENERALIZED SCHRODINGER EQUATION
10w + Bfw + (kr + A)Orw + h—10, (hilasw) +Bw=0

S1 A= F(r,s,t) and B = G(r,s,t) ifw=v=e""Vu
S2 A=0and B=V(r,s,t) ifw=u
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GLOBAL TECHNIQUE

VARIABLE COEFFICIENTS SCHRODINGER EQUATION

Lw := i0yw + 02w + (kyr + A)Orw + h=10s(h~10;w) + Bw = 0. J

o Factorization of L in a neighbourhood of ¥

o Use of DO calculus instead of Fourier

Symbolic calculus : asymptotic expansion of symbols

Select outgoing waves : identification of principal symbol

Come back to the surface X

DtN operator non local both in space and time : localization techniques

e Taylor approach
o Padé approach

o & = 2011/12/06 — PARIS



PSEUDODIFFERENTIAL OPERATORS

o P(r,s,t,0s,0¢) defined by its total symbol p(r, s,t,&, 7) in Fourier space by F(s,t) (&
and 7 dual variables of s and t)

P(Tv s, 1, as 8L)u(r) S t) = / p(?‘, s, t, 57 T)ﬁ(T) 57 T)eisseit‘rdgd”—
RxR

Notations : P = Op(p) , p=o(P)
o E =(1,2). f is said E-quasi homogeneous of order m if
fr s t, pé, 0r) = p™ f(r, 5,4, 6, 7)

Example : /—7 — £2 is E-quasi homogeneous of order 1.
e p €SP (or P € OPSY) if it admits an asymptotic expansion in E-quasi
homogeneous symbols

+oo
p(”‘? S, t, 57 T) ~ Z Pm—j (Tv S, t7 Ev T)7
i=0

which means

m
p(r,5,6,6,7) = > pm—j(r,5,8,6,7) | € Sp~™D vmeN.
j=0
@ p =g mod S meansp—q € ST.
S
o Composition rule : o(AB) ~ Z
||=0

|
= %% ()3, o (B)
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VARIABLE COEFFICIENTS SCHRODINGER EQUATION

iBthrB?er(nT+A)8rw+h_185(h_183w)+3w =0. J

Engquist & Majda method.

There exist two ¥DO A~ and AT of OPS}E s.t. we get the following Nirenberg-like
factorization

i0p + 02 + (kr + A)Or + h™10s(h™10s) + B = (0r +iA7)(Or +iAT) + R J

where R is a smoothing operator of OPSEOO.

AT (resp. A~) has an asymptotic expansion in E-quasi homogeneous symbols :
+oo
o(AT) = AT~ AT = AT AT AT+
j=0

with Af_ € S577.

COME BACK TO THE SURFACE X : At =A}!_ and N = (5 .
|r=0 J J |r=0

TBC : 3nw+i/,\:w:0

“+o0
an—i-iZOp(X;_/j)w:O, on Y.
=0
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DERIVATION OF THE ABCSs

APPROXIMATED CONDITION OF ORDER M : we only keep the first M terms

M
aan—‘y-iZOp(Xl_j) ’LUMZO, on ET
7=0

° )\fij, j >0, depends on .
o IDENTIFICATION OF THE PRINCIPAL SYMBOL [ :
Outgoing wave Im(\ (s,t,€,7)) <0, for |7]>1
Strategy 1 A} = —/—7 — h—2¢2
Strategy 2 A\ = —/—T —h 22 1V

Asymptotic expansion : Xj are functions of parameter \/—7 — £2 (resp.

V=BTV

= non local operators both in time AND in space
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LOCALIZING IN SPACE : TWO APPROACHES

Two approaches, valid for both strategies :

e "TAYLOR” APPROACH : Taylor expansion of the symbols for |7| > &2

2 v
—T—{Z-‘,-V:—T(l-i-i—f)
T T
Thereby :

Ve rvavr(1+ S - L) = v

2t 27

—> Localizing in space only

o PADE APPROXIMATION APPROACH :

Op (\/—7—52 +V> ~ \/iaz +As+V mod OPS~!

formal approximation of /- by Padé approximants = Localizing both in space AND
time
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CONCLUSION

Two possible approaches for each strategy, so 4 families of ABC.

