Nuclear dynamics with quantum computers (and some more on the deuteron & measurement problem)

### Alessandro Roggero



figure credit: JLAB collab.

figure credit: IBM



Quantum computing and scientific research

Saclay - 14 June, 2019



## What is a Quantum computer?



## Quantum Simulations with qubits

"Nature isn't classical, dammit, and if you want to make a simulation of nature, you'd better make it quantum mechanical."

— R.Feynman (1982)

• in 1996 S.Lloyd shows the conjecture is correct for local interactions

## Quantum Simulations with qubits

"Nature isn't classical, dammit, and if you want to make a simulation of nature, you'd better make it quantum mechanical."

— R.Feynman (1982)

- in 1996 S.Lloyd shows the conjecture is correct for local interactions
- choose a finite basis to discretize system  $\longrightarrow dim(\mathcal{H}) = \Omega \propto e^A$
- physical states can be mapped in states of  $\sim log_2(\Omega)$  qubits

$$\left|\Psi(t)\right\rangle = U(t) \left|\Psi(0)\right\rangle$$



## Exclusive cross sections in neutrino oscillation experiments





$$P(\nu_{\alpha} \to \nu_{\alpha}) = 1 - \sin^2(2\theta) \sin^2\left(\frac{\Delta m^2 L}{4E_{\nu}}\right)$$

• need to use measured reaction products to constrain  $E_{\nu}$  of the event

DUNE, MiniBooNE, T2K, Miner $\nu$ a, NO $\nu$ A,...





• prepare the target ground state



Roggero & Carlson (2018)

Alessandro Roggero

Saclay - 14 Jun 2019 4 / 14

- prepare the target ground state
- right after scattering vertex the target is left in excited state



Roggero & Carlson (2018)

- prepare the target ground state
- right after scattering vertex the target is left in excited state



Roggero & Carlson (2018)

- prepare the target ground state
- right after scattering vertex the target is left in excited state



- prepare the target ground state
- right after scattering vertex the target is left in excited state
- energy measurement selects subset of final nuclear states



- prepare the target ground state
- right after scattering vertex the target is left in excited state
- energy measurement selects subset of final nuclear states
- further time evolution to let system decay



- prepare the target ground state
- right after scattering vertex the target is left in excited state
- energy measurement selects subset of final nuclear states
- further time evolution to let system decay
- measure asymptotic state in detector



- prepare the target ground state on a finite qubit basis
- right after scattering vertex the target is left in excited state
- energy measurement selects subset of final nuclear states
- further time evolution to let system decay
- measure asymptotic state in detector



- prepare the target ground state on a finite qubit basis
- right after scattering vertex the target is left in excited state
- energy measurement selects subset of final nuclear states
- further time evolution to let system decay
- measure asymptotic state in detector



- prepare the target ground state on a finite qubit basis
- right after scattering vertex the target is left in excited state
- energy measurement selects subset of final nuclear states
- further time evolution to let system decay
- measure asymptotic state in detector



- prepare the target ground state on a finite qubit basis
- right after scattering vertex the target is left in excited state
- energy measurement selects subset of final nuclear states (finite  $\Delta \omega$ )
- further time evolution to let system decay
- measure asymptotic state in detector



Kitaev (1996), Brassard et al. (2002), Svore et. al (2013), Weibe & Granade (2016),...

QPE is a general algorithm to estimate eigenvalues of a unitary operator

$$U|\xi_k\rangle = \lambda_k|\xi_k\rangle, \lambda_k = e^{2\pi i\phi_k} \quad \Leftarrow \quad U = e^{-itH}$$

Kitaev (1996), Brassard et al. (2002), Svore et. al (2013), Weibe & Granade (2016),...

QPE is a general algorithm to estimate eigenvalues of a unitary operator $U|\xi_k\rangle = \lambda_k |\xi_k\rangle \ , \\ \lambda_k = e^{2\pi i \phi_k} \quad \Leftarrow \quad U = e^{-itH}$ 

- starting vector  $|\psi\rangle = \sum_k c_k |\xi_k\rangle$
- store time evolution  $|\psi(t)\rangle$  in auxiliary register of M qubits
- perform (Quantum) Fourier transform on the auxiliary register
- measures will return  $\lambda_n$  with probability  $P(\lambda_n) \approx |c_n|^2$

Kitaev (1996), Brassard et al. (2002), Svore et. al (2013), Weibe & Granade (2016),...

QPE is a general algorithm to estimate eigenvalues of a unitary operator $U|\xi_k\rangle = \lambda_k |\xi_k\rangle \ , \lambda_k = e^{2\pi i \phi_k} \quad \Leftarrow \quad U = e^{-itH}$ 

- starting vector  $|\psi\rangle = \sum_k c_k |\xi_k\rangle$
- store time evolution  $|\psi(t)\rangle$  in auxiliary register of M qubits
- perform (Quantum) Fourier transform on the auxiliary register
- measures will return  $\lambda_n$  with probability  $P(\lambda_n) \approx |c_n|^2$



Kitaev (1996), Brassard et al. (2002), Svore et. al (2013), Weibe & Granade (2016),...

