Nuclear dynamics with quantum computers

(and some more on the deuteron & measurement problem)
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What is a Quantum computer?
JQI@Univ; ‘of MD

Google Righetti

Classical Bit Qubit

o N bits: an integer number < 2V
o N qubits: a vector [¢) in 2V-dim Hilbert-space

— exponentially more information available

@ Microsoft?
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Quantum Simulations with qubits

“Nature isn't classical, dammit, and if you want to make a simula-
tion of nature, you'd better make it quantum mechanical.”

— R.Feynman (1982)

@ in 1996 S.Lloyd shows the conjecture is correct for local interactions
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Quantum Simulations with qubits

“Nature isn't classical, dammit, and if you want to make a simula-
tion of nature, you'd better make it quantum mechanical.”

— R.Feynman (1982)

@ in 1996 S.Lloyd shows the conjecture is correct for local interactions

@ physical states can be mapped in states of ~ loga(2) qubits

o choose a finite basis to discretize system — dim(H) = Q oc e J

— u()

(W) = U(t)|¥(0))
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Exclusive cross sections in neutrino oscillation experiments

Goals for v oscillation exp.

@ neutrino masses

@ accurate mixing angles
candidate Pzt o -
@ CP violating phase
Run 5390, Event 1100
. . Am?2L
P(vg — vg) = 1 — sin?(20)sin® | ——
4F,

@ need to use measured reaction products to constrain E,, of the event

DUNE, MiniBooNE, T2K, Minerva, NOVA,. ..

Sanford Underground
Research Facility
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|dealized algorithm for exclusive processes at fixed q

@ prepare the target ground state

Roggero & Carlson (2018)
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|dealized algorithm for exclusive processes at fixed q

@ prepare the target ground state
@ right after scattering vertex the target is left in excited state
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|dealized algorithm for exclusive processes at fixed q

@ prepare the target ground state
@ right after scattering vertex the target is left in excited state
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|dealized algorithm for exclusive processes at fixed q

@ prepare the target ground state
@ right after scattering vertex the target is left in excited state
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|dealized algorithm for exclusive processes at fixed q

@ prepare the target ground state
@ right after scattering vertex the target is left in excited state
@ energy measurement selects subset of final nuclear states
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|dealized algorithm for exclusive processes at fixed q

@ prepare the target ground state

@ right after scattering vertex the target is left in excited state
@ energy measurement selects subset of final nuclear states

o further time evolution to let system decay
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|dealized algorithm for exclusive processes at fixed q

@ prepare the target ground state

@ right after scattering vertex the target is left in excited state
@ energy measurement selects subset of final nuclear states

o further time evolution to let system decay

@ measure asymptotic state in detector

@ ©=0 P(®)
2
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Quantum algorithm for exclusive processes at fixed q
@ prepare the target ground state on a finite qubit basis
@ right after scattering vertex the target is left in excited state
@ energy measurement selects subset of final nuclear states
o further time evolution to let system decay
@ measure asymptotic state in detector

@ ©=0 P(®)
2
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Quantum algorithm for exclusive processes at fixed q
@ prepare the target ground state on a finite qubit basis
@ right after scattering vertex the target is left in excited state
@ energy measurement selects subset of final nuclear states
o further time evolution to let system decay
@ measure asymptotic state in detector

@ ©=0 P(®)
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Quantum algorithm for exclusive processes at fixed q

@ prepare the target ground state on a finite qubit basis

@ right after scattering vertex the target is left in excited state
@ energy measurement selects subset of final nuclear states

o further time evolution to let system decay

@ measure asymptotic state in detector

o=0 P(w)
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Quantum algorithm for exclusive processes at fixed q

@ prepare the target ground state on a finite qubit basis

@ right after scattering vertex the target is left in excited state

@ energy measurement selects subset of final nuclear states (finite Aw)
o further time evolution to let system decay

@ measure asymptotic state in detector

o=0 P(w)

. ]

O(a) % o "
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Quantum Phase Estimation

Kitaev (1996), Brassard et al. (2002), Svore et. al (2013), Weibe & Granade (2016),. ..

QPE is a general algorithm to estimate eigenvalues of a unitary operator

Ulér) = Melér) A = €29 = U =¢eH
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Quantum Phase Estimation

Kitaev (1996), Brassard et al. (2002), Svore et. al (2013), Weibe & Granade (2016),. ..

