A quantum computation of an atomic nucleus

Gaute Hagen

Oak Ridge National Laboratory

Quantum computing and scientific research: state of the art and potential impact in nuclear physics

CEA, Saclay, June 13th, 2019

Nuclei across the chart

118 chemical elements (94 naturally found on Earth)

 288 stable (primordial) isotopesThousands of short-lived isotopes - many with interesting properties

Energy scales and relevant degrees of freedom

Effective theories provide us with model independent approaches to atomic nuclei Key: Separation of scales

Ab-initio low-energy nuclear physics deals with nucleons (and pions) as dynamical degrees of freedom

Weinberg's third law of Progress in theoretical Physics:
"You may use any degrees of freedom you like to describe a physical system, but if you use the wrong ones, you'll be sorry!"

Fig.: Bertsch, Dean, Nazarewicz, SciDAC review (2007)

Energy scales and relevant degrees of freedom

Fig.: Bertsch, Dean, Nazarewicz, SciDAC review (2007)

Trend in realistic ab-initio calculations

- Tremendous progress in recent years because of ideas from EFT and the renormalization group
- Computational methods with polynomial cost (coupled clusters quantum computing
- Ever-increasing computer power?

Development with time (top500.org)
Projected Performance Development

Oxgyen chain with interactions from chiral EFT

Hebeler, Holt, Menendez, Schwenk, Annu. Rev. Nucl. Part. Sci. 65, 457 (2015)

A family of interactions from chiral EFT

$\mathrm{NNLO}_{\text {sat }}$: Accurate radii and BEs

- Simultaneous optimization of NN and 3NFs
- Include charge radii and binding energies of ${ }^{3} \mathrm{H},{ }^{3,4} \mathrm{He},{ }^{14} \mathrm{C},{ }^{16} \mathrm{O}$ in the optimization
- Harder interaction: difficult to converge beyond ${ }^{56} \mathrm{Ni}$
A. Ekström et al, Phys. Rev. C 91, 051301(R) (2015).

1.8/2.0(EM): Accurate BEs Soft interaction: SRG NN from Entem \& Machleidt with 3NF from chiral EFT
K. Hebeler et al PRC (2011). T. Morris et al, PRL (2018).

Super allowed Gamow-Teller decay of ${ }^{100}$ Sn

volume 15, pages 428-431 (2019)

Reach of ab-initio computations of nuclei

H. Hergert et al, Physics Reports 621, 165-222 (2016)

Reach of ab-initio computations of nuclei

H. Hergert et al, Physics Reports 621, 165-222 (2016)

A big issue: power

Incremental cost of running RHIC: \$550k/week

Incremental cost of running Titan: \$140k/week

Incremental cost of running Summit: \$150k/week
(assume \$0.1/kW-h)

Nuclear Physics \& Quantum Computing Collaboration at ORNL

Eugene Dumitrescu

Alex McCaskey

Two ORNL-led research teams receive \$10.5 million to advance quantum computing for scientific applications (ORNL news, October 2017)

Pavel Lougovski

PHYSICAL REVIEW LETTERS 120, 210501 (2018)

Cloud Quantum Computing of an Atomic Nucleus
E. F. Dumitrescu, ${ }^{1}$ A. J. McCaskey, ${ }^{2}$ G. Hagen, ${ }^{3,4}$ G. R. Jansen, ${ }^{5,3}$ T. D. Morris, ${ }^{4,3}$ T. Papenbrock, ${ }^{4,3,{ }^{*}}$
R. C. Pooser, ${ }^{1,4}$ D. J. Dean, ${ }^{3}$ and P. Lougovski ${ }^{1, \dagger}$
${ }^{1}$ Computational Sciences and Engineering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
${ }^{2}$ Computer Science and Mathematics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
${ }^{3}$ Physics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
${ }^{4}$ Department of Physics and Astronomy, University of Tennessee, Knoxville, Tennessee 37996, USA
${ }^{5}$ National Center for Computational Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA

