Quantum algorithms for strongly-correlated chemistry and physics problems

Thomas O'Brien

Leiden University

June 13, 2019

Quantum computing background

2 Ground state preparation

3 Algorithms beyond the ground state

- Replaces classical bit (either 0 or 1) with qubit (superposition of $|0\rangle$ and $|1\rangle$).
- *N*-qubit state requires $O(2^N)$ classical bits to describe.
- Will not *replace* traditional computers:
 - Cannot copy data (so no hard drives).
 - No advantage in performing basic mathematics.
 - More unstable / higher error rate.
- Instead, 'quantum speedup' for certain computational tasks.
- State of the art 10-100 (physical) qubits, 100-1000 gates.

Google Intel/QuTech IBM JQI Maryland

Representing quantum systems on a quantum computer

- Hamiltonian of a quantum system naturally maps to quantum computer.
- N spin orbitals/N spins \rightarrow N qubits (= 2^N-dimensional Hilbert space).
- Need orthonormal wavefunctions.
- Need to rewrite Hamiltonian in qubit basis (e.g. via Jordan-Wigner).
- Largest cost number of terms in Hamiltonian.

FeMoco

Purchase et al, 2014,

Reiher et al, 2017.

Quantum phase estimation

- Want system eigenenergies solutions to $H|\Psi\rangle = E|\Psi\rangle$.
- Can imprint multiple *E* as frequencies of an ancilla qubit ('phase kickback').
- Extract in postprocessing like identifying notes in a chord.

$$|\Psi
angle = \sum_{j} a_{j} |E_{j}
angle \quad
ightarrow \quad g(t) = \sum_{j} |a_{j}|^{2} e^{iE_{j}t}$$

Variational quantum eigensolvers

• Approximate (ground state) ansatz $|\Psi(ec{ heta})
angle$ generated on a quantum register

 $|\Psi(ec{ heta})
angle = U(ec{ heta})|\Psi_0
angle.$

• Low depth circuits, error mitigation possible - more feasible for near-term.

VQE design

- Typically write $U(\vec{\theta}) = \prod_i e^{iT_i\theta_i}$.
- Most popular choice unitary coupled cluster $T_i = \hat{c}_i^{\dagger} \hat{c}_j^{\dagger} \hat{c}_k \hat{c}_l + h.c.$
- Can estimate relevance of T_i terms via perturbation theory on interaction JV

$$|\Psi(\vec{\theta})
angle = |\Psi_0
angle + O(heta) + O(heta^2) + \dots$$

 $\sim |GS(J)
angle = |\Psi_0
angle + O(J) + O(J^2) + \dots$

Thomas O'Brien

VQE design

- Typically write $U(\vec{\theta}) = \prod_i e^{iT_i\theta_i}$.
- Most popular choice unitary coupled cluster $T_i = \hat{c}_i^{\dagger} \hat{c}_j^{\dagger} \hat{c}_k \hat{c}_l + h.c.$
- Can estimate relevance of T_i terms via perturbation theory on interaction JV

$$ert \Psi (ec heta)
angle = ert \Psi_0
angle + O(heta) + O(heta^2) + \dots \ \sim ert G S(J)
angle = ert \Psi_0
angle + O(J) + O(J^2) + \dots$$

• No known equivalent approach for strongly-correlated systems.

VQE design

- Typically write $U(\vec{\theta}) = \prod_i e^{iT_i\theta_i}$.
- Most popular choice unitary coupled cluster $T_i = \hat{c}_i^{\dagger} \hat{c}_j^{\dagger} \hat{c}_k \hat{c}_l + h.c.$
- Can estimate relevance of T_i terms via perturbation theory on interaction JV

$$ert \Psi (ec heta)
angle = ert \Psi_0
angle + O(heta) + O(heta^2) + \dots \ \sim ert G S(J)
angle = ert \Psi_0
angle + O(J) + O(J^2) + \dots$$

• No known equivalent approach for strongly-correlated systems.

- Want to evolve register by e^{iHt} for complex Hamiltonians H.
- Essential part of various other quantum algorithms (in particular QPE).
- Various methods exist
 - Trotterization $e^{j\sum_i h_j t} \approx \prod_j e^{ih_j t}$.
 - Random quantum walks
 - Qubitization (reaches provable lower bounds in scaling)
- All methods suffer from rather large scaling and constant factors (error correction expected to be needed).

