Nuclear dynamics with quantum computers (and some more on the deuteron \& measurement problem)

Alessandro Roggero

figure credit: JLAB collab.

figure credit: IBM

Quantum computing and scientific research

Saclay - 14 June, 2019

What is a Quantum computer?

Google
Righetti

Bits vs Qubits

- N bits: an integer number $<2^{N}$
- N qubits: a vector $|\psi\rangle$ in 2^{N}-dim Hilbert-space \Longrightarrow exponentially more information available
- Microsoft?

Quantum Simulations with qubits

"Nature isn't classical, dammit, and if you want to make a simulation of nature, you'd better make it quantum mechanical."

- R.Feynman (1982)
- in 1996 S.Lloyd shows the conjecture is correct for local interactions

Quantum Simulations with qubits

"Nature isn't classical, dammit, and if you want to make a simulation of nature, you'd better make it quantum mechanical."

- R.Feynman (1982)
- in 1996 S.Lloyd shows the conjecture is correct for local interactions
- choose a finite basis to discretize system $\longrightarrow \operatorname{dim}(\mathcal{H})=\Omega \propto e^{A}$
- physical states can be mapped in states of $\sim \log _{2}(\Omega)$ qubits

$$
|\Psi(t)\rangle=U(t)|\Psi(0)\rangle
$$

Exclusive cross sections in neutrino oscillation experiments

Goals for ν oscillation exp.

- neutrino masses
- accurate mixing angles
- CP violating phase

$$
P\left(\nu_{\alpha} \rightarrow \nu_{\alpha}\right)=1-\sin ^{2}(2 \theta) \sin ^{2}\left(\frac{\Delta m^{2} L}{4 E_{\nu}}\right)
$$

- need to use measured reaction products to constrain E_{ν} of the event DUNE, MiniBooNE, T2K, Miner $\nu \mathrm{a}, \mathrm{NO} \nu \mathrm{A}, \ldots$

Idealized algorithm for exclusive processes at fixed q

- prepare the target ground state

Idealized algorithm for exclusive processes at fixed q

- prepare the target ground state
- right after scattering vertex the target is left in excited state

Idealized algorithm for exclusive processes at fixed q

- prepare the target ground state
- right after scattering vertex the target is left in excited state

Idealized algorithm for exclusive processes at fixed q

- prepare the target ground state
- right after scattering vertex the target is left in excited state

Roggero \& Carlson (2018)

Idealized algorithm for exclusive processes at fixed q

- prepare the target ground state
- right after scattering vertex the target is left in excited state
- energy measurement selects subset of final nuclear states

Roggero \& Carlson (2018)

Idealized algorithm for exclusive processes at fixed q

- prepare the target ground state
- right after scattering vertex the target is left in excited state
- energy measurement selects subset of final nuclear states
- further time evolution to let system decay

Roggero \& Carlson (2018)

Idealized algorithm for exclusive processes at fixed q

- prepare the target ground state
- right after scattering vertex the target is left in excited state
- energy measurement selects subset of final nuclear states
- further time evolution to let system decay
- measure asymptotic state in detector

Quantum algorithm for exclusive processes at fixed q

- prepare the target ground state on a finite qubit basis
- right after scattering vertex the target is left in excited state
- energy measurement selects subset of final nuclear states
- further time evolution to let system decay
- measure asymptotic state in detector

Quantum algorithm for exclusive processes at fixed q

- prepare the target ground state on a finite qubit basis
- right after scattering vertex the target is left in excited state
- energy measurement selects subset of final nuclear states
- further time evolution to let system decay
- measure asymptotic state in detector

Quantum algorithm for exclusive processes at fixed q

- prepare the target ground state on a finite qubit basis
- right after scattering vertex the target is left in excited state
- energy measurement selects subset of final nuclear states
- further time evolution to let system decay
- measure asymptotic state in detector

Roggero \& Carlson (2018)

Quantum algorithm for exclusive processes at fixed q

- prepare the target ground state on a finite qubit basis
- right after scattering vertex the target is left in excited state
- energy measurement selects subset of final nuclear states (finite $\Delta \omega$)
- further time evolution to let system decay
- measure asymptotic state in detector

Roggero \& Carlson (2018)

Quantum Phase Estimation

Kitaev (1996), Brassard et al. (2002), Svore et. al (2013), Weibe \& Granade (2016),. . .
QPE is a general algorithm to estimate eigenvalues of a unitary operator

$$
U\left|\xi_{k}\right\rangle=\lambda_{k}\left|\xi_{k}\right\rangle, \lambda_{k}=e^{2 \pi i \phi_{k}} \Leftarrow U=e^{-i t H}
$$