" Taylor" approach "Padé” approach
Gauge change ABC{VIT ABC’{WP
Direct method ABC’Q/[T ABC’éV[P
\f 3%
o %L op(V-r-)
or

v=e"Vu Op (\/m)
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ABC : TAYLOR APPROACH

o GAUGE CHANGE

ABC%T Onu + e_i“/4eivé’g/2 (e_wu) + Eu

ABCS _ i/t LV< + A2 L ave, 4+t (z'afv - (asvﬁ)) 112 (e*“’u)
ABCle,T + iew(&(;@a) + K3 _;85 + 1asffzaav> I (eﬂvu>

—20Y) BV (ViBaVTeu) = 0

e DIRECT METHOD

ABC%YT Onu + 67”/462/211 + gu

( : 2 A } v
ABCS — eim/4 (%JFTE) Ij/Qu—e”/Lg( )mztl/? (mu)
3 2
ABCH +i(as(;as)+n J;asn) T ar.v) oV It( oaVu ):0
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ABC : PADE APPROACH

o GAUGE CHANGE
ABClp  Onu — i’V /i0; + A (e Vu)
ABC? + gu + 05 VelV, (10, + Ax)~1/2 (e—“’u)
K . o _8
= Eelv(iat +AE) 1 Ax (6 Zvu) =0
e DIRECT METHOD

ABC} p  Onu — iV/ibs + Az +Vu
K K
AP

5 5 (i0 + Ax, + V) L Agu =0

ABC3 p +
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SEMI-DISCRETIZATION AND IMPLEMENTATION

INTERIOR PROBLEM :

Semi-discret Crank-Nicolson scheme, symmetrical, unconditionally stable

ﬁun+1/2 +Aun+1/2 +Vn+1/2un+l/2 — ﬁun
t

At

ABC DISCRETIZATION

o Taylor approach : approximation of the operators 82/2, It1/2

and I; by quadrature
formulas

o Padé approach : coupled system between u™+1/2 and the m auxiliary functions

n+1/2
Pk
o Rational approximation of the square root by Padé approximants
m m am dm
2 Rpy(2) = ap’ — R
VER R = 0 el - 2 Thap

o In the ABC;IP conditions :

Vidy + As+V  ~ Ry, (10 + As + V)
R

u= Y aldp (0 + As +V +dit) T
k=1

= Vior + As +Vu = (Za?)
k=0

Pk
Auxiliary functions ¢y, solutions of a Schrodinger equation on 2.

n}
8]
w
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NUMERICAL EXAMPLES

V(r) = 5r2
Domain : disk of radius 5
Initial datum : ug(z, y) = e~ (@*+¥)=ikoz with ko = 10
At=10"3, T =1
i Movie
Mesh : 1700000 triangles
25 Padé functions

Logarithmic levels bounded at 10—%

Vixy)

0

POTENTIAL

LOG-PROFILE OF AN APPROXIMATED
SOLUTION
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V(r) = 5r2

TAYLOR
APPROACH

PADE
APPROACH

GAUGE CHANGE

DIRECT METHOD
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V(r) = 5r PLECTRUM CASE

At=2x10"%

920 000 triangles GAUGE CHANGE DIRECT METHOD
5 o
. o
s ’
.
.
0 -2
. 2
o -
o
s
.
- , , M
% F B s
Computational domain
.
s
s
B
s

Potential profile
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V(r,t) = 5r° (1 + cos(4nt))

At =103
1700000 triangles GAUGE CHANGE DIRECT METHOD
o
w00 0
250 )
200 s
3o 2
100~ 25
B
s0-
s
2-
L
Potential at t = 0
N . o o
0 "
. "
" N
o ) 2
3 28 -25
t . s "
S <5 o5
07X
LSS ) T s m

Log-profile of an approximated ABCI2 P ABC% P
solution
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EXTENSION TO NONLINEAR POTENTIALS

