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Outline of the course

course 1: Basic quantum mechanical principles of quantum computing

I motivation for studying quantum algorithms

I the various models for quantum computing

I the circuit model

I a simple quantum algorithm: Deutsch-Josza

course 2: More advanced quantum algorithms

I Grover’s algorithm for search

I linear systems (HHL) and machine learning

I quantum supremacy

I the NISQ era
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Related material

This course is largely inspired from the remarkable set of notes by Ronald de Wolf,
available online.

I Quantum Computing: Lecture Notes by Ronald de Wolf
http://homepages.cwi.nl/~rdewolf/qcnotes.pdf

Other ressources include:

I the classic “Quantum computation and quantum information” by Nielsen & Chuang
I Lecture notes by John Preskill

http://www.theory.caltech.edu/people/preskill/ph229/
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The end of Moore’s law

https://www.anandtech.com/show/12693/

intel-delays-mass-production-of-10-nm-cpus-to-2019

miniaturization reaches levels where quantum effects become non-negligible. One can either
try to suppress them or to exploit them.

A. Leverrier Quantum computing 13 June 2019 4 / 1

https://www.anandtech.com/show/12693/intel-delays-mass-production-of-10-nm-cpus-to-2019
https://www.anandtech.com/show/12693/intel-delays-mass-production-of-10-nm-cpus-to-2019


Why study quantum computing?

I investigation of the computational power of computer based on quantum mechanical
principles

power of the strongest possible computing devices allowed by Nature?

I main objective: find algorithms with speedup compared to classical algos

I already possible for simulating physics (e.g. talk of Jens Eisert tomorrow)

I can we get a proven speedup? race to quantum supremacy (boson sampling, random
circuits)

I not too distant future: chemistry problems, optimization

I longer term: universal quantum computer: factorization (Shor), complex algorithms
(requires active quantum error correction)
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Genesis of quantum computing
Feynman 1981

“Can quantum systems be probabilistically simulated by a classical computer?
[. . . ] The answer is almost certainly, No!"
=⇒ use quantum systems to simulate quantum systems!
=⇒ birth of quantum simulation

Deutsch 1985

I quantum Turing machine

I existence of a universal machine

=⇒ birth of quantum computing

Bernstein, Vazirani 1993

I efficient quantum Turing machine (complexity class BQP)
I Bernstein-Vazirani problem: f : {0, 1}n → {0, 1} such that f(x) = a · x

Find a.
=⇒ possible with 1 quantum query vs n classically
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The first useful algorithms
Simon, Shor 1994
exponential speedups for

I period finding

I factoring!! very surprising =⇒ sparked a lot of interest in the field

I discrete logarithm

=⇒ exploits Quantum Fourier Transform
=⇒ consequences for public-key cryptography: breaks most cryptosystems deployed today

Grover 1996

I search an n-item list with O(
√
n) queries

I lots of applications (find collisions, approximate counting, shortest path)

but only quadratic improvement
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Can we really compute with a quantum computer?
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A word (or two) about the feasibility of a quantum computer

“Therefore we think it fair to say that, unless some unforeseen new physics is discovered,
the implementation of error-correcting codes will become exceedingly difficult as soon as
one has to deal with more than a few gates. In this sense the large-scale quantum machine,
though it may be the computer scientist’s dream, is the experimenter’s nightmare.” (Physics
Today 1996)
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A theory of quantum error correction and quantum fault-tolerance
Peter Shor

I quantum error-correcting codes (1995)
I fault-tolerant syndrome measurement (1996)
I fault-tolerant universal quantum gates (1996)

Alexei Kitaev

I topological quantum codes (1996)
I computing with nonabelian anyons (1997)
I magic state distillation (1999-2004)
I Majorana modes in quantum wires (2000)

Threshold theorem (Aharonov, Ben-Or (1997): quantum computation is possible provided the
noise is sufficiently low (below some constant)
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What is a quantum algorithm?

an algorithm is a systematic process to obtain an answer to a problem

Examples of problems

I factorization: given N ∈ N, find p, q such that N = p× q

I optimization: given a matrix Q, compute min∑N
i,j=1 xiQi,jxj with xi ∈ {0, 1}

I search: given a list of items x1, . . . , xN in a database and given access to a function
f : xi 7→ f(xi) ∈ {marked, not marked}, find a marked element

I linear algebra: given N×N matrix A and vector ~b ∈ CN available as a quantum state
|b〉 ∝ ∑N

i=1 bi|i〉, solve A~x =~b in the sense of preparing the state |x〉 ∝ ∑n
i=1 xi|i〉.

for a quantum algorithm, we are allowed to manipulate quantum states (= prepare states,
apply some evolution or measurement) to obtain the result
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Different models of quantum computing
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Different kinds of quantum algorithms
General template of a quantum algorithm:

I prepare some simple intial state |ψinit〉
I depending of the classical input of the problem, apply some transformation to the state
|ψinit〉 −→ |ψfin〉

I measure the final state and obtain the (classical) solution

Different kinds of transformation =⇒ different models of quantum computation

I standard circuit model: |ψfin〉 = U|ψinit〉 where the unitary U is decomposed in many
elementary gates

I measurement based quantum computing: measure the subsystems one at a time and
adapt future measurements to previous results

I adiabatic quantum computing: |ψinit〉, |ψfin〉 unique ground states of an easy to prepare
Hamiltonian Hinit and an objective Hamiltonian Hfin. Slowly evolve the Hamiltonian
H(t) = (1− α(t))Hinit + αtHfin to remain in the ground state all along.
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Adiabatic quantum computing

problem: the eigenvalue gap might be extremely small, so one needs to slow down the
evolution comparatively

tfin = O
(

1
gap

)
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The 3 models are equivalent
A quantum algorithm is efficient if its cost is polynomial in the size of its input:

I ex of input size
I factorization of N: number of digits = log2N
I search in database: size N of database
I optimization problem: number N of variables

I how to count the cost:
I number of elementary gates in the circuit
I number of calls to a function f
I time to go from Hinit to Hfin

Theorem

if a problem can be solved in one of the 3 models, it can also be solved in the other two
(up to some potential polynomial slowdown)
=⇒ same notion of efficiency in the 3 models

=⇒ we will mostly focus on the quantum circuit model (closer to classical CS)
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The quantum circuit model
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The support of (quantum) information

We want to compute stuff, so we need the quantum equivalent of bits: i.e. two-level
quantum system

qubit : α|0〉+ β|1〉 ∈ C2, |α|2 + |β|2 = 1.

It doesn’t matter to us what |0〉 and |1〉, only that 〈0|1〉 = 0.

Another very useful basis: {|+〉, |−〉} with |+〉 = 1√
2
(|0〉+ |1〉), |−〉 = 1√

2
(|0〉 − |1〉)

Requirements to implement a quantum algorithm

I be able to prepare many copies of |0〉, say
I be able to apply certain unitaries (gates of a circuit) to the qubits

I be able to measure a qubit in some basis, e.g. computational basis {|0〉, |1〉}.

A. Leverrier Quantum computing 13 June 2019 17 / 1



States, evolution, measurement
I a single qubit isn’t sufficient to solve interesting problems. We need n qubits:

|ψ〉 = α0···00|0 · · · 00〉+ α0···01|0 · · · 01〉 · · ·+ α1···11|1 · · · 11〉

with ∑ |α~i|2 = 1 (normalization) and |i1i2 · · · in〉 := |i1〉 ⊗ |i2〉 ⊗ · · · ⊗ |in〉

in practice, one needs to deal with decoherence, and therefore mixed states, not only pure
states. Quantum fault-tolerance/error-correction techniques can be applied to deal
with such issues (threshold theorem).

I a quantum computation essentially consists in applying some unitary U (such that
UU† = 1) to |0〉⊗n or to some input state |ψ〉 given to us, and measure the final state
U|0〉⊗n or U|ψ〉 in the computational basis.

I the measurement returns the string~i ∈ {0, 1}n with probability

P(~i) = |〈~i|ψ〉|2 = |α~i|
2

This is our result.
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Quantum algorithm

In the circuit model, the meat of the algorithm is the unitary U:

|0〉⊗n −→ U|0〉⊗n measurement−−−−−−−→ ~i ∈ {0, 1}n

I Sometimes, we start with some initial state |x〉 = |x1〉|x2〉 · · · |xn〉 where ~x ∈ {0, 1}n is
our input.

I Note that the answer is generally probabilistic. Sometimes we repeat the process a
few times and take a majority vote.

I the main problem we need to solve is how to implement U in practice? Ideally, we want
to act on at most 2 qubits at a time (gates).

I a quantum algorithm gives us a recipe to implement U from simple gates.
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Elementary gates

gate: unitary acting on a small number of qubits (typically between 1 and 3), similar to
classical logic gates AND, OR and NOT

single-qubit gates

I bit-flip gate X: |0〉 ↔ |1〉 X =

(
0 1
1 0

)

I phase-flip gate Z: |0〉 7→ |0〉, |1〉 7→ −|1〉 Z =

(
1 0
0 −1

)

I phase-flip gate Rφ: |0〉 7→ |0〉, |1〉 7→ eiφ|1〉 Rφ =

(
1 0
0 eiφ

)
T := Rπ/4

I Hadamard gate: |0〉 ↔ |+〉, |1〉 ↔ |−〉 H = 1√
2

(
1 1
1 −1

)
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Elementary gates
two-qubit gates