Quantum Phase Estimation

Kitaev (1996), Brassard et al. (2002), Svore et. al (2013), Weibe \& Granade (2016),. . .
QPE is a general algorithm to estimate eigenvalues of a unitary operator

$$
U\left|\xi_{k}\right\rangle=\lambda_{k}\left|\xi_{k}\right\rangle, \lambda_{k}=e^{2 \pi i \phi_{k}} \Leftarrow \quad \Leftarrow=e^{-i t H}
$$

- starting vector $|\psi\rangle=\sum_{k} c_{k}\left|\xi_{k}\right\rangle$
- store time evolution $|\psi(t)\rangle$ in auxiliary register of M qubits
- perform (Quantum) Fourier transform on the auxiliary register
- measures will return λ_{n} with probability $P\left(\lambda_{n}\right) \approx\left|c_{n}\right|^{2}$

Quantum Phase Estimation

Kitaev (1996), Brassard et al. (2002), Svore et. al (2013), Weibe \& Granade (2016),. . .
QPE is a general algorithm to estimate eigenvalues of a unitary operator

$$
U\left|\xi_{k}\right\rangle=\lambda_{k}\left|\xi_{k}\right\rangle, \lambda_{k}=e^{2 \pi i \phi_{k}} \Leftarrow \quad \Leftarrow=e^{-i t H}
$$

- starting vector $|\psi\rangle=\sum_{k} c_{k}\left|\xi_{k}\right\rangle$
- store time evolution $|\psi(t)\rangle$ in auxiliary register of M qubits
- perform (Quantum) Fourier transform on the auxiliary register
- measures will return λ_{n} with probability $P\left(\lambda_{n}\right) \approx\left|c_{n}\right|^{2}$

Ovrum\&Hiorth-Jensen (2007)

Quantum Phase Estimation

Kitaev (1996), Brassard et al. (2002), Svore et. al (2013), Weibe \& Granade (2016),. . .
QPE is a general algorithm to estimate eigenvalues of a unitary operator

$$
U\left|\xi_{k}\right\rangle=\lambda_{k}\left|\xi_{k}\right\rangle, \lambda_{k}=e^{2 \pi i \phi_{k}} \Leftarrow \quad \Leftarrow=e^{-i t H}
$$

- starting vector $|\psi\rangle=\sum_{k} c_{k}\left|\xi_{k}\right\rangle$
- store time evolution $|\psi(t)\rangle$ in auxiliary register of M qubits
- perform (Quantum) Fourier transform on the auxiliary register
- measures will return λ_{n} with probability $P\left(\lambda_{n}\right) \approx\left|c_{n}\right|^{2}$

Ovrum\&Hiorth-Jensen (2007)

BONUS: final state after measurement is $\left|\psi_{f i n}\right\rangle \approx \sum_{k} \delta\left(\lambda_{k}-\lambda_{n}\right) c_{k}\left|\xi_{k}\right\rangle$

Quantum algorithm for exclusive processes at fixed q

- prepare the target ground state on a finite qubit basis
- right after scattering vertex the target is left in excited state
- energy measurement selects subset of final nuclear states (finite $\Delta \omega$)
- further time evolution to let system decay
- measure asymptotic state in detector

Roggero \& Carlson (2018)

Quantum algorithm for exclusive processes at fixed q

- prepare the target ground state on a finite qubit basis
- right after scattering vertex the target is left in excited state
- energy measurements select subset of final nuclear states (finite $\Delta \omega$)
- further time evolution to let system decay
- measure asymptotic state in detector

Roggero \& Carlson (2018)

Quantum algorithm for exclusive processes at fixed q

- prepare the target ground state on a finite qubit basis
- right after scattering vertex the target is left in excited state
- energy measurements selects subset of final nuclear states (finite $\Delta \omega$)
- further approximate time evolution to let system decay
- measure asymptotic state in detector

Roggero \& Carlson (2018)

How practical is all this?

- pionless EFT on a 10^{3} lattice of size $20 \mathrm{fm}[a=2.0 \mathrm{fm}]$
- 10x faster gates and negligible error correction cost (very optimistic)
- want $R(q, \omega)$ with 20 MeV energy resolution

How practical is all this?

- pionless EFT on a 10^{3} lattice of size 20 fm [$a=2.0 \mathrm{fm}$]
- 10x faster gates and negligible error correction cost (very optimistic)
- want $R(q, \omega)$ with 20 MeV energy resolution
we need a quantum device with ≈ 4000 qubits (current record is 72)

How practical is all this?

