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Outline of the course

course 1: Basic quantum mechanical principles of quantum computing

I motivation for studying quantum algorithms

I the various models for quantum computing

I the circuit model

I a simple quantum algorithm: Deutsch-Josza

course 2: More advanced quantum algorithms

I Grover’s algorithm for search

I linear systems (HHL) and machine learning

I quantum supremacy

I the NISQ era
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Grover’s algorithm for search
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The search problem

The problem

Input: function f : {0, 1}n → {0, 1}. Find x such that f(x) = 1 or output no solution if no
such x.

Complexity

I randomized classical algorithm: Θ(2n) queries if single correct value

I Grover’s algorithm: O(
√
2n) queries and O(n

√
2n) other gates

=⇒ quadratic speedup
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Idea of the algorithm
Start with uniform superposition (via Hadamard: H⊗n|0〉⊗n = 1√

2n ∑x |x〉):

|U〉 = 1√
2n ∑

x∈{0,1}n
|x〉 = sin θ|G〉+ cos θ|B〉

I sin θ =
√
t/2n and t = #{x | f(x) = 1}

I good state |G〉 = 1√
t ∑x s.t. f(x)=1 |x〉, bad state |B〉 = 1√

2n−t ∑x s.t. f(x)=0 |x〉

goal: rotate in the {|B〉, |G〉} plane to reach |G〉
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How to implement rotation

perform two reflections:

I through |B〉 by calling the oracle Of,± : |x〉 7→ (−1)f(x)|x〉

I through |U〉 by H⊗nRH⊗n = 2|U〉〈U| − 1, where R : |x〉 → (−1)[x 6=0n]|x〉

define G = H⊗nRH⊗nOf,± =⇒ rotation of angle 2θ
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Grover’s algorithm
assuming we know the fraction of solutions t/2n = sin2 θ ≈ θ2

1 start with |U〉 = H⊗n|0〉

2 repeat k ≈ π/2
2θ = O(1/

√
t/2n) = O(1/√pgood) times the rotation G of angle 2θ

3 measure and check that the outcome is a solution
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Generalizations of Grover’s algorithm

I the algorithm is very general and search problems occur everywhere

I there are many variants
I amplitude amplification

I amplitude estimation

I quantum walks (generalize random walks)

I for all these problems, quadratic improvement in complexity compared to classical
algorithms
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linear systems (HHL) and machine learning
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Until a few years ago, the only main algorithms were:

I Grover

I Shor for factorization (exploits the quantum Fourier transform)

I some variants / generalization (e.g. quantum walks)

(also quantum chemistry . . . )

then came HHL and the prospect of quantum machine learning

HHL = Harrow, Hassidim, Lloyd (2009)
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The HHL algorithm, “exponential speedup”

the problem

Given an n× n matrix A and a vector b ∈ Cn, solve the linear system:

Ax = b

Complexity

I classically, complexity at least n2

I quantumly, O(log n)!!

How is that even possible??

by cheating a little bit... Read the fine prints!
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The HHL algorithm, “exponential speedup”
the problem

Given an n× n matrix A and a vector b ∈ Cn, solve the linear system:

Ax = b

the algorithm (Harrow, Hassidim, Lloyd 2009)

Given access to a matrix A and a vector b such that
1 b can be efficiently loaded in a quantum memory: Quantum Random Access Memory

(QRAM)
2 A has sparsity s per row and condition number κ

there exists a Q algo that
I outputs |x〉 = ∑n

i=1 xi|i〉 where Ax = b
I runs in time polynomial in (s, κ) and logarithmic in the dimension

Is this algorithm useful?? (does not return the complete answer)
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Description of the HHL algorithm

I without loss of generality, A is Hermitian, otherwise consider
( 0 A

A† 0

)
I spectral decomposition of A:

A = ∑ λi|Ei〉〈Ei|

with Λ ≤ |λi| ≤ ‖A ‖ ∀i

I |b〉 is given by |b〉 = ∑ bi|Ei〉. This is a log2(n)-qubit state.

I we want to prepare the state

|A−1b〉 ∝ ∑
i

bi

λi
|Ei〉

A. Leverrier Quantum computing 13 June 2019 13 / 35



Description of the HHL algorithm
I we want to prepare the state

|A−1b〉 ∝ ∑
i

bi

λi
|Ei〉

I start with |b〉 = ∑ bi|Ei〉
quantum phase estimation

Given a unitary U and a state |ψ〉 such that U|ψ〉 = eiθ |ψ〉, QPE returns an
approximation of θ within error ε using O(1/ε) controlled-U operations.