Whitfield et al 2009, Berry et al 2014, Low and Chuang 2017

- Various methods to approximate $|\Psi_j\rangle$ above the ground state.
- Quantum subspace expansion (QSE) $|\Psi_j
 angle\sim \hat{E}_j|\Psi_0
 angle.$
- Witness-assisted variational eigenspectra solver (WAVES) measure phase accumulation with single-ancilla to optimize $\hat{E}_j |\Psi(\vec{\theta})\rangle$ as an eigenstate.
- *Overlap-based methods*: add penalty terms to VQE to minimize overlap with ground state.
- Folded-spectrum methods: calculate $(H \alpha I)^2$ as function of α .

McClean et al 2017, Santagati et al 2018, Endo et al 2018, Higgott et al 2018, McClean et al 2016

Gradient estimation

- Want to estimate $\frac{\partial^n E_0}{\partial \lambda_1 \partial \lambda_2 \dots}$ for some system parameters λ_i .
- λ_i might be
 - the position of an atom in a molecule
 - a coupling strength
 - an external perturbation (e.g. electric field)

Gradient estimation - how?

• Perturbation theory - e.g. for second order

$$\frac{\partial^2 E_0}{\partial \lambda_1 \partial \lambda_2} = \langle \Psi_0 | \frac{\partial^2 \hat{H}}{\partial \lambda_1 \partial \lambda_2} | \Psi_0 \rangle + \sum_{j \neq 0} 2 \operatorname{Re} \left[\langle \Psi_0 | \frac{\partial \hat{H}}{\partial \lambda_1} | \Psi_j \rangle \langle \Psi_j | \frac{\partial \hat{H}}{\partial \lambda_2} | \Psi_0 \rangle \right] \frac{1}{E_0 - E_j}$$

• Phase and Propagator Estimation (PPE) - simultaneously measure $\langle \Psi_0 | \frac{\partial \hat{H}}{\partial \lambda_1} | \Psi_j \rangle \langle \Psi_j | \frac{\partial \hat{H}}{\partial \lambda_2} | \Psi_0 \rangle$ and energies E_j of the corresponding eigenstates $| \Psi_j \rangle$.

• Eigenstate Truncation Approximation (ETA) - take a set $|\tilde{\Psi}_j\rangle$ of approximate excited states and measure expectation values directly.

- $\bullet~\sim 50-100$ qubits required before impossible to simulate classically.
- Simplest algorithms $\sim N N^2$ depth \sim 2500 gates required.
- $\bullet\,$ Current state of the art: $\sim 20-50$ qubits, ~ 100 gates before decoherence.
- No known optimized circuits for near-term quantum computers yet. (?)
- \bullet With error correction, number of qubits increases to $\sim 10^5-10^6.$
- Error correction clock cycle also incredibly slow ($\sim 10 100 \ \mu s$ for superconducting qubits, $\sim 10 100 \ ms$ for ion traps).

- Quantum computers should have an exponential advantage in simulating strongly correlated quantum systems.
- Algorithms are known for (incomplete list!):
 - Ground and excited state preparation
 - Time evolution
 - Gradient estimation
- Still some time before implementation.
- Algorithm optimization and near-term target identification highly desired!

Acknowledgments

- Ramiro Sagastizabal
- Bruno Senjean
- Xavier Bonet-Monroig
- Stefano Polla
- Alicja Dutkiewicz
- Yaroslav Herasymenko
- Slava Ostroukh
- Cameron Price

- Carlo Beenakker
- Leo DiCarlo (and group)
- Lucas Visscher
- Barbara Terhal
- Francesco Buda
- Detlef Hohl
- Brian Tarasinski
- TEO, B. Tarasinski, B. M. Terhal, New J. Phys. (2019).
- X. Bonet-Monroig, R. Sagastizabal, M. Singh, and TEO, Phys. Rev. A (2018).
- R. Sagastizabal et. al., ArXiv:1902.11258 (2019).
- TEO, B. Senjean, et. al., ArXiv:1905.03742 (2019).
- Y. Herasymenko and TEO, In preparation.
- quantumsim density matrix simulator: https:gitlab.com/quantumsim