- pionless EFT on a 10^{3} lattice of size 20 fm [$a=2.0 \mathrm{fm}$]
- 10x faster gates and negligible error correction cost (very optimistic)
- want $R(q, \omega)$ with 20 MeV energy resolution
we need a quantum device with ≈ 4000 qubits (current record is 72)

How practical is all this?

- pionless EFT on a 10^{3} lattice of size $20 \mathrm{fm}[a=2.0 \mathrm{fm}]$
- 10x faster gates and negligible error correction cost (very optimistic)
- want $R(q, \omega)$ with 20 MeV energy resolution
we need a quantum device with ≈ 4000 qubits (current record is 72)

How practical is all this?

- pionless EFT on a 10^{3} lattice of size $20 \mathrm{fm}[a=2.0 \mathrm{fm}]$
- 10x faster gates and negligible error correction cost (very optimistic)
- want $R(q, \omega)$ with 20 MeV energy resolution
we need a quantum device with ≈ 4000 qubits (current record is 72)

How practical is all this?

- pionless EFT on a 10^{3} lattice of size $20 \mathrm{fm}[a=2.0 \mathrm{fm}]$
- 10x faster gates and negligible error correction cost (very optimistic)
- want $R(q, \omega)$ with 20 MeV energy resolution
we need a quantum device with ≈ 4000 qubits (current record is 72)

How practical is all this?

- pionless EFT on a 10^{3} lattice of size $20 \mathrm{fm}[a=2.0 \mathrm{fm}]$
- 10x faster gates and negligible error correction cost (very optimistic)
- want $R(q, \omega)$ with 20 MeV energy resolution
we need a quantum device with ≈ 4000 qubits (current record is 72)

How practical is all this?

- pionless EFT on a 10^{3} lattice of size $20 \mathrm{fm}[a=2.0 \mathrm{fm}]$
- 10x faster gates and negligible error correction cost (very optimistic)
- want $R(q, \omega)$ with 20 MeV energy resolution
we need a quantum device with ≈ 4000 qubits (current record is 72)

- there is still a long way to go
- find new algorithms and/or approximations for near term

Where are we right now?
figure adapted from Google AI

Need Both Quality and Quantity

Where are we right now?
figure adapted from Google AI
Need Both Quality and Quantity

Where are we right now?
figure adapted from Google AI
Need Both Quality and Quantity

Where are we right now?
figure adapted from Google AI

Need Both Quality and Quantity

FNAL - INT - LANL effort
A.R. (INT), J. Carlson \& R. Gupta (LANL), G. Perdue, A. Li \& A. Macridin (FNAL)

Part II: What can we do already?

figure from JLAB collab.

figure credit: IBM

Part II: What can we do already?

credit: Atari Inc.

figure credit: IBM

Pong for a nuclear theorist: the deuteron

- first calculation with π-less EFT: Dumitrescu et al. (2018)

$$
H=K+V_{12}^{s}+V_{12}^{\pi}
$$

- π-exchange introduces S-D mixing $\Rightarrow Q \neq 0$ in the gs.

Figure from Forest et al. (1995)

Pong for a nuclear theorist: the deuteron

- first calculation with π-less EFT: Dumitrescu et al. (2018)

$$
H=K+V_{12}^{s}+V_{12}^{\pi}
$$

- π-exchange introduces S-D mixing $\Rightarrow Q \neq 0$ in the gs.

Figure from Forest et al. (1995)

$$
H_{d} \approx\left(\begin{array}{cc}
5 & -35 \\
-35 & 170
\end{array}\right)
$$

completely mapped in just one qubit

$$
|g s\rangle=\cos (\theta)|0\rangle+\sin (\theta)|1\rangle
$$

Roggero \& Baroni arXiv:1905.08383

How hard could this be?

(1) first map deuteron Hamiltonian in Pauli basis

$$
H_{d}=\left(\begin{array}{cc}
5 & -35 \\
-35 & 170
\end{array}\right)=87.5 \times \mathbb{1}-35 \times X-82.5 \times Z
$$

How hard could this be?

(1) first map deuteron Hamiltonian in Pauli basis

$$
H_{d}=\left(\begin{array}{cc}
5 & -35 \\
-35 & 170
\end{array}\right)=87.5 \times \mathbb{1}-35 \times X-82.5 \times Z
$$

(3) prepare the gs with the appropriate rotation and measure polarization

$$
|g s\rangle=\exp (i \theta Y)|0\rangle \longrightarrow|0\rangle-R_{y}(\theta)-\infty
$$

How hard could this be?