I apply quantum phase estimation under e−iA with state |b〉

∑ bi|Ei〉
QPE−−→ ∑ bi|Ei〉|λi〉

I add an ancillary qubit |0〉 and rotate it through an angle arcsin(Λ/λi)

∑ bi|Ei〉|0〉|λi〉
controlled-rotation−−−−−−−−−−→ ∑ bi|Ei〉

(
Λ

λi
|1〉+

√
1− Λ2

λ2
i
|0〉
)
|λi〉
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Description of the HHL algorithm
I we want to prepare the state

|A−1b〉 ∝ ∑
i

bi

λi
|Ei〉

uncomputing

Given a circuit |x〉|0〉 → |x〉|f(x)〉, one can uncompute it to obtain

|x〉|f(x)〉 → |x〉|0〉

I uncompute the quantum phase estimation

∑ bi|Ei〉
(

Λ

λi
|1〉+

√
1− Λ2

λ2
i
|0〉
)
|λi〉

QPE−1

−−−−→ ∑ bi|Ei〉
(

Λ

λi
|1〉+

√
1− Λ2

λ2
i
|0〉
)
|0〉
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Description of the HHL algorithm

I we want to prepare the state |A−1b〉 ∝ ∑i
bi
λi
|Ei〉

I we have ∑ bi|Ei〉
(

Λ
λi
|1〉+

√
1− Λ2

λ2
i
|0〉
)

I measure the second qubit:
I with probability Λ2

|λi|2
≥ Λ2

‖A‖2 , the outcome is 1 and we get the state

∝ ∑
i

bi
λi
|Ei〉 = |A−1b〉,

as expected

I using amplitude amplification (similar to Grover’s algorithm), sufficient to repeat the
procedure O(‖A ‖ /Λ) = O(κ) times
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Caveats of the HHL algorithm

I finding the full answer ~x from |x〉 requires O(n) repetitions

I HHL is useful if we only need some features of ~x, such as moments or expectation
values ~x†B~x for some sparse matrix B

I the state |b〉 should be prepared on a quantum computer, or with QRAM. Might be
expensive

I A should be well conditioned, i.e. maxi |λi|
mini |λi| not too large

I e−iA should be efficiently simulatable

To get an exponential algorithm, one needs a scenario where all these points are addressed...
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Quantum machine learning
HHL initiated the field of quantum machine learning (subroutine for many algos).

Least Square Fitting [Wiebe, Braun, Lloyd 12]

I input: N labelled points (xi, yi)

I output: A fit function f(x,λ) = ∑j fj(x)λj that minimizes

err =
N

∑
i=1
|f(xi,λ)− yi|2

Using HHL, the algorithm returns |λ〉 ∝ ∑ λi|i〉.

Support Vector Machine [Lloyd, Mohseni, Rebentrost 13]

I input: M labelled N-dimensional points (xi, yi), xi ∈ RN, yi ∈ {−1, 1}
I output: A maximum margin hyperplane that separates the classes

SVM can be recast as a system of linear equations
=⇒ the quantum algorithm returns |w〉, the normal vector to the hyperplane
Application: classify data by estimating the inner product with w (l2-norm)

A. Leverrier Quantum computing 13 June 2019 18 / 35



Quantum machine learning
Singular Value Estimation

I Sampling eigenvalues/vectors [Lloyd, Mohseni, Rebentrost 13]
For a psd matrix with trace 1, quantum algorithm that efficiently samples an eigenvector with
corresponding eigenvalue

I Singular Value Estimation [LMR 13, Prakash 15]
Given a matrix and a singular vector, outputs an estimate of the singular value

Not clear whether these algorithms offer a true speedup

I to obtain a good complexity, the data should be “nice”, b should be efficiently accessible. Maybe there
are efficient classical algorithms in such cases?

=⇒ HHL should be seen as a template for a generic algorithm: one needs to provide a setup where
I b can be loaded efficiently in the quantum memory
I the data is sufficiently nice
I we’re not interested in x but in quantities efficiently computable from |x〉
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Quantum machine learning: speedup for a real-life problem
Quantum recommendation systems [Kerenