Introduction to NUSHELLX

Angelo Signoracci

CEA/Saclay

Lecture 3, 14 May 2013

Outline

NUSHELLX shell model code

2 Inputs for calculation

Practical Implementation

Outline

NUSHELLX shell model code

2 Inputs for calculation

Practical Implementation

Brief Review

- Full CI calculations are exact solutions in reduced model space
 - Diagonalization of matrix is required
 - Dimension depends on angular momentum coupling
 - ullet Computational limits typically around $A\sim70$, but depends on model space
- Select model space to account for low-energy degrees of freedom
- Selfective interaction required
 - Accounts for dynamics associated with excluded orbits

Shell model codes by Bill Rae

- Bill Rae wrote NuShell and NuShellX codes in previous decade
- NuShell
 - Replaces old shell model code OXBASH
 - JT-projected M-scheme
 - Stores complete matrix, which limits the size of calculations
- NuShellX
 - Calculates Hamiltonian "on the fly"
 - Utilizes NuShell modules for protons and neutrons
 - J-scheme built on coupling between protons and neutrons
- Not identical codes- some advantages for each
- Neither is user friendly

NUSHELLX@MSU - Alex Brown

- NuShellX refers to the shell model package written by Bill Rae
- Alex Brown has written a "wrapper" code to simplify input
 - Provides more consistency with I/O of OXBASH
 - NuShellX with the wrapper is called NUSHELLX@MSU
 - Generally will refer to it simply as NUSHELLX
 - Most common NuShellX options available from the "shell" interface
- See manuals in help folder for more information
- Any resulting publications should cite appropriate code and effective interaction
- For examples, see NUSHELLX manual

Treatment of center of mass motion

- Recall that spurious states from center of mass motion must be eliminated
- Only internal structure is desired
- In harmonic oscillator basis

$$H_{cm} = \frac{1}{2mA}Q^2 + \frac{1}{2}Am\omega^2R^2$$

- In ground state, $E_{cm} = \frac{3}{2}\hbar\omega$
- NUSHELLX adds a fictitious Hamiltonian

$$H'_{cm} = \beta \left\{ \frac{1}{2mA} Q^2 + \frac{1}{2} A m \omega^2 R^2 - \frac{3}{2} \hbar \omega \right\}$$

- Large β by construction
 - Excitations of center of mass occur at high energy
 - 4 Higher energy than intrinsic excitations of interest
- Center of mass always in ground state
- Fictitious Hamiltonian does not add energy

Technicalities

Conventions

- Wavefunction is undetermined up to a phase
- Defined as real and positive at the origin
- Does not affect observables
- If used in reaction calculations, definition of phase must be consistent

② Diagonalization

- Most time-consuming step in CI calculation is diagonalization
- OpenMP utilized efficiently, extension to MPI developed
- Standard linear algebra techniques (e.g. LAPACK) exhaust computing resources
- 0 L
- Iterative technique to convert a sparse matrix into tridiagonal form
- Tridiagonal matrix can be diagonalized quickly to obtain eigenvalues
- Approximate technique that can produce spurious state
- Most typically, spurious states appear for large model spaces

Technicalities

Conventions

- Wavefunction is undetermined up to a phase
- Defined as real and positive at the origin
- Does not affect observables
- If used in reaction calculations, definition of phase must be consistent

② Diagonalization

- Most time-consuming step in CI calculation is diagonalization
- OpenMP utilized efficiently, extension to MPI developed
- Standard linear algebra techniques (e.g. LAPACK) exhaust computing resources
- Lanczos procedure
 - Iterative technique to convert a sparse matrix into tridiagonal form
 - Tridiagonal matrix can be diagonalized quickly to obtain eigenvalues
 - Approximate technique that can produce spurious states
 - Most typically, spurious states appear for large model spaces

