Quantum advantages

of analog quantum simulators probing strongly correlated systems and of near-term quantum computers

Jens Eisert, Freie Universität Berlin CEA/Saclay workshop, June 2019

Quantum advantages

of analog quantum simulators probing strongly
correlated systems and of near-term quantum computers
-What is an analog quantum simulator? What are relevant problems?

Quantum advantages

of analog quantum simulators probing strongly correlated systems and of near-term quantum computers

-When and in what sense can we hope quantum simulators to provide a speedup over classical computers?

Google
 Microsoft ${ }^{*}$
 Research

- 50-128 qubit quantum devices

- Noisy intermediate scale quantum computers

-When and in what sense can we hope quantum simulators to provide a speedup over classical computers

0

-When can it be claimed that a system has been successfully simulated? - Testable advantage?

Analog quantum simulators

Analog quantum simulators

$0 \circ \sim \circ \cap O$

- "Analog", rather than discrete
- Probing questions in physics (including nuclear physics)
- System size n
- Local Hamiltonians with some levels of control
- Noise levels
- Classes of preparations and measurements

Analog quantum simulators

$0 \cap \cap \cap \cap$

- Cold atoms in optical lattices most advanced

- Global control over $n \sim 10^{5}$ sites (1D-3D)
- Bosons and fermions
- Some tuneability
- Time-of-flight and in-situ measurements

Bloch, Dalibard, Nascimbene, Nature Physics 8, 267 (2012)
Parsons, Mazurenko, Chiu, Ji, Greif, Greiner, Science, 353, 1253 (2016)

- Towards programmable potentials

Analog quantum simulators

-•••••••••

- Trapped ions

- $n \leq 53$
- Universal control
- Some global gates easier than others
- Tomographically complete measurements

Zhang, Pagano, Hess, Kyprianidis, Becker, Kaplan,
Gorshkov, Gong, Monroe 551, 601 (2017)
Blatt, Roos, Nature Phys 8, 277 (2012)

- Optical microtraps

Labuhn, Barredo, Ravets, Léséleuc, Macrì, Lahaye, Browaeys, Nature 534, 667 (2016)

- $n \sim 50 \times 50$, long-ranged Ising
- Polaritonic/photonic architectures

Wertz, Ferrier, Solnyshkov, Johne, Sanvitto, Lemaitre, Sagnes, Grousson, Kavokin, Senellart, Malpuech, Bloch, Nature Phys 6, 860 (2010)

- Large, but intrisically open and noisy

Analog quantum simulators

-•••.........

- Trapped ions

- $n \leq 53$
- Universal control
- Some global gates easier than others
- Tomographically complete measurements

Zhang, Pagano, Hess, Kyprianidis, Becker, Kaplan,
Gorshkov, Gong, Monroe 551, 601 (2017)
Blatt, Roos, Nature Phys 8, 277 (2012)

- Cold atoms in Rydberg states

Bernien, Schwartz, Keesling, Levine, Omran, Pichler, Choi, Zibrov, Endres, Greiner, Vuletic, Lukin, Nature 551, 579 (2017)

- Programmable
- Polaritonic/photonic architectures

Wertz, Ferrier, Solnyshkov, Johne, Sanvitto, Lemaitre, Sagnes, Grousson, Kavokin, Senellart, Malpuech, Bloch, Nature Phys 6, 860 (2010)

- Large, but intrisically open and noisy

What can they probe?

What can they probe?

$0 \cap \sim \cap \sim \cap O$

- Time-dependent problems ("quenches")

$$
\rho(t)=e^{-i t H} \rho e^{i t H}
$$

- E.g. probe equilibration and thermalisation

[^0]- Dynamical phase transitions

Zhang, Pagano, Hess, Kyprianidis, Becker, Kaplan, Gorshkov, Gong, Monroe, Nature 551, 601 (2017)

What can they probe?

- Time-dependent problems ("quenches")
- Imbalance as function of time for $|\psi(0)\rangle=|0,1, \ldots, 0,1\rangle$ under Bose-Hubbard Hamiltonian (MPQ)

[^1]
What can they probe?

- Slow parameter variations (reminiscent of adiabatic quantum algorithms)
- E.g., Kibble-Zurek dynamics (1D-2D)

- Probing scaling laws of correlations

Braun, Friesdorf, Hodgman, Schreiber, Ronzheimer, Riera, del Rey,
Bloch, Eisert, Schneider, Proc Natl Acad Sci 112, 3641 (2015)

What can they probe?

-••.........

- Ground state and static problems
- Hubbard model, probing high-Tc superconductivity

- Cooled to create a magnetic state with long-range order

Mazurenko, Chiu, Ji, Parsons, Kanász-Nagy, Schmidt, Grusdt, Demler, Greif, Greiner, Nature 545, 462 (2017)
Esslinger, Ann Rev Cond Mat Phys 1, 1292010

- Many-body localization (1D-2D)

- Debated in 2D

Schreiber, Hodgman, Bordia, Lüschen, Fischer, Vosk, Altman, Schneider, Bloch, Science 349, 842 (2015)

What can they probe?