(1) first map deuteron Hamiltonian in Pauli basis

$$
H_{d}=\left(\begin{array}{cc}
5 & -35 \\
-35 & 170
\end{array}\right)=87.5 \times \mathbb{1}-35 \times X-82.5 \times Z
$$

(3) prepare the gs with the appropriate rotation and measure polarization

$$
|g s\rangle=\exp (i \theta Y)|0\rangle \longrightarrow|0\rangle-R_{y}(\theta), \text {, }
$$

- We need $2 N$ measurements
- N to estimate $\langle X\rangle$
- N to estimate $\langle Z\rangle$
- Energy obtained as

$$
E(\theta)=87.5-35\langle X\rangle-82.5\langle Z\rangle
$$

How hard could this be?

(1) first map deuteron Hamiltonian in Pauli basis

$$
H_{d}=\left(\begin{array}{cc}
5 & -35 \\
-35 & 170
\end{array}\right)=87.5 \times \mathbb{1}-35 \times X-82.5 \times Z
$$

(0) prepare the gs with the appropriate rotation and measure polarization

$$
|g s\rangle=\exp (i \theta Y)|0\rangle \longrightarrow|0\rangle-R_{y}(\theta)-\not
$$

- We need $2 N$ measurements
- N to estimate $\langle X\rangle$
- N to estimate $\langle Z\rangle$
- Energy obtained as

$$
E(\theta)=87.5-35\langle X\rangle-82.5\langle Z\rangle
$$

Roggero \& Baroni arXiv:1905.08383

How hard could this be?

(1) first map deuteron Hamiltonian in Pauli basis

$$
H_{d}=\left(\begin{array}{cc}
5 & -35 \\
-35 & 170
\end{array}\right)=87.5 \times \mathbb{1}-35 \times X-82.5 \times Z
$$

(3) prepare the gs with the appropriate rotation and measure polarization

$$
|g s\rangle=\exp (i \theta Y)|0\rangle \longrightarrow|0\rangle-R_{y}(\theta)-\infty
$$

- We need $2 N$ measurements
- N to estimate $\langle X\rangle$
- N to estimate $\langle Z\rangle$
- Energy obtained as

$$
E(\theta)=87.5-35\langle X\rangle-82.5\langle Z\rangle
$$

Roggero \& Baroni arXiv:1905.08383

How hard could this be?

(1) first map deuteron Hamiltonian in Pauli basis

$$
H_{d}=\left(\begin{array}{cc}
5 & -35 \\
-35 & 170
\end{array}\right)=87.5 \times \mathbb{1}-35 \times X-82.5 \times Z
$$

(0) prepare the gs with the appropriate rotation and measure polarization

$$
|g s\rangle=\exp (i \theta Y)|0\rangle \longrightarrow|0\rangle-R_{y}(\theta)-\not
$$

- We need $2 N$ measurements
- N to estimate $\langle X\rangle$
- N to estimate $\langle Z\rangle$
- Energy obtained as

$$
E(\theta)=87.5-35\langle X\rangle-82.5\langle Z\rangle
$$

Roggero \& Baroni arXiv:1905.08383

How hard could this be?

(1) first map deuteron Hamiltonian in Pauli basis

$$
H_{d}=\left(\begin{array}{cc}
5 & -35 \\
-35 & 170
\end{array}\right)=87.5 \times \mathbb{1}-35 \times X-82.5 \times Z
$$

(3) prepare the gs with the appropriate rotation and measure polarization

$$
|g s\rangle=\exp (i \theta Y)|0\rangle \longrightarrow|0\rangle-R_{y}(\theta)-\infty
$$

- We need $2 N$ measurements
- N to estimate $\langle X\rangle$
- N to estimate $\langle Z\rangle$
- Energy obtained as

$$
E(\theta)=87.5-35\langle X\rangle-82.5\langle Z\rangle
$$

Roggero \& Baroni arXiv:1905.08383

How hard could this be?

(1) first map deuteron Hamiltonian in Pauli basis

$$
H_{d}=\left(\begin{array}{cc}
5 & -35 \\
-35 & 170
\end{array}\right)=87.5 \times \mathbb{1}-35 \times X-82.5 \times Z
$$

(3) prepare the gs with the appropriate rotation and measure polarization

$$
|g s\rangle=\exp (i \theta Y)|0\rangle \longrightarrow|0\rangle-R_{y}(\theta) \npreceq
$$

- We need $2 N$ measurements
- N to estimate $\langle X\rangle$
- N to estimate $\langle Z\rangle$
- Energy obtained as

$$
E(\theta)=87.5-35\langle X\rangle-82.5\langle Z\rangle
$$

Roggero \& Baroni arXiv:1905.08383

How hard could this be?

