Quantum algorithms for strongly-correlated chemistry and physics problems

Thomas O'Brien

Leiden University

June 13, 2019

vu゙=ㅡㄹ
UNIVERSITEIT
AMSTERDAM

Outline

(1) Quantum computing background
(2) Ground state preparation
(3) Algorithms beyond the ground state

Quantum computing recap

- Replaces classical bit (either 0 or 1) with qubit (superposition of $|0\rangle$ and $|1\rangle$).
- N-qubit state requires $O\left(2^{N}\right)$ classical bits to describe.
- Will not replace traditional computers:
- Cannot copy data (so no hard drives).
- No advantage in performing basic mathematics.
- More unstable / higher error rate.
- Instead, 'quantum speedup' for certain computational tasks.
- State of the art - 10-100 (physical) qubits, 100-1000 gates.

Google Intel/QuTech IBM

JQI Maryland

Representing quantum systems on a quantum computer

- Hamiltonian of a quantum system naturally maps to quantum computer.
- N spin orbitals $/ N$ spins $\rightarrow N$ qubits ($=2^{N}$-dimensional Hilbert space).
- Need orthonormal wavefunctions.
- Need to rewrite Hamiltonian in qubit basis (e.g. via Jordan-Wigner).
- Largest cost - number of terms in Hamiltonian.

FeMoco

Purchase et al, 2014,

Reiher et al, 2017.

Quantum phase estimation

- Want system eigenenergies - solutions to $H|\Psi\rangle=E|\Psi\rangle$.
- Can imprint multiple E as frequencies of an ancilla qubit ('phase kickback').
- Extract in postprocessing like identifying notes in a chord.

$$
|\Psi\rangle=\sum_{j} a_{j}\left|E_{j}\right\rangle \quad \rightarrow \quad g(t)=\sum_{j}\left|a_{j}\right|^{2} e^{i E_{j} t}
$$

Variational quantum eigensolvers

- Approximate (ground state) ansatz $|\Psi(\vec{\theta})\rangle$ generated on a quantum register

$$
|\Psi(\vec{\theta})\rangle=U(\vec{\theta})\left|\Psi_{0}\right\rangle .
$$

- Low depth circuits, error mitigation possible - more feasible for near-term.

VQE design

- Typically write $U(\vec{\theta})=\prod_{i} e^{i T_{i} \theta_{i}}$.
- Most popular choice - unitary coupled cluster $-T_{i}=\hat{c}_{i}^{\dagger} \hat{c}_{j}^{\dagger} \hat{c}_{k} \hat{c}_{l}+$ h.c.
- Can estimate relevance of T_{i} terms via perturbation theory on interaction JV

$$
\begin{aligned}
|\Psi(\vec{\theta})\rangle=\left|\Psi_{0}\right\rangle & +O(\theta)+O\left(\theta^{2}\right)+\ldots \\
& \sim|G S(J)\rangle=\left|\Psi_{0}\right\rangle+O(J)+O\left(J^{2}\right)+\ldots
\end{aligned}
$$

VQE design

- Typically write $U(\vec{\theta})=\prod_{i} e^{i T_{i} \theta_{i}}$.
- Most popular choice - unitary coupled cluster $-T_{i}=\hat{c}_{i}^{\dagger} \hat{c}_{j}^{\dagger} \hat{c}_{k} \hat{c}_{l}+$ h.c..
- Can estimate relevance of T_{i} terms via perturbation theory on interaction JV

$$
\begin{aligned}
|\Psi(\vec{\theta})\rangle=\left|\Psi_{0}\right\rangle & +O(\theta)+O\left(\theta^{2}\right)+\ldots \\
& \sim|G S(J)\rangle=\left|\Psi_{0}\right\rangle+O(J)+O\left(J^{2}\right)+\ldots
\end{aligned}
$$

- No known equivalent approach for strongly-correlated systems.

VQE design

- Typically write $U(\vec{\theta})=\prod_{i} e^{i T_{i} \theta_{i}}$.
- Most popular choice - unitary coupled cluster - $T_{i}=\hat{c}_{i}^{\dagger} \hat{c}_{j}^{\dagger} \hat{c}_{k} \hat{c}_{l}+$ h.c..
- Can estimate relevance of T_{i} terms via perturbation theory on interaction JV

$$
\begin{aligned}
|\Psi(\vec{\theta})\rangle=\left|\Psi_{0}\right\rangle & +O(\theta)+O\left(\theta^{2}\right)+\ldots \\
& \sim|G S(J)\rangle=\left|\Psi_{0}\right\rangle+O(J)+O\left(J^{2}\right)+\ldots
\end{aligned}
$$

- No known equivalent approach for strongly-correlated systems.