- Many-body localization (1D-2D)
- Quantum simulators

Existing quantum simulators outperform state-of-the-art algorithms on classical supercomputers

- Debated in 2D
-Cleverer simulation method?

BQP

- Intermediate problems

To be safe against "lack of imagination", we must prove the hardness of the task in a complexity-theoretic sense

Super-polynomial quantum advantages?

Complexity-theoretic quantum advantages

- Aim: Find some problem with strong evidence for quantum advantage
- Boson sampling

Aaronson, Arkhipov, Th Comp 9, 143 (2013)

Complexity-theoretic quantum advantages

- Aim: Find some problem with strong evidence for quantum advantage
- Boson sampling

Aaronson, Arkhipov, Th Comp 9, 143 (2013)
Sampling from a distribution close in l_{1} norm to boson sampling distribution is "computationally hard" with high probability if the unitary U is chosen from Haar measure and m increases sufficiently fast with $n\left(m \in \Omega\left(n^{5}\right)\right.$)

Complexity-theoretic quantum advantages

- Aim: Find some problem with strong evidence for quantum advantage
- Verification and testing? Black-box verification seems out of question
- Aim: Find some problem with strong evidence for quantum advantage
- Challenging prescription: It this possible to scale it up to provably hard regimes, in an architecture close to a quantum simulation?

Hamiltonian quantum simulation architectures

- Aim: Find some problem with strong evidence for quantum advantage

- Hamiltonian quench architecture
- Low periodicity of the interaction Hamiltonian (NN or NNN)
- Hardness proofs with l_{1}-norm error (under some assumptions)

Hamiltonian quantum simulation architectures

- Aim: Find some problem with strong evidence for quantum advantage

Combine benefits of both worlds

Random

Quasi-periodic

Translationally invariant

Simple Ising models

- Prepare N qubits in $n \times m$ square lattice in product

$$
\left|\psi_{\beta}\right\rangle=\otimes_{i, j=1}^{n, m}\left(|0\rangle+e^{i \beta_{i, j}}|1\rangle\right)
$$

with $\beta_{i, j} \in\{0, \pi / 4\},\{\bigcirc, \bigcirc\}$ i.i.d. randomly

Simple Ising models

- Prepare N qubits in $n \times m$ square lattice in product

$$
\left|\psi_{\beta}\right\rangle=\otimes_{i, j=1}^{n, m}\left(|0\rangle+e^{i \beta_{i, j}}|1\rangle\right)
$$

with $\beta_{i, j} \in\{0, \pi / 4\},\{\bigcirc, \bigcirc\}$ i.i.d. randomly

- Reminscient of disordered optical lattices

Schreiber, Hodgman, Bordia, Lüschen, Fischer, Vosk, Altman, Schneider, Bloch, Science 349, 842 (2015)

Simple Ising models

- Prepare N qubits in $n \times m$ square lattice in product

$$
\left|\psi_{\beta}\right\rangle=\otimes_{i, j=1}^{n, m}\left(|0\rangle+e^{i \beta_{i, j}}|1\rangle\right)
$$

with $\beta_{i, j} \in\{0, \pi / 4\},\{\bigcirc, \bigcirc\}$ i.i.d. randomly

- Quench to $H=\sum_{(i, j) \in E} Z_{i} Z_{j}+\frac{\pi}{4} \sum_{i \in V} Z_{i}$ and evolve under $U=e^{i H}$
- Controlled coherent collisions long realized

Mandel, Greiner, Widera, Rom, Hänsch, Bloch, Nature, 425, 937 (2003)

Simple Ising models

- Prepare N qubits in $n \times m$ square lattice in product

$$
\left|\psi_{\beta}\right\rangle=\otimes_{i, j=1}^{n, m}\left(|0\rangle+e^{i \beta_{i, j}}|1\rangle\right)
$$

with $\beta_{i, j} \in\{0, \pi / 4\},\{\bigcirc, \bigcirc$ i.i.d. randomly

- Quench to $H=\sum_{(i, j) \in E} Z_{i} Z_{j}+\frac{\pi}{4} \sum_{i \in V} Z_{i}$ and evolve under $U=e^{i H}$
- Measure all qubits in X-basis
- Single-site addressing possible (within limits)

Bakr, Gillen, Peng, Foelling, Greiner, Nature 462, 74-77 (2009)
Weitenberg, Endres, Sherson, Cheneau, Schauß, Fukuhara, Bloch, Kuhr, Nature 471, 319 (2011)

Simple Ising models

- Prepare N qubits in $n \times m$ square lattice in product

$$
\left|\psi_{\beta}\right\rangle=\otimes_{i, j=1}^{n, m}\left(|0\rangle+e^{i \beta_{i, j}}|1\rangle\right)
$$

with $\beta_{i, j} \in\{0, \pi / 4\},\{\bigcirc, \bigcirc\}$ i.i.d. randomly

- Quench to $H=\sum_{(i, j) \in E} Z_{i} Z_{j}+\frac{\pi}{4} \sum_{i \in V} Z_{i}$ and evolve under $U=e^{i H}$
- Measure all qubits in X-basis
- Theorem (Hardness of classical sampling):