QPE is a general algorithm to estimate eigenvalues of a unitary operator

Ulés) = Mel&) , A = €29 &= U=

e starting vector ) = >, cx|ék)
@ store time evolution [¢(t)) in
auxiliary register of M qubits

e perform (Quantum) Fourier
transform on the auxiliary register

@ measures will return \,, with
probability P(\,,) ~ |c,|?
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Quantum Phase Estimation

Kitaev (1996), Brassard et al. (2002), Svore et. al (2013), Weibe & Granade (2016),. ..

QPE is a general algorithm to estimate eigenvalues of a unitary operator

Ulés) = Mel&) , A = €29 &= U=

Ovrum&Hyiorth-Jensen (2007)

e starting vector ) = >, cx|ék)
@ store time evolution [¢/(%)) in
auxiliary register of M qubits
e perform (Quantum) Fourier -
transform on the auxiliary register o
@ measures will return A\, with -
probability P(\,,) ~ |c,|? D T B e e
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Quantum Phase Estimation

Kitaev (1996), Brassard et al. (2002), Svore et. al (2013), Weibe & Granade (2016),. ..

QPE is a general algorithm to estimate eigenvalues of a unitary operator

Ulés) = Mel&) , A = €29 &= U=

Ovrumé&Hiorth-Jensen (2007)

e starting vector ) = >, cx|ék)
@ store time evolution [¢/(%)) in
auxiliary register of M qubits
e perform (Quantum) Fourier -
transform on the auxiliary register oo
@ measures will return A\, with -
probability P(\,,) ~ |c,|? T T e e

BONUS: final state after measurement is [t 4;,) = > (A — Ap)cklér) J
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Quantum algorithm for exclusive processes at fixed q

@ prepare the target ground state on a finite qubit basis

@ right after scattering vertex the target is left in excited state

@ energy measurement selects subset of final nuclear states (finite Aw)
o further time evolution to let system decay

@ measure asymptotic state in detector

o=0 P(w)
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Quantum algorithm for exclusive processes at fixed q

@ prepare the target ground state on a finite qubit basis

@ right after scattering vertex the target is left in excited state

@ energy measurements select subset of final nuclear states (finite Aw)
o further time evolution to let system decay

@ measure asymptotic state in detector

o=0 P(w)
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Quantum algorithm for exclusive processes at fixed q

@ prepare the target ground state on a finite qubit basis

@ right after scattering vertex the target is left in excited state

@ energy measurements selects subset of final nuclear states (finite Aw)
o further approximate time evolution to let system decay

@ measure asymptotic state in detector

o=0 P(w)

-

O(q) % o
@
o

b
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Roggero & Carlson (2018)
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How practical is all this?

e pionless EFT on a 10? lattice of size 20 fm [a = 2.0 fm]
o 10x faster gates and negligible error correction cost (very optimistic)
e want R(q,w) with 20 MeV energy resolution
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o 10x faster gates and negligible error correction cost (very optimistic)
e want R(q,w) with 20 MeV energy resolution

we need a quantum device with ~ 4000 qubits (current record is 72) J
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e pionless EFT on a 10? lattice of size 20 fm [a = 2.0 fm]
o 10x faster gates and negligible error correction cost (very optimistic)
e want R(q,w) with 20 MeV energy resolution
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How practical is all this?

e pionless EFT on a 10? lattice of size 20 fm [a = 2.0 fm]
o 10x faster gates and negligible error correction cost (very optimistic)
e want R(q,w) with 20 MeV energy resolution

we need a quantum device with ~ 4000 qubits (current record is 72)
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How practical is all this?

e pionless EFT on a 10? lattice of size 20 fm [a = 2.0 fm]
o 10x faster gates and negligible error correction cost (very optimistic)
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How practical is all this?

e pionless EFT on a 10? lattice of size 20 fm [a = 2.0 fm]
o 10x faster gates and negligible error correction cost (very optimistic)
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How practical is all this?
e pionless EFT on a 10? lattice of size 20 fm [a = 2.0 fm]

@ 10x faster gates and negligible error correction cost (very optimistic)

e want R(q,w) with 20 MeV energy resolution

we need a quantum device with ~ 4000 qubits (current record is 72) J

coherence time for “OAr

O,
T
IR [

naive = 9 years

1 century

optimized = 3 minutes

4 1 month
2 ”- — T J . - . oy
° 'l @ algorithm efficiency is critical
G — o
— v iplenenion 5, 10'F @ there is still a long way to go
L — faster fermions 2E
4 — +better rotations 10 / . .
R e e find new algorithms and/or
I R R approximations for near term
A
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Where are we right now?
figure adapted from Google Al

Need Both Quality and Quantity
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Where are we right now?
figure adapted from Google Al

Need Both Quality and Quantity
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Part II: What can we do already?