Outline

NUSHELLX shell model code

Inputs for calculation

Practical Implementation

Directory structure

- sps folder
 - Contains predefined (standard) model space and interaction files
 - Listed in label.dat file
 - Available model spaces listed at top of file
 - Each model space is then listed below with available interactions
 - NUSHELLX naming scheme provided for each combination
 - Provides references for majority of interactions
 - Some mistakes present in label.dat (not for most common files)
- rsh folder
 - Suggested location to run calculations (create yourself)
 - Output of calculations all written to working directory
 - Old files in the directory can be written over by new calculations
 - Safest to create new subdirectory for each calculation
- Most common output files
 - responses to shell prompts *.ans (can modify to run new calculation)
 - eigenenergies and orbit occupations *.lpe
 - detailed wavefunction information *.lp
 - level scheme *.lpt
 - oplot comparing experimental data to calculations *.eps
 - **1** γ decay scheme *.deo
 - spectroscopic factors *.lsf
- Executable 'save' produces a new directory called save and copies files
 - · All important input and output files remain afterward
 - Large intermediate files can then be deleted in the working directory

Model Space

NUSHELLX shell model code

• Two formats: isospin formalism (t) and proton-neutron formalism (pn) Input for sd.sp file

Description	File variables	Explanation for sd case		
comment line	! sd.sp			
format	t	isospin formalism		
A_c, Z_c	16 8	core is ¹⁶ O		
number of orbits n_o	3	$0d_{5/2}, 0d_{3/2}, 1s_{1/2}$		
k,n(k);	1 3	for t format, k=1 $n(1)=n_o$		
index, $n', \ell, 2j$	1 1 2 3	index starts with 1, $n' = n + 1,0d_{3/2}$		
index, $n', \ell, 2j$	2 1 2 5	$0d_{5/2}$		
index, $n', \ell, 2j$	3 2 0 1	$1s_{1/2}$		

- Most NUSHELLX files can start with (any number of) lines commented out by '!'
- Isospin formalism
 - Protons and neutrons identical by construction
 - Occupation of orbit is 2(2j + 1)
- Results in reduced number of TBME relative to proton-neutron formalism

Model Space

- Two formats: isospin formalism (t) and proton-neutron formalism (pn)
- Proton-neutron formalism

Input for ppn.sp file

Description	values in file	Explanation for <i>ppn</i> case
comment line	! ppn.sp	
format	pn	proton-neutron formalism
$A_c Z_c$	4 2	core is ⁴ He
number of orbits n_o	4	$\pi 0 p_{3/2}, \pi 0 p_{1/2}, u 0 p_{3/2}, u 0 p_{1/2}$
k,n(k);	2 2 2	for pn format, $k=2 n(1)=n_p n(2)=n_n$
index, $n', \ell, 2j$	1113	index starts with 1, $n' = n + 1,0p_{3/2}$
index, $n', \ell, 2j$	2111	$0p_{1/2}$
index, $n', \ell, 2j$	3 1 1 3	$0p_{3/2}$
index, $n', \ell, 2j$	4111	$0p_{1/2}$

Most NUSHELLX files can start with (any number of) lines commented out by '!'

Effective interaction

- List of single particle energies and two-body matrix elements
- Must use indices consistent with *.sp file
- Example in isospin formalism: USD interaction

03 1.04058		58	08 -3.9478			-3.10354		
	1	1	1	1	0	1	-2.1845	
	1	1	1	1	1	0	-1.4151	
	1	1	1	1	2	1	-0.0665	
	1	1	1	1	3	0	-2.8842	
	2	1	1	1	1	0	0.5647	
	2	1	1	1	2	1	-0.6149	
	2	1	1	1	3	0	2.0337	
	2	1	2	1	1	0	-6.5058	

:

2 16254

Effective interaction

- List of single particle energies and two-body matrix elements
- Must use indices consistent with *.sp file
- For proton-neutron interactions:
 - Can produce from isospin interactions (see NUSHELLX manual)
 - Must use unnormalized matrix elements
 - Normalized TBME typically obtained from microscopic interactions
 - 'ham' executable automatically converts to unnormalized TBME

$$\langle (ab)J|V_{ms}|(cd)J\rangle_{unnorm}=2^{[1-rac{1}{2}(\delta_{ab}+\delta_{cd})]}\langle (ab)J|V_{ms}|(cd)J\rangle_{norm}$$