I controlled-not (CNOT): flips the second input qubit if the first one is |1〉, and does
nothing if the first qubit is |0〉

CNOT|0〉|b〉 = |0〉|b〉
CNOT|1〉|b〉 = |1〉|1− b〉

CNOT =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0


I controlled-U (for single-qubit unitary U):(

12 0
0 U

)
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Example of a small circuit

|ψ0〉 = |0〉|0〉
|ψ1〉 = (H|0〉)|0〉 = |+〉|0〉

=
1√
2
(|0〉+ |1〉)|0〉 = 1√

2
(|0〉|0〉+ |1〉|0〉)

|ψ2〉 = CNOT|ψ1〉 =
1√
2
(CNOT|0〉|0〉+ CNOT|1〉|0〉)

=
1√
2
(|0〉|0〉+ |1〉|1〉)

=⇒ this circuit prepares an EPR pair
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Universality of simple gate sets

universal gate set

Any unitary on N qubits can be decomposed using
I arbitrary single qubit gates
I the 2-qubit CNOT gate

Problem: it is not realistic to be able to perform arbitrary single-qubit gates with infinite
precision. We would like a finite gate set.

Kitaev-Solovay theorem

The following sets allow to approximate any unitary arbitrarily well:
I CNOT, Hadamard H, T-gate T = Rπ/4

I Hadamard and Toffoli (3-qubit gate CCNOT) if the unitary have only real entries

Solovay-Kitaev: any 1 or 2-qubit unitary can be approximated up to error ε using
polylog(1/ε) gates from the set.
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Quantum parallelism
The main motivation for quantum computation: “perform many computations in
superposition”.

Lemma

Suppose we have an efficient classical algorithm that computes some function
f : {0, 1}n → {0, 1}m. Then we can build an efficient quantum circuit Uf that maps

Uf : |x〉|0〉 7→ |x〉|f(x)〉.

Not |x〉 7→ |f(x)〉 . . . not unitary in general!

Consequence:
H⊗n|0〉⊗n =

1√
2n ∑

x∈{0,1}n
|x〉

Uf

(
1√
2n ∑

x∈{0,1}n
|x〉|0〉

)
=

1√
2n ∑

x∈{0,1}n
|x〉|f(x)〉
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Quantum parallelism
The main motivation for quantum computation: “perform many computations in
superposition”.

Lemma

Suppose we have an efficient classical algorithm that computes some function
f : {0, 1}n → {0, 1}m. Then we can build an efficient quantum circuit Uf that maps

Uf : |x〉|0〉 7→ |x〉|f(x)〉.

Caution!

I One applies Uf just once, but the final state “contains” f(x) for all 2n input values.
I However, measuring the output state in the computational basis only yields a single

(random) couple (x, f(x)).
I Holevo theorem: one cannot extract more than n bits of information from n qubits
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The challenge when designing an algorithm

I the final outcome is probabilistic

I goal: increase the amplitude of the correct answer

I decrease the amplitude of incorrect answers thanks to interference
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A simple algorithm: Deutsch-Josza (1992)
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Deutsch-Josza

the problem

For N = 2n, we are given x ∈ {0, 1}N such that either
I constant: all xi are equal
I balanced: half of xi are 0, half are 1

Find which one.

complexity

I classical deterministic (no errors): at least N/2+ 1 queries (to bits of x) needed
I classical if errors are allowed: constant number of queries
I quantum: single query, assuming we can implement the unitary |i〉 7→ (−1)xi |i〉

=⇒ separation quantum vs exact classical (in the query complexity model)
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Deutsch-Josza

|0〉 H

Ux,±

H

|0〉 H H

|0〉 H H

|0n〉 −→ 1√
2n ∑

i∈{0,1}n
|i〉 −→ 1√

2n ∑
i∈{0,1}n

(−1)xi |i〉

−→ 1√
2n ∑

i∈{0,1}n
(−1)xi ∑

j∈{0,1}n
(−1)i·j|j〉

Amplitude of |0n〉 state:

1√
2n ∑

i∈{0,1}n
(−1)xi =

 1 if xi = 0 ∀i
-1 if xi = 1 ∀i
0 if x is balanced

Yields |0n〉 iff x is constant: 1 query and O(n) operations
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Recap

I quantum computers can exploit quantum parallelism, but cannot really do an
exponential number of computations in parallel

I one single output!
I different models of quantum computing: circuit, measurement-based, adiabatic

computing, all equivalent (up to polynomials)

Next part

I Grover’s algorithm for search
I linear systems (HHL) and machine learning
I quantum supremacy
I the NISQ era
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