The number of gates in the ansatz

Hamiltonian simulation

- Want to evolve register by $e^{i H t}$ for complex Hamiltonians H.
- Essential part of various other quantum algorithms (in particular QPE).
- Various methods exist
- Trotterization - $e^{j \sum_{i} h_{j} t} \approx \prod_{j} e^{i h_{j} t}$.
- Random quantum walks
- Qubitization (reaches provable lower bounds in scaling)
- All methods suffer from rather large scaling and constant factors (error correction expected to be needed).

Whitfield et al 2009, Berry et al 2014, Low and Chuang 2017

Excited state estimation

- Various methods to approximate $\left|\Psi_{j}\right\rangle$ above the ground state.
- Quantum subspace expansion (QSE) - $\left|\Psi_{j}\right\rangle \sim \hat{E}_{j}\left|\Psi_{0}\right\rangle$.
- Witness-assisted variational eigenspectra solver (WAVES) - measure phase accumulation with single-ancilla to optimize $\hat{E}_{j}|\Psi(\vec{\theta})\rangle$ as an eigenstate.
- Overlap-based methods: add penalty terms to VQE to minimize overlap with ground state.
- Folded-spectrum methods: calculate $(H-\alpha I)^{2}$ as function of α.

Gradient estimation

- Want to estimate $\frac{\partial^{n} E_{0}}{\partial \lambda_{1} \partial \lambda_{2} \ldots}$ for some system parameters λ_{i}.
- λ_{i} might be
- the position of an atom in a molecule
- a coupling strength
- an external perturbation (e.g. electric field)

Gradient estimation - how?

- Perturbation theory - e.g. for second order

$$
\frac{\partial^{2} E_{0}}{\partial \lambda_{1} \partial \lambda_{2}}=\left\langle\Psi_{0}\right| \frac{\partial^{2} \hat{H}}{\partial \lambda_{1} \partial \lambda_{2}}\left|\Psi_{0}\right\rangle+\sum_{j \neq 0} 2 \operatorname{Re}\left[\left\langle\Psi_{0}\right| \frac{\partial \hat{H}}{\partial \lambda_{1}}\left|\Psi_{j}\right\rangle\left\langle\Psi_{j}\right| \frac{\partial \hat{H}}{\partial \lambda_{2}}\left|\Psi_{0}\right\rangle\right] \frac{1}{E_{0}-E_{j}}
$$

- Phase and Propagator Estimation (PPE) - simultaneously measure $\left\langle\Psi_{0}\right| \frac{\partial \hat{H}}{\partial \lambda_{1}}\left|\Psi_{j}\right\rangle\left\langle\Psi_{j}\right| \frac{\partial \hat{H}}{\partial \lambda_{2}}\left|\Psi_{0}\right\rangle$ and energies E_{j} of the corresponding eigenstates $\left|\Psi_{j}\right\rangle$.

- Eigenstate Truncation Approximation (ETA) - take a set $\left|\tilde{\Psi}_{j}\right\rangle$ of approximate excited states and measure expectation values directly.

So when do we get all of this?

- $\sim 50-100$ qubits required before impossible to simulate classically.
- Simplest algorithms $\sim N-N^{2}$ depth - ~ 2500 gates required.
- Current state of the art: $\sim 20-50$ qubits, ~ 100 gates before decoherence.
- No known optimized circuits for near-term quantum computers yet. (?)
- With error correction, number of qubits increases to $\sim 10^{5}-10^{6}$.
- Error correction clock cycle also incredibly slow ($\sim 10-100 \mu \mathrm{~s}$ for superconducting qubits, $\sim 10-100 \mathrm{~ms}$ for ion traps).

The take-home

- Quantum computers should have an exponential advantage in simulating strongly correlated quantum systems.
- Algorithms are known for (incomplete list!):
- Ground and excited state preparation
- Time evolution
- Gradient estimation
- Still some time before implementation.
- Algorithm optimization and near-term target identification highly desired!

Acknowledgments

- Ramiro Sagastizabal
- Bruno Senjean
- Xavier Bonet-Monroig
- Stefano Polla
- Alicja Dutkiewicz
- Yaroslav Herasymenko
- Slava Ostroukh
- Cameron Price
- TEO, B. Tarasinski, B. M. Terhal, New J. Phys. (2019).
- X. Bonet-Monroig, R. Sagastizabal, M. Singh, and TEO, Phys. Rev. A (2018).
- R. Sagastizabal et. al., ArXiv:1902.11258 (2019).
- TEO, B. Senjean, et. al., ArXiv:1905.03742 (2019).
- Y. Herasymenko and TEO, In preparation.
- quantumsim density matrix simulator: https:gitlab.com/quantumsim