Cloud Quantum Computing of an Atomic Nucleus

E. F. Dumitrescu, ${ }^{1}$ A. J. McCaskey, ${ }^{2}$ G. Hagen, ${ }^{3,4}$ G. R. Jansen, ${ }^{5,3}$ T. D. Morris, ${ }^{4,3}$ T. Papenbrock, ${ }^{4,3,{ }^{*}}$ R. C. Pooser, ${ }^{1,4}$ D. J. Dean, ${ }^{3}$ and P. Lougovski ${ }^{1, \dagger}$
${ }^{1}$ Computational Sciences and Engineering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
${ }^{2}$ Computer Science and Mathematics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
${ }^{3}$ Physics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
${ }^{4}$ Department of Physics and Astronomy, University of Tennessee, Knoxville, Tennessee 37996, USA
${ }^{5}$ National Center for Computational Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
(Received 12 January 2018; published 23 May 2018)

The deuteron is the lightest atomic nucleus consisting of a proton and neutron

Well studied and understood and suitable for existing quantum computers

MIT
 Technology Review

The Best of the Physics arXiv (week ending January 20, 2018

This week's most thought-provoking papers from the Physics
arXiv.
by Emerging Technology from the arXiv January 20, 2018by Emerging Technology from the arXiv January 20, 2018
A roundup of the most interesting papers from the arXiv:
Cloud Quantum Computing of an Atomic Nucleus
Black Holes as Brains: Neural Networks with Area Law EntropyThe Dynamical Structure of Political Corruption Networks
Measuring the Complexity of ConsciousnessHome
NewsBlogMultimediaIn depthEvents
News archive -2018
, February 2018 , January 2018
, 2017 , 2016
, 2015
2014
+2013 , 2012 - 2011
, 2010

- 2009
, 2008 , 2007
2006 , 2004 , 2002

Cloud quantum computing calculates
nuclear binding energy

Jan 29, 2018

IOP Physics World - the member magazine of the Institute of Physics

physicsworld.com

Home News Blog Multimedia In depth Events

PHYS ORA	Nanotechnology \vee	Physics \vee	Earth \vee	Astronomy \& Space \vee	Technology \vee	Chemistry \vee	Biology $~>$	Other Sciences v
$f \geqslant$ ถ								search

Cloud based quantum computing used to calculate nuclear binding energy February 2, 2018 by Bob Yirka, Phys.org report

What can quantum computers possibly do well?

Some quantum algorithms outperform their classical counter parts:

- Shor's algorithm: factoring of integers
- Grover's algorithm: inverting a function / searching an unordered list
- Quantum Fourier transform
- Quantum mechanics simulation: N qubits vs. 2^{N} complex numbers

Hope/expectation: quantum computing could solve problems with polynomial effort that are exponentially hard for classical computers.

Contrasting views:

1. We already have classical algorithms that yield approximate ground states for certain Hamiltonians/systems in polynomial time (e.g. DFT, coupled cluster method, IMSRG, Monte Carlo methods, ...).
2. See Gil Kalai, arXiv: 1605.00992 for a pessimistic view.

Optimistic view

Optimistic hypothesis: It is possible to realize universal quantum circuits with a small bounded error level regardless of the number of qubits. The effort required to obtain a bounded error level for universal quantum circuits increases moderately with the number of qubits. Therefore, large-scale fault-tolerant quantum computers are possible.

Gil Kalai, arXiv:1605.00992

Pessimistic view

Pessimistic hypothesis: The error rate in every realization of universal quantum circuits scales up (at least) linearly with the number of qubits. The effort required to obtain a bounded error level for any implementation of universal quantum circuits increases (at least) exponentially with the number of qubits. Thus, quantum computers are not possible.

Gil Kalai, arXiv:1605.00992

How are QPUs realized?

Our work used transmon qubits (two-level system of Josephson junctions coupling an island with 0 or 1 Cooper pairs to a superconducting reservoir)

Science 354, 1091 (2016)
A bit of the action
In the race to build a quantum computer, companies are pursuing many types of quantum bits, or qubits, each with its own strengths and weaknesses.

Superconducting loops
A resistance-free current oscillates back and forth around a circuit loop. An injected microwave signal excites the current into super position states.
Longevity (seconds)
0.00005
99.4\%
Number entangled

9
Company support
Google, IBM, Quantum Circuits

(Pros

Fast working. Build on existing semiconductor industry.
Cons
Collapse easily and must be kept cold.