Scattered
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figure from JLAB collab. figure credit: IBM

Alessandro Roggero Saclay - 14 Jun 2019 9/14



Part II: What can we do already?

credit: Atari Inc. figure credit: IBM
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Pong for a nuclear theorist: the deuteron
o first calculation with 7-less EFT: Dumitrescu et al. (2018)

@ m-exchange introduces S-D
mixing = @ # 0 in the gs.

Figure from Forest et al. (1995)
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Pong for a nuclear theorist: the deuteron

o first calculation with 7-less EFT: Dumitrescu et al. (2018)

H=K+V35+Vj

@ m-exchange introduces S-D
mixing = @ # 0 in the gs.

Figure from Forest et al. (1995)

05 i
~ 5 =35
i ’ Har <—35 170>
=03} 1
é 0z completely mapped in just one qubit
§ 0.1 ' Sl o .,

oo e lgs) = cos(0) |0) + sin(6)|1)
0 2 4 6 8

Roggero & Baroni arXiv:1905.08383

Alessandro Roggero Saclay - 14 Jun 2019 10/14




How hard could this be?

@ first map deuteron Hamiltonian in Pauli basis

5 =35
H; = (_35 170) =875x1-35xX—-825x%x7
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How hard could this be?

@ first map deuteron Hamiltonian in Pauli basis

5 =35
H; = <_35 170) =875x1-35xX—-825x%x7

© prepare the gs with the appropriate rotation and measure polarization

lgs) = exp (i0Y) |0) — [0) — Ry(6)
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How hard could this be?

@ first map deuteron Hamiltonian in Pauli basis

5 =35
H; = <_35 170) =875x1-35xX—-825x%x7

© prepare the gs with the appropriate rotation and measure polarization

lgs) = exp (i0Y) |0) — [0) — Ry(6)

o We need 2N measurements
o N to estimate (X)

e N to estimate (Z)

@ Energy obtained as

E(f) = 87.5 — 35(X) — 82.5(Z)
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How hard could this be?

@ first map deuteron Hamiltonian in Pauli basis

5 =35
H; = <_35 170) =875x1-35xX—-825x%x7

© prepare the gs with the appropriate rotation and measure polarization

lgs) = exp (i0Y) |0) — [0) — Ry(6)

o We need 2N measurements

o N to estimate (X)
e N to estimate (Z)

energy [MeV]

o

@ Energy obtained as

Estimated ground state

E(f) = 87.5 — 35(X) — 82.5(Z) T

Roggero & Baroni arXiv:1905.08383
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How hard could this be?

@ first map deuteron Hamiltonian in Pauli basis

5 =35
H; = <_35 170) =875x1-35xX-—-825x%xZ7

© prepare the gs with the appropriate rotation and measure polarization

lgs) = exp (i0Y) |0) — |0) —{ R,(0)

@

o We need 2N measurements . i

e N to estimate (X)
o N to estimate (Z)

energy [MeV]

P
3

&

@ Energy obtained as

Estimated ground state

E(0)287.5_35<X>_82.5<Z> a0} L L - -

Roggero & Baroni arXiv:1905.08383
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How hard could this be?

@ first map deuteron Hamiltonian in Pauli basis

5 =35
H; = <_35 170) =875x1-35xX-—-825x%xZ7

© prepare the gs with the appropriate rotation and measure polarization

lgs) = exp (i0Y) |0) — |0) —{ R,(0)

@ We need 2N measurements ;55 s
e N to estimate (X) s
o N to estimate (Z) g w ¢ soezo |
g g
o Energy obtained as S ‘ 1
E(8) = 87.5— 35(X) — 825(2) Wl N

0 2x10° 4x10* 6x10° 8x10°
# of measurements

Roggero & Baroni arXiv:1905.08383

Alessandro Roggero Saclay - 14 Jun 2019 11/14



How hard could this be?

@ first map deuteron Hamiltonian in Pauli basis

5 =35
H; = <_35 170) =875x1-35xX-—-825x%xZ7

© prepare the gs with the appropriate rotation and measure polarization

lgs) = exp (i0Y) |0) — |0) —{ R,(0)

@ We need 2N measurements - i
. Zep E,=6186(27) o qubitd 4
e N to estimate (X) % -
. 5 60 i
o N to estimate (Z) :
7 55 4
o Energy obtained as «g“iom b 66120 |
545» B
| E_=-2.117
E() =87.5 — 35(X) — 82.5(Z) b T

# of measurements
Roggero & Baroni arXiv:1905.08383
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How hard could this be?