POTENTIAL ¥ =V + f(u)

o For kg # 0, u is never radially symetrical = V is never radially symetrical

o Make the implementation of ABC linked to Gauge change more complexe 4+ numerical
cost

— limitation to NLABCZ ;. (M = 2 only)
— Do not use NLABCM,, (identical precision as NLABC,. for a potential)

o We deal with NLABC} ., NLABC}"., and NLABC},

t t
@ FORMAL SUBSTITUTIONS ¥ =V + f(u) AND V(z,y,t) = / \% +/ f(uw)
0 0

@ We derive the boundary conditions NLABC%,T, NLABC;}T and NLABC%P.
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NONLINEAR ABCs

o TAYLOR APPROACH, GAUGE CHANGE
_ 1/2 ( —i K
NLABC%T Onu + e~ im/4 Zvd / (e zVu)—i—gu:()
o TAYLOR APPROACH, DIRECT METHOD

NLABCQQYT Onu + 67”/483/211 + gu

. 2 .
NLABCY, - o (S ) 1}/ Pu - et B TR (Tl )
3 2
NLABC +i (83(;88) + = ;83”) Liu
_ (anf(u

VI0aF @]k (V1Baf @]) = 0
o PADE APPROACH, DIRECT METHOD

NLABC%TP Onu — V10t + Ax + f(u)u

NLABC3 p + gu - g (i0; + A + f(u)) " Agu=0
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SEMI-DISCRETIZATION

@ INTERIOR PROBLEM Duran - Sanz-Serna scheme

'un+1 —un N A un+1 +un +f un+1 +un un+1 +un
(2
At 2 2 2

=0

@ BOUNDARY CONDITION : discrte convolutions and Padé approximants

SOLUTION TO THE NONLINEAR EQUATION
o Fixed point scheme : Mass inequality valid [|u"|| 12 (q) < ||uOHL2(Q)
o for NLABC3 ;. and NLABC? .
o for NLABC3 . if V > 0 and f(u) > 0.

o Numerical alternative scheme : relaxation method [CB 04] .
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RELAXATION SCHEME

o PRINCIPLE : Solution of the equation 0iu + Au + f(u)u =0 solving the system

0w+ Au+ Yu=0, onQrp,
T = f(u), onQr.

@ SEMI-DISCRETIZATION

1
Z,unJrAt_ u™ n Aun+1/2 + Tn+1/2un+1/2 =0,

'rn+3/2 + Tn+1/2
2

for0<n <N
= f™th),

’rn+1 Tn
ou Yrtl/2 = LT AT Dy p0),

o ADVANTAGES : Conservation of the invariants (mass, energy), simplicity,
speed (no fixed point iteration)
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NUMERICAL RESULTS

CUBIC EQUATION

o Cubic equation 0 + Au + qlu|? =0
o Numerical fabrication of the soliton : stationary solutions computation leads to
1
v+ =0 =Y+’ =0, 0<r <R,
¥'(0)=0, %(0)=5,
solved by a shooting method [Di Menza 09]

22

|ug| for R = 10 |uo| in log-scale for R = 15
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NUMERICAL RESULTS

CUBIC NONLINEARITY ¥ = |u|?

WITHOUT POTENTIAL

GAUGE CHANGE DIRECT METHOD

NLABCY ;.

Initial datum : soliton
Domain : disk of radius 10
At =2x10"3

1700 000 triangles

ko =5 5
T =2 N
Movie

2
Movie contour NLABC3 p
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NUMERICAL RESULTS

3D VIEW

WITHOUT POTENTIAL GAUGE CHANGE DIRECT METHOD

o
’ ., .
s " "
" R :
25 25 25
. R .
" e u
. R .
NLABC?
1,T
. .
05 2 05
’ i
"
s "
5
. 2
25 05 25
R .
" us

v 1070

NLABC3

2011/12/06 — PARIS



	Introduction
	One dimensional Schrödinger Eq.
	Two dimensional Schrödinger Eq. with potential
	Extension to 2D nonlinear equation