Trapped ions
Electrically charged atoms, or ions, have quantum energies that depend on the location of electrons. Tuned lasers cool and trap the ions, and put them in superposition states.
>1000
99.9\%

14
ionQ

Very stable. Highest achieved gate fidelities.

Slow operation. Many lasers are needed.

Silicon quantum dots
These "artificial atoms" are made by adding an electron to a small piece of pure silicon. Microwaves control the electron's quantum state.
0.03
~99\%

2

Intel

Stable. Build on existing semiconductor industry.

Only a few entangled. Must be kept cold.

Topological qubits
Quasiparticles can be seen in the behavior of electrons channeled through semiconductor structures. Their braided paths can encode quantum information.

N/A

N/A

N/A

Microsoft, Bell Labs

Greatly reduce errors

Existence not yet confirmed.
cuit to entangle.

Diamond vacancies

A nitrogen atom and a vacancy add an electron to a diamond lattice. Its quantum spin state, along with those of nearby carbon nuclei, can be controlled with light.

10
99.2\%

6

Quantum Diamond Technologies

Can operate at room temperature.
\qquad

Quantum computing - who's doing it?

Company	Type	Technology	Now	Next Goal
Intel	Gate	Superconducting	49	TBD
Google	Gate	Superconducting	72	TBD
IBM	Gate	Superconducting	50	TBD
Rigetti	Gate	Superconducting	19	128
USTC (China)	Gate	Superconducting	10	20
IonQ	Gate	Ion Trap	7	32
NSF STAQ Project	Gate Trap	N/A	264	
Intel	Gate	Spin	26	TBD
Silicon Quantum Computing Pty	Neutral Atoms	49	TBD	
Univ. of Wisconsin	Quantum Simulator	Rydberg Atoms	51	TBD
Harvard/MIT	Quantum Simulator	Ion Trap	53	TBD
Univ. of Maryland / NIST			10	

Many more are building a quantum chip.
Source: QuantumComputingReport.com

Quantum computing

There is a lot of excitement in this field due to substantial progress

1. Quantum processing units now have ten(s) of qubits
2. Businesses are driving this: Google, IBM, Microsoft, Rigetti, DWave, ...
3. Software is publicly available (PyQuil, XACC, OpenQASM, OpenFermion)
4. First real-world problems solved: H 2 molecule on two qubits [O'Malley et al., Phys. Rev. X 6, 031007 (2016)]; BeH2 on six qubits [Kandala et al., Nature 549, 242 (2017)]; ...

The scientific works were collaborations between theorists and hardware specialists (owners/operators of quantum chips).

Quantum computation of $\mathbf{H}_{\mathbf{2}}$ molecule using a hybrid quantum/classical algorithm

FIG. 1. Hardware and software schematic of the variational quantum eigensolver. (Hardware) micrograph shows two Xmon transmon qubits and microwave pulse sequences to perform single-qubit rotations (thick lines), dc pulses for two-qubit entangling gates (dashed lines), and microwave spectroscopy tones for qubit measurements (thin lines). (Software) quantum circuit diagram shows preparation of the Hartree-Fock state, followed by application of the unitary coupled cluster ansatz in Eq. (3) and efficient partial tomography $\left(R_{t}\right)$ to measure the expectation values in Eq. (1). Finally, the total energy is computed according to Eq. (4) and provided to a classical optimizer which enogecte now narametore

$$
H=g_{0} \mathbb{1}+g_{1} Z_{0}+g_{2} Z_{1}+g_{3} Z_{0} Z_{1}+g_{4} Y_{0} Y_{1}+g_{5} X_{0} X_{1}
$$

Quantum computation of $\mathbf{H}_{\mathbf{2}}$ molecule using a hybrid quantum/classical algorithm

O'Malley et al. Phys. Rev. X 6, 031007 (2016)

Kandala et al used 10^{5} measurements on the IBM-Q for the BeH_{2} molecule. The Hamiltonian consisted of more than hundred Pauli terms

Kandala et al., Nature 549, 242-246(2017)