QPE is a general algorithm to estimate eigenvalues of a unitary operator $U|\xi_k\rangle = \lambda_k |\xi_k\rangle \ , \lambda_k = e^{2\pi i \phi_k} \quad \Leftarrow \quad U = e^{-itH}$ 

- starting vector  $|\psi\rangle = \sum_k c_k |\xi_k\rangle$
- store time evolution  $|\psi(t)\rangle$  in auxiliary register of M qubits
- perform (Quantum) Fourier transform on the auxiliary register
- measures will return  $\lambda_n$  with probability  $P(\lambda_n) \approx |c_n|^2$



BONUS: final state after measurement is  $|\psi_{fin}\rangle \approx \sum_k \delta(\lambda_k - \lambda_n)c_k |\xi_k\rangle$ 

- prepare the target ground state on a finite qubit basis
- right after scattering vertex the target is left in excited state
- energy measurement selects subset of final nuclear states (finite  $\Delta \omega$ )
- further time evolution to let system decay
- measure asymptotic state in detector



- prepare the target ground state on a finite qubit basis
- right after scattering vertex the target is left in excited state
- energy measurements select subset of final nuclear states (finite  $\Delta \omega$ )
- further time evolution to let system decay
- measure asymptotic state in detector



- prepare the target ground state on a finite qubit basis
- right after scattering vertex the target is left in excited state
- ullet energy measurements selects subset of final nuclear states (finite  $\Delta\omega$ )
- further approximate time evolution to let system decay
- measure asymptotic state in detector



- pionless EFT on a  $10^3$  lattice of size 20 fm [a = 2.0 fm]
- 10x faster gates and negligible error correction cost (very optimistic)
- $\bullet$  want  $R(q,\omega)$  with  $20~{\rm MeV}$  energy resolution

- pionless EFT on a  $10^3$  lattice of size  $20~{\rm fm}~[a=2.0~{\rm fm}]$
- 10x faster gates and negligible error correction cost (very optimistic)
- want  $R(q,\omega)$  with  $20~{\rm MeV}$  energy resolution

- pionless EFT on a  $10^3$  lattice of size 20 fm [a = 2.0 fm]
- 10x faster gates and negligible error correction cost (very optimistic)
- want  $R(q,\omega)$  with 20 MeV energy resolution



- pionless EFT on a  $10^3$  lattice of size  $20~{\rm fm}~[a=2.0~{\rm fm}]$
- 10x faster gates and negligible error correction cost (very optimistic)
- want  $R(q,\omega)$  with 20 MeV energy resolution



- pionless EFT on a  $10^3$  lattice of size 20 fm [a = 2.0 fm]
- 10x faster gates and negligible error correction cost (very optimistic)
- want  $R(q,\omega)$  with 20 MeV energy resolution



- pionless EFT on a  $10^3$  lattice of size 20 fm [a = 2.0 fm]
- 10x faster gates and negligible error correction cost (very optimistic)
- want  $R(q,\omega)$  with 20 MeV energy resolution



- pionless EFT on a  $10^3$  lattice of size 20 fm [a = 2.0 fm]
- 10x faster gates and negligible error correction cost (very optimistic)
- want  $R(q,\omega)$  with 20 MeV energy resolution



- pionless EFT on a  $10^3$  lattice of size 20 fm [a = 2.0 fm]
- 10x faster gates and negligible error correction cost (very optimistic)
- want  $R(q,\omega)$  with 20 MeV energy resolution

we need a quantum device with  $\approx 4000$  qubits (current record is 72)



# $\begin{array}{l} \mbox{coherence time for } {}^{40}\mbox{Ar} \\ \mbox{naive } \approx 9 \mbox{ years} \\ \mbox{optimized } \approx 3 \mbox{ minutes} \end{array}$

- algorithm efficiency is critical
- there is still a long way to go
- find new algorithms and/or approximations for near term

#### figure adapted from Google AI

# Need Both Quality and Quantity



#### figure adapted from Google AI

# Need Both Quality and Quantity



#### figure adapted from Google AI

# Need Both Quality and Quantity



#### figure adapted from Google AI

# Need Both Quality and Quantity



## FNAL - INT - LANL effort

A.R. (INT), J. Carlson & R. Gupta (LANL), G. Perdue, A. Li & A. Macridin (FNAL)

Alessandro Roggero

## Part II: What can we do already?



figure from JLAB collab.

figure credit: IBM

## Part II: What can we do already?



credit: Atari Inc.



figure credit: IBM

## Pong for a nuclear theorist: the deuteron

• first calculation with  $\pi$ -less EFT: Dumitrescu et al. (2018)

 $H = K + V_{12}^s + V_{12}^\pi$ 

 π-exchange introduces S-D mixing ⇒ Q ≠ 0 in the gs.