(1) first map deuteron Hamiltonian in Pauli basis

$$
H_{d}=\left(\begin{array}{cc}
5 & -35 \\
-35 & 170
\end{array}\right)=87.5 \times \mathbb{1}-35 \times X-82.5 \times Z
$$

(3) prepare the gs with the appropriate rotation and measure polarization

$$
|g s\rangle=\exp (i \theta Y)|0\rangle \longrightarrow|0\rangle-R_{y}(\theta) \npreceq
$$

- We need $2 N$ measurements
- N to estimate $\langle X\rangle$
- N to estimate $\langle Z\rangle$
- Energy obtained as

$$
E(\theta)=87.5-35\langle X\rangle-82.5\langle Z\rangle
$$

Roggero \& Baroni arXiv:1905.08383

What's going on?

$$
H_{d}=\left(\begin{array}{cc}
5 & -35 \\
-35 & 170
\end{array}\right) \Longrightarrow E(\theta)=87.5-35\langle X\rangle-82.5\langle Z\rangle
$$

- variance of the estimator above can be large

$$
\operatorname{Var}\left[E\left(\theta_{G S}\right)\right]=h_{x}^{2}\langle X\rangle^{2}+h_{z}^{2}\langle Z\rangle^{2} \propto \frac{\left\|H_{d}\right\|^{2}}{N}
$$

- gs energy produced by large cancellations \longrightarrow numerically sensitive

What's going on?

$$
H_{d}=\left(\begin{array}{cc}
5 & -35 \\
-35 & 170
\end{array}\right) \Longrightarrow E(\theta)=87.5-35\langle X\rangle-82.5\langle Z\rangle
$$

- variance of the estimator above can be large

$$
\operatorname{Var}\left[E\left(\theta_{G S}\right)\right]=h_{x}^{2}\langle X\rangle^{2}+h_{z}^{2}\langle Z\rangle^{2} \propto \frac{\left\|H_{d}\right\|^{2}}{N}
$$

- gs energy produced by large cancellations \longrightarrow numerically sensitive

Roggero \& Baroni arXiv:1905.08383

A (non computer sciency) possible way out
Consider instead a (slightly) more complex circuit

The 2-qubit unitary \mathcal{U} can be engineered so that

$$
\langle Z\rangle_{a}=\langle g s| \sin (\tau H)|g s\rangle=\tau E_{G S}+\mathcal{O}\left(\tau^{3}\right)
$$

A (non computer sciency) possible way out

Consider instead a (slightly) more complex circuit

The 2-qubit unitary \mathcal{U} can be engineered so that

$$
\langle Z\rangle_{a}=\langle g s| \sin (\tau H)|g s\rangle=\tau E_{G S}+\mathcal{O}\left(\tau^{3}\right)
$$

A (non computer sciency) possible way out

Consider instead a (slightly) more complex circuit

The 2-qubit unitary \mathcal{U} can be engineered so that

$$
\langle Z\rangle_{a}=\langle g s| \sin (\tau H)|g s\rangle=\tau E_{G S}+\mathcal{O}\left(\tau^{3}\right)
$$

A (non computer sciency) possible way out

Consider instead a (slightly) more complex circuit

The 2-qubit unitary \mathcal{U} can be engineered so that

$$
\langle Z\rangle_{a}=\langle g s| \sin (\tau H)|g s\rangle=\tau E_{G S}+\mathcal{O}\left(\tau^{3}\right)
$$

Roggero \& Baroni arXiv:1905.08383

Summary

- understanding low-energy dynamics of nuclear many-body systems is important for current and planned neutrino oscillation experiments (and many more interesting physics problems)
- QC is an emerging technology with the potential of revolutionarize the way theory calculations are done
- we already know how to simulate efficiently the time-evolution of non relativistic systems and how to study exclusive scattering
- more work has to be done to make all this viable in the near term

Summary

- understanding low-energy dynamics of nuclear many-body systems is important for current and planned neutrino oscillation experiments (and many more interesting physics problems)
- QC is an emerging technology with the potential of revolutionarize the way theory calculations are done
- we already know how to simulate efficiently the time-evolution of non relativistic systems and how to study exclusive scattering
- more work has to be done to make all this viable in the near term

Collaborators:

- Joe Carlson (LANL)
- Alessandro Baroni (USC \rightarrow LANL)