Cloud access to quantum computers/simulators

Now: Cloud access possible; no insider knowledge required!
[Dumitrescu, McCaskey, Hagen, Jansen, Morris, TP, Pooser, Dean, Lougovski, Phys. Rev. Lett. 120, 210501 (2018)]

Source: S. Gandofli, Physics Viewpoint, https://physics.aps.org/articles/v11/51

Cloud access to quantum computers/simulators

Can quantum computing live up to the hype?
\$1 million prize for the first conclusive demonstration of quantum advantage on QCS

Rigetti 19Q

Superconducting qubits

Connectivity of Rigetti 19Q.
a, Chip schematic showing tunable transmons (green circles) capacitively coupled to fixedfrequency transmons (blue circles). b, Optical chip image. Note that some couplers have been dropped to produce a lattice with three-fold, rather than four-fold connectivity.

IBM QX5 (16 qubits)

\rightarrow IBM Q Experience

Qubit fidelities

| | 1-Qubit Gate Fidelity | | 2-Qubit Gate Fidelity | | | Read Out Fidelity | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Computer | Min | Max | Ave | Min | Max | Ave | Min | Max | Ave |
| IBM QX2 | 99.71% | 99.88% | 99.79% | 94.22% | 97.12% | 95.33% | 92.20% | 98.20% | 96.24% |
| IBM QX4 | 99.83% | 99.96% | 99.88% | 95.11% | 98.39% | 97.11% | 94.80% | 97.10% | 95.60% |
| IBM QX5 | 99.59% | 99.87% | 99.77% | 91.98% | 97.29% | 95.70% | 88.53% | 96.66% | 93.32% |
| IBM QS1_1 | 96.93% | 99.92% | 99.48% | 82.28% | 98.87% | 95.68% | 69.05% | 93.55% | 83.95% |
| Rigetti 19Q | 94.96% | 99.42% | 98.63% | 79.00% | 93.60% | 87.50% | 84.00% | 97.00% | 93.30% |

Sources: QuantumComputingReport.com; Rigetti.com

Mitigating exisiting constraints

1. Gate errors, decoherence
2. Limited connectivity of qubits
3. Cloud access
4. Limited fidelity
\rightarrow low-depth circuit
\rightarrow tailored, simple Hamiltonian
\rightarrow only expectation values on QPU
\rightarrow noise correction

Game plan

1. Hamiltonian from pionless EFT at leading order; fit to deuteron binding energy; constructed in harmonic-oscillator basis of ${ }^{3} S_{1}$ partial wave [à la Binder et al. (2016); Aaina Bansal et al. (2017)]; cutoff at about 150 MeV .

$$
\begin{aligned}
H_{N}=\sum_{n, n^{\prime}=0}^{N-1}\left\langle n^{\prime}\right|(T+V)|n\rangle a_{n^{\prime}}^{\dagger} a_{n} & \left\langle n^{\prime}\right| V|n\rangle=V_{0} \delta_{n}^{0} \delta_{n}^{n^{\prime}} \\
& V_{0}=-5.68658111 \mathrm{MeV}
\end{aligned}
$$

For example the $N=2$ Hamiltonian is given by:

$$
H_{2}=\left[\begin{array}{cc}
-1.677 & 2.339 \\
2.339 & 22.242
\end{array}\right]
$$

Easily diagonalized on a piece of paper.

Game plan

2. Map single-particle states $|n\rangle$ onto qubits using $|0\rangle=|\uparrow\rangle$ and $|1\rangle=|\downarrow\rangle$. This is an analog of the Jordan-Wigner transform.

$$
\begin{gathered}
a_{p}^{\dagger} \leftrightarrow \sigma_{-}^{(p)} \equiv \frac{1}{2}\left(X_{p}-i Y_{p}\right) \quad a_{p} \leftrightarrow \sigma_{+}^{(p)} \equiv \frac{1}{2}\left(X_{p}+i Y_{p}\right) \\
H_{2}=\left[\begin{array}{cc}
-1.677 & 2.339 \\
2.339 & 22.242
\end{array}\right]=
\end{gathered}
$$