Outline

NUSHELLX shell model code

Inputs for calculation

Practical Implementation

Command line

'shell' executable

- Initialize NUSHELLX@MSU wrapper code with executable 'shell'
- Calculate level schemes with option 'lpe'
 - ① Energies
 - Wavefunctions
- Calculate transitions with option 'den'
 - 1 One-body transition densities (OBTD)
 - One-nucleon transfer (spectroscopic factors)
 - Two-nucleon transfer
- Respond to prompts
 - Most questions are self-explanatory
 - Refer to manual and problem sessions for examples
- Terminate 'shell' with option 'st'
- Run batch file as instructed by output of shell
- 'toi' executable
 - Access experimental data from table of isotopes
 - Binding energies, excitation energies, thresholds, etc.
- 'dens' executable
 - Capable of calculating more than we have time to discuss
 - One example: B(E2) from OBTD
 - Somewhat detailed instructions in help option
- 'ham' executable
 - Creates interactions (more information in final slide of Lecture VII)

Refer to NUSHELLX manual help.pdf for more detailed description Explicit examples given at beginning of Tutorial I

- Necessary inputs for 'lpe' option of 'shell'
 - Model space
 - Effective interaction
 - Nucleus of interest (charge and mass)
 - States of interest $(J^{\pi} \text{ values})$
- Optional input to truncate model space to speed up diagonalization
 - Answer yes (y) to prompt 'any restrictions (y/n)'
 - 2 Choose subshell (s) restrictions
 - Select minimum and maximum number of particles in each model space orbit

Not consistent with derivation of effective interaction!

Produce level schemes for comparison to experimental data

Examples: A = 26 nuclei with USDB interaction

- Only positive-parity experimental states included in the plots
- $\bullet \ \mathsf{Plots} \ \mathsf{obtained} \ \mathsf{from} \ \mathsf{http://www.nscl.msu.edu/} \sim \mathsf{brown/resources/resources.html} \\$

- Only positive parity states included in the plots
- Plots obtained from http://www.nscl.msu.edu/~brown/resources/resources.html

- Only positive parity states included in the plots
- $\bullet \ \mathsf{Plots} \ \mathsf{obtained} \ \mathsf{from} \ \mathsf{http://www.nscl.msu.edu/} \sim \mathsf{brown/resources/resources.html} \\$

- Only positive parity states included in the plots
- Plots obtained from http://www.nscl.msu.edu/~brown/resources/resources.html

- Only positive parity states included in the plots
- $\bullet \ \mathsf{Plots} \ \mathsf{obtained} \ \mathsf{from} \ \mathsf{http://www.nscl.msu.edu/} \sim \mathsf{brown/resources/resources.html} \\$

- Only positive parity states included in the plots
- $\bullet \ \mathsf{Plots} \ \mathsf{obtained} \ \mathsf{from} \ \mathsf{http://www.nscl.msu.edu/} \sim \mathsf{brown/resources/resources.html} \\$

Transitions

Refer to NUSHELLX manual help.pdf for more detailed description Explicit examples given at beginning of Tutorial I

- Necessary inputs for 'den' option of 'shell'
 - Initial and final state wavefunctions must first be calculated with 'lpe' option
 - · Lighter mass must always be initial state
 - Only cleanup directory after performing all calculations
 - Nomenclature for wavefunctions can be found in help manual
 - Can also find wavefunction by searching for *.lpe/*.lph files
 - ullet Number of eigenfunctions for each value of J^π
 - Prompt 'max number for given J'
 - Reply with number up to amount calculated by 'lpe' (or -1 for all)
 - J-values (parity taken from name of wavefunction)
- Optional input to truncate angular momentum coupling to shorten calculation
 - Prompt 'restrict coupling for operator'
 - Only use for calculations of transition densities (option 't' of 'den')

Comparison to experiment for various transitions undertaken in Lecture IV