@ first map deuteron Hamiltonian in Pauli basis

5 =35
H; = (_35 170) =875x1-35xX-—-825x%xZ7

© prepare the gs with the appropriate rotation and measure polarization

lgs) = exp (i0Y)|0) — [0) —{ R,(0)

o We need 2N measurements = o™ -
o N to estimate (X) 2 50h h

o N to estimate (Z) For - o 1

@ Energy obtained as L ]
E(0) = 87.5 — 35(X) — 82.5(Z)

# of measurements
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How hard could this be?

@ first map deuteron Hamiltonian in Pauli basis

5 =35
H; = (_35 170) =875x1-35xX-—-825x%xZ7

© prepare the gs with the appropriate rotation and measure polarization

lgs) = exp (i0Y)|0) — [0) —{ R,(0)

o We need 2N measurements = o™ -
o N to estimate (X) 2 50h h

o N to estimate (Z) For - o 1

@ Energy obtained as L ]
E(0) = 87.5 — 35(X) — 82.5(Z)

# of measurements

Roggero & Baroni arXiv:1905.08383
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What's going on?
H=( 2 T E(0) = 87.5 — 35(X) — 82.5(Z

@ variance of the estimator above can be large

2 |1 Hdl?
XN

@ gs energy produced by large cancellations — numerically sensitive

Var[E(0gs)] = h2(X)* + h2(Z)
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What's going on?

5 —35
Ha= (—35 170)

@ variance of the estimator above can be large

Var[E(fas)] = h2(X)? + h3(Z)? x

| Hq

— E(0) = 87.5 — 35(X) — 82.5(2)

I2

N

@ gs energy produced by large cancellations — numerically sensitive
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A (non computer sciency) possible way out

Consider instead a (slightly) more complex circuit

0) —

Ry(9)

= [0) ———

0) —

Ry(6)

The 2-qubit unitary U can be engineered so that
(Z)a = (gs|sin (TH)|gs) = TEcs + O (v°)

Alessandro Roggero
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A (non computer sciency) possible way out
Consider instead a (slightly) more complex circuit

0) R, OHA = 10) ——

0) 4 By(0) 4 —

The 2-qubit unitary U can be engineered so that

(Z)q = (gs|sin (TH)|gs) = TEgs + O (73)

— Operator Averaging
— linear SQPE - 1=,

20x improvement

Energy error € [MeV]
-
T

001 1% threshold
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A (non computer sciency) possible way out
Consider instead a (slightly) more complex circuit

0) —

Ry(9)

= [0) ———

0) —

Ry(6)

The 2-qubit unitary U can be engineered so that

Energy error € [MeV]

Alessandro Roggero

(Z)q = (gs|sin (TH)|gs) = TEgs + O (73)

0.01

0.001

1% threshold
200x improvement!

— Operator Averagin
— linear SQPE - t=t_

— cubic sQPE (adaptive)

20x improvement

10

10"

# of measurements
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A (non computer sciency) possible way out
Consider instead a (slightly) more complex circuit

0) R, OHA = 10) ——

0) 4 By(0) 4 —

The 2-qubit unitary U can be engineered so that

(Z)q = (gs|sin (TH)|gs) = TEgs + O (73)

T 70 T T T T T 70
— Operator Averaging — - o ]
— linear sQPE - t=t, Z 0 qubit3 E | 7%
— cubic sQPE (adaptive 2 = Tqubit3 qubie2]
= 1 QPE (adaptive) 4 % T B 4 Hs0
5
0 5 qubitd g
=) ) 5 401 z 40
5 20x improvement H B | qubicqubin)
B 2 3 -
g oap E Z 301 + 30
2 E H
&
5 1% threshold \ = Rl 0 ax10® 8x10°
0.01F /o thresho! N é 10 prone o #of measurements  _{
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0.001 I I okt i i g
10° 10" 10° 10* 210" 4x10' 6x10" 8x10" 210" 4x10' 6x10" 8x10"

# of measurements # of measurements # of measurements
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Summary

@ understanding low-energy dynamics of nuclear many-body systems is
important for current and planned neutrino oscillation experiments
(and many more interesting physics problems)

@ QC is an emerging technology with the potential of revolutionarize the
way theory calculations are done

@ we already know how to simulate efficiently the time-evolution of non
relativistic systems and how to study exclusive scattering

@ more work has to be done to make all this viable in the near term
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