$5.9067 I+0.21729 Z_{0}-0.125 Z_{1}-2.143\left(X_{0} X_{1}+Y_{0} Y_{1}\right)$

3. Solve H_{1}, H_{2} (and H_{3}) and extrapolate to infinite space using harmonic oscillator variant of Lüscher's formula [More, Furnstahl, Papenbrock (2013)]

$$
E_{N}=-\frac{\hbar^{2} k^{2}}{2 m}\left(1-2 \frac{\gamma^{2}}{k} e^{-2 k L}-4 \frac{\gamma^{4} L}{k} e^{-4 k L}\right)+\frac{\hbar^{2} k \gamma^{2}}{m}\left(1-\frac{\gamma^{2}}{k}-\frac{\gamma^{4}}{4 k^{2}}+2 w_{2} k \gamma^{4}\right) e^{-4 k L}
$$

Variational wave function

Wave functions on two qubits

$$
U(\theta)|\downarrow \uparrow\rangle \quad U(\theta) \equiv e^{\theta\left(a_{0}^{\dagger} a_{1}-a_{1}^{\dagger} a_{0}\right)}=e^{i \frac{\theta}{2}\left(X_{0} Y_{1}-X_{1} Y_{0}\right)}
$$

Wave functions on three qubits

$$
U(\eta, \theta)|\downarrow \uparrow \uparrow\rangle \quad U(\eta, \theta) \equiv e^{\eta\left(a_{0}^{\dagger} a_{1}-a_{1}^{\dagger} a_{0}\right)+\theta\left(a_{0}^{\dagger} a_{2}-a_{2}^{\dagger} a_{0}\right)}
$$

Minimize number of two-qubit CNOT operations to mitigate low two-qubit fidelities (construct a "low-depth circuit")

$$
U(\theta)
$$

$$
U(\eta, \theta)
$$

Hamiltonian on two qubits

$$
H_{2}=5.906709 I+0.218291 Z_{0}-6.125 Z_{1}-2.143304\left(X_{0} X_{1}+Y_{0} Y_{1}\right)
$$

Quantum-classical hybrid algorithm VQE [Peruzzo et al. 2014; McClean et al 2016]:

Expectation values on QPU. Minimization on CPU.

To manage noise we performed 8,192 (10,000) measurements on QX5 (19Q)

Three qubits

$$
H_{3}=H_{2}+9.625\left(I-Z_{2}\right)-3.913119\left(X_{1} X_{2}+Y_{1} Y_{2}\right)
$$

Three qubits have more noise. Insert pairs of CNOT (unity operators) to extrapolate to $r=0$. [See, e.g., Ying Li \& S. C. Benjamin 2017]

Final results

Deuteron ground-state energies from a quantum computer compared to the exact result, $E_{\infty}=-2.22 \mathrm{MeV}$.

E from exact diagonalization				
N	E_{N}	$\mathcal{O}\left(e^{-2 k L}\right)$	$\mathcal{O}\left(k L e^{-4 k L}\right)$	$\mathcal{O}\left(e^{-4 k L}\right)$
2	-1.749	-2.39	-2.19	
3	-2.046	-2.33	-2.20	-2.21
E from quantum computing				
N	E_{N}	$\mathcal{O}\left(e^{-2 k L}\right)$	$\mathcal{O}\left(k L e^{-4 k L}\right)$	$\mathcal{O}\left(e^{-4 k L}\right)$
2	$-1.74(3)$	$-2.38(4)$	$-2.18(3)$	
3	$-2.08(3)$	$-2.35(2)$	$-2.21(3)$	$-2.28(3)$

$$
E_{N}=-\frac{\hbar^{2} k^{2}}{2 m}\left(1-2 \frac{\gamma^{2}}{k} e^{-2 k L}-4 \frac{\gamma^{4} L}{k} e^{-4 k L}\right)+\frac{\hbar^{2} k \gamma^{2}}{m}\left(1-\frac{\gamma^{2}}{k}-\frac{\gamma^{4}}{4 k^{2}}+2 w_{2} k \gamma^{4}\right) e^{-4 k L}
$$

[Dumitrescu, McCaskey, Hagen, Jansen, Morris, TP, Pooser, Dean, Lougovski, Phys. Rev. Lett. 120, 210501 (2018)]