Figure from Forest et al. (1995)

## Pong for a nuclear theorist: the deuteron

• first calculation with  $\pi$ -less EFT: Dumitrescu et al. (2018)

 $H = K + V_{12}^s + V_{12}^\pi$ 

 π-exchange introduces S-D mixing ⇒ Q ≠ 0 in the gs.





Figure from Forest et al. (1995)

$$H_d \approx \begin{pmatrix} 5 & -35\\ -35 & 170 \end{pmatrix}$$

completely mapped in just one qubit

$$|gs\rangle = cos(\theta) |0\rangle + sin(\theta) |1\rangle$$

Roggero & Baroni arXiv:1905.08383

• first map deuteron Hamiltonian in Pauli basis

$$H_d = \begin{pmatrix} 5 & -35 \\ -35 & 170 \end{pmatrix} = 87.5 \times 1 - 35 \times X - 82.5 \times Z$$

first map deuteron Hamiltonian in Pauli basis

$$H_d = \begin{pmatrix} 5 & -35 \\ -35 & 170 \end{pmatrix} = 87.5 \times 1 - 35 \times X - 82.5 \times Z$$

$$|gs\rangle = exp(i\theta Y) |0\rangle \longrightarrow |0\rangle - R_y(\theta)$$

first map deuteron Hamiltonian in Pauli basis

$$H_d = \begin{pmatrix} 5 & -35 \\ -35 & 170 \end{pmatrix} = 87.5 \times 1 - 35 \times X - 82.5 \times Z$$

$$|gs\rangle = exp(i\theta Y) |0\rangle \longrightarrow |0\rangle - R_y(\theta)$$

- We need 2N measurements
  - N to estimate  $\langle X \rangle$
  - N to estimate  $\langle Z \rangle$
- Energy obtained as

$$E(\theta) = 87.5 - 35\langle X \rangle - 82.5\langle Z \rangle$$

first map deuteron Hamiltonian in Pauli basis

$$H_d = \begin{pmatrix} 5 & -35 \\ -35 & 170 \end{pmatrix} = 87.5 \times 1 - 35 \times X - 82.5 \times Z$$

$$|gs\rangle = exp(i\theta Y) |0\rangle \longrightarrow |0\rangle - R_y(\theta)$$

- We need 2N measurements
  - N to estimate  $\langle X \rangle$
  - N to estimate  $\langle Z \rangle$
- Energy obtained as

$$E(\theta) = 87.5 - 35\langle X \rangle - 82.5\langle Z \rangle$$



first map deuteron Hamiltonian in Pauli basis

$$H_d = \begin{pmatrix} 5 & -35 \\ -35 & 170 \end{pmatrix} = 87.5 \times 1 - 35 \times X - 82.5 \times Z$$

$$|gs\rangle = exp(i\theta Y) |0\rangle \longrightarrow |0\rangle - R_y(\theta)$$

- We need 2N measurements
  - N to estimate  $\langle X \rangle$
  - N to estimate  $\langle Z \rangle$
- Energy obtained as

$$E(\theta) = 87.5 - 35\langle X \rangle - 82.5\langle Z \rangle$$



first map deuteron Hamiltonian in Pauli basis

$$H_d = \begin{pmatrix} 5 & -35 \\ -35 & 170 \end{pmatrix} = 87.5 \times 1 - 35 \times X - 82.5 \times Z$$

operation prepare the gs with the appropriate rotation and measure polarization

$$|gs\rangle = exp(i\theta Y) |0\rangle \longrightarrow |0\rangle - R_y(\theta)$$

- We need 2N measurements
  - N to estimate  $\langle X \rangle$
  - N to estimate  $\langle Z \rangle$
- Energy obtained as

$$E(\theta) = 87.5 - 35\langle X \rangle - 82.5\langle Z \rangle$$



Roggero & Baroni arXiv:1905.08383

first map deuteron Hamiltonian in Pauli basis

$$H_d = \begin{pmatrix} 5 & -35 \\ -35 & 170 \end{pmatrix} = 87.5 \times 1 - 35 \times X - 82.5 \times Z$$

$$|gs\rangle = exp(i\theta Y) |0\rangle \longrightarrow |0\rangle - R_y(\theta)$$