Assuming three highly plausible complexity-theoretic conjectures are true a classical computer cannot efficiently sample from the outcome distribution of our scheme up to constant error in l_{1} distance

- Relate quench architecture to post-selected measurement-based quantum computing

Σ

- Universal quantum circuit for postBQP

- It is \#P-hard to approximate the outcome distribution
- Polynomial hierarchy (similar $\mathrm{P} \neq \mathrm{NP}$)
- Average-case complexity

Bouland, Fefferman, Nirkhe, Vazirani, arXiv:1803.04402

- Anti-concentration

Hangleiter, Bermejo-Vega, Schwarz, Eisert, Quantum 2, 65 (2018) Mann, Bremner, arXiv:1711.00686

- Relate quench architecture to post-selected measurement-based quantum computing
eoretic conjectures are true a
- Universal quantum circuit for postBQP ple from the outcome distribution

- It is \#P-hard to approximate the outcome distribution
- Polynomial hierarchy (similar $\mathrm{P} \neq \mathrm{NP}$)
- Average-case complexity

Bouland, Fefferman, Nirkhe, Vazirani, arXiv:1803.04402

- Anti-concentration

Hangleiter, Bermejo-Vega, Schwarz, Eisert, Quantum 2, 65 (2018) Mann, Bremner, arXiv:1711.00686

- Relate hardness of computing probabilities to hardness of sampling with additive errors

- Theorem (Hardness of classical sampling):

Assuming three highly plausible complexity-theoretic conjectures are true a classical computer cannot efficiently sample from the outcome distribution of our scheme up to constant error in l_{1} distance

- This quantum simulation is intractable for classical computers

Verifiable quantum devices showing a quantum advantage

- One can with $\theta(N)$ many measurements detect closeness inl l_{1}-norm!
- Ground state of fictious frustration-free Hamiltonian
- Much simpler than fault tolerance

Bermejo-Vega, Hangleiter, Schwarz, Raussendorf, Eisert, Phys Rev X 8, 021010 (2018)
Hangleiter, Bermejo-Vega, Schwarz, Eisert, Quantum 2, 65 (2018)

Verifiable quantum devices showing a quantum advantage

- One can with $\theta(N)$ many measurements detect closeness inl l_{1}-norm!
- Ground state of fictious frustration-free Hamiltonian
- Much simpler than fault tolerance

Bermejo-Vega, Hangleiter, Schwarz, Raussendorf, Eisert, Phys Rev X 8, 021010 (2018) Hangleiter, Bermejo-Vega, Schwarz, Eisert, Quantum 2, 65 (2018) Hangleiter, Kliesch, Schwarz, Eisert, Quantum Sci Technol 2, 015004 (2017) Cramer et al, Nature Comm 1, 149 (2010)

- Common prejudice: In order to be able to verify a quantum simulation, one needs to be able to efficiently simulate it

Summary, outlook and open questions

- Analog quantum simulators already outperform good classical algorithms

Summary, outlook and open questions

- Analog quantum simulators already outperform good classical algorithms
- Hope for feasible quantum simulators with superpolynomial speedup
- Analog quantum simulators already outperform good classical algorithms
- Hope for feasible quantum simulators with superpolynomial speedup
- Not fault tolerant, but can be certified: Bell test for quantum computing - even if simulators exhibit quantum computational speedup
- Closer to physically more interesting schemes?
- More structured problems, optimization?

Summary, outlook and open questions

- Analog quantum simulators already outperform good classical algorithms
- Hope for feasible quantum simulators with superpolynomial speedup
- Not fault tolerant, but can be certified: Bell test for quantum computing - even if simulators exhibit quantum computational speedup
- Closer to nuclear physics questions?
- More structured problems, optimization?
- Robustness of quantum simulators? Readout?

Summary, outlook and open questions

- Analog quantum simulators already outperform good classical algorithms
- Hope for feasible quantum simulators with superpolynomial speedup
- Not fault tolerant, but can be certified: Bell test for quantum computing - even if simulators exhibit quantum computational speedup
- Closer to nuclear physics questions?
- More structured problems, optimization?
- Robustness of quantum simulators? Readout?
- Space time trade offs?

Summary, outlook and open questions

- Analog quantum simulators already outperform good classical algorithms
- Hope for feasible quantum simulators with superpolynomial speedup
- Not fault tolerant, but can be certified: Bell test for quantum computing
- even if simulators exhibit quantum computational speedup
- Closer to nuclear physics questions?
- More structured problems, optimization?
- Robustness of quantum simulators? Readout?
- Space time trade offs?

Thanks for your attention!

http://www.physik.fu-berlin.de/en/einrichtungen/ag/ag-eisert

[^0]: Eisert, Friesdorf, Gogolin, Nature Phys 11, 124 (2015)

[^1]: Trotzky, Chen, Flesch, McCulloch, Schollwoeck, Eisert, Bloch, Nature Phys 8, 325 (2012)