Simulations of atomic nuclei on a quantum frequency processor

Use an all-optical quantum frequency processor (QFP), to compute the groundstate energies of the light nuclei with a record-high 68-dimensional Hilbert space

- Encode qubits into narrow frequency bins
- Prepare quantum state by use a pulse shaper to modulate amplitude and phase of each frequency
- Use QFP to mix adjacent frequency bins equivalent to measure the density matrix
- Calculate expectation value

Hsuan-Hao Lu, Natalie Klco, Joseph M.
Lukens, Titus D. Morris, et al, arXiv:1810.03959 (2018)

Simulating atomic nuclei on a QFP

Use pion-less EFT at NLO with contact parameters adjusted to effective range and deuteron/triton binding energies

Map Hamiltonian onto QFP: $\quad H_{Q F P}=\sum_{k=0}^{N-1} h_{k k} \hat{c}_{k}^{\dagger} \hat{c}_{k}+\sum_{\substack{i, j=0 \\ i<j}}^{N-1}\left[h_{i j} \hat{c}_{i}^{\dagger} \hat{c}_{j}+h_{j i}^{*} \hat{c}_{j}^{\dagger} \hat{c}_{i}\right]$
Use VQE and with a unitary coupled-cluster ansatz:

$$
|\Psi\rangle=\exp \left(\sum_{k=1}^{N-1} \theta_{k}\left[\hat{c}_{0}^{\dagger} \hat{c}_{k}-\hat{c}_{k}^{\dagger} \hat{c}_{0}\right]\right)|10 \cdots 0\rangle
$$

Measure the expectation value $\left\langle H_{Q F P}\right\rangle=\operatorname{Tr}\left[\rho H_{Q F P}\right]=\sum_{j} \rho_{i j} h_{j i}$ on the QFP:

Extrapolate to infinite model-space using the Lüscher like formula:

$$
E(L)=E_{\infty}+a e^{-2 k_{\infty} L} \quad k_{\infty}=\frac{1}{\hbar} \sqrt{-2 m\left[E_{\infty}(A)-E_{\infty}(A-1)\right]}
$$

Hsuan-Hao Lu, Natalie Klco, Joseph M. Lukens, Titus D. Morris, et al, arXiv:1810.03959 (2018)

Simulating atomic nuclei on a QFP

	Quantum frequency processor			Exact diagonalization		
$N_{\max }$	${ }^{3} \mathrm{H}$	${ }^{3} \mathrm{He}$	${ }^{4} \mathrm{He}$	${ }^{3} \mathrm{H}$	${ }^{3} \mathrm{He}$	${ }^{4} \mathrm{He}$
2	$-7.508(8)$	$-6.794(7)$	$-27.93(3)$	-7.513	-6.800	-27.947
4	$-8.031(40)$	$-7.338(37)$	$-28.03(14)$	-8.060	-7.366	-28.106
6	$-8.120(81)$	$-7.470(75)$	$-27.78(28)$	-8.275	-7.600	-28.148
N_{A}	-	-	-	-8.482	-7.830	-28.165
∞	$-8.51(9)$	$-7.89(8)$	$-28.04(14)$	-8.47	-7.84	-28.17
Exp.	-8.482	-7.718	-28.296	-8.482	-7.718	-28.296

Matrix dimensions: $d(A=3)=5,15,34 \& d(A=4)=5,20,64$

Hsuan-Hao Lu, Natalie Klco, Joseph M. Lukens, Titus D. Morris, et al, arXiv:1810.03959 (2018)

Summary

- First step towards scalable nuclear structure calculations on a quantum processors accessed via the cloud
- Cloud quantum computation of atomic nuclei now possible
- 100 error corrected qubits could potentially revolutionize nuclear shell model calculations
- Largest photonic based quantum simulations to date

Is a Quantum Winter coming?

Collaborators

@ ORNL / UTK: D. J. Dean, G. R. Jansen, E.
Dimistrescu, P. Lougovski, A. J. McCaskey, T.
Morris, T. Papenbrock, R. C. Pooser

+ collaborators at Chalmers, IonQ/UMD, MSU,
Purdue, and UW