- We need 2N measurements
  - N to estimate  $\langle X \rangle$
  - N to estimate  $\langle Z \rangle$
- Energy obtained as

$$E(\theta) = 87.5 - 35\langle X \rangle - 82.5\langle Z \rangle$$



first map deuteron Hamiltonian in Pauli basis

$$H_d = \begin{pmatrix} 5 & -35 \\ -35 & 170 \end{pmatrix} = 87.5 \times 1 - 35 \times X - 82.5 \times Z$$

$$|gs\rangle = exp(i\theta Y) |0\rangle \longrightarrow |0\rangle - R_y(\theta)$$

- We need 2N measurements
  - N to estimate  $\langle X \rangle$
  - N to estimate  $\langle Z \rangle$
- Energy obtained as

$$E(\theta) = 87.5 - 35\langle X \rangle - 82.5\langle Z \rangle$$



first map deuteron Hamiltonian in Pauli basis

$$H_d = \begin{pmatrix} 5 & -35 \\ -35 & 170 \end{pmatrix} = 87.5 \times 1 - 35 \times X - 82.5 \times Z$$

$$|gs\rangle = exp(i\theta Y) |0\rangle \longrightarrow |0\rangle - R_y(\theta)$$

- We need 2N measurements
  - N to estimate  $\langle X \rangle$
  - N to estimate  $\langle Z \rangle$
- Energy obtained as

$$E(\theta) = 87.5 - 35\langle X \rangle - 82.5\langle Z \rangle$$



What's going on?

$$H_d = \begin{pmatrix} 5 & -35 \\ -35 & 170 \end{pmatrix} \Longrightarrow E(\theta) = 87.5 - 35\langle X \rangle - 82.5 \langle Z \rangle$$

• variance of the estimator above can be large

$$Var[E(\theta_{GS})] = h_x^2 \langle X \rangle^2 + h_z^2 \langle Z \rangle^2 \propto \frac{\|H_d\|^2}{N}$$

 $\bullet$  gs energy produced by large cancellations  $\longrightarrow$  numerically sensitive

What's going on?

$$H_d = \begin{pmatrix} 5 & -35\\ -35 & 170 \end{pmatrix} \Longrightarrow E(\theta) = 87.5 - 35\langle X \rangle - 82.5\langle Z \rangle$$

variance of the estimator above can be large

$$Var[E(\theta_{GS})] = h_x^2 \langle X \rangle^2 + h_z^2 \langle Z \rangle^2 \propto \frac{\|H_d\|^2}{N}$$

• gs energy produced by large cancellations  $\longrightarrow$  numerically sensitive



Roggero & Baroni arXiv:1905.08383

$$\begin{array}{cccc} |0\rangle & - \hline R_y(\theta) & - \swarrow & |0\rangle & - \hline & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & &$$

The 2-qubit unitary  $\ensuremath{\mathcal{U}}$  can be engineered so that

$$\langle Z \rangle_a = \langle gs | sin(\tau H) | gs \rangle = \tau E_{GS} + \mathcal{O}(\tau^3)$$

$$\begin{array}{cccc} |0\rangle & - \hline R_y(\theta) & - \swarrow & |0\rangle & - & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\$$

The 2-qubit unitary  $\mathcal{U}$  can be engineered so that

$$\langle Z \rangle_a = \langle gs | sin(\tau H) | gs \rangle = \tau E_{GS} + \mathcal{O}(\tau^3)$$



Roggero & Baroni arXiv:1905.08383

$$\begin{array}{cccc} |0\rangle & - \hline R_y(\theta) & - \swarrow & |0\rangle & - & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\$$

The 2-qubit unitary  $\mathcal{U}$  can be engineered so that

$$\langle Z \rangle_a = \langle gs | sin (\tau H) | gs \rangle = \tau E_{GS} + \mathcal{O} (\tau^3)$$



Roggero & Baroni arXiv:1905.08383

$$\begin{array}{cccc} |0\rangle & - \hline R_y(\theta) & - \swarrow & |0\rangle & - & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ &$$

The 2-qubit unitary  $\mathcal{U}$  can be engineered so that

 $\langle Z \rangle_a = \langle gs | sin(\tau H) | gs \rangle = \tau E_{GS} + \mathcal{O}(\tau^3)$ 



## Summary

- understanding low-energy dynamics of nuclear many-body systems is important for current and planned neutrino oscillation experiments (and many more interesting physics problems)
- QC is an emerging technology with the potential of revolutionarize the way theory calculations are done
- we already know how to simulate efficiently the time-evolution of non relativistic systems and how to study exclusive scattering
- more work has to be done to make all this viable in the near term

## Summary

- understanding low-energy dynamics of nuclear many-body systems is important for current and planned neutrino oscillation experiments (and many more interesting physics problems)
- QC is an emerging technology with the potential of revolutionarize the way theory calculations are done
- we already know how to simulate efficiently the time-evolution of non relativistic systems and how to study exclusive scattering
- more work has to be done to make all this viable in the near term

## Collaborators:

- Joe Carlson (LANL)
- Alessandro Baroni (USC→LANL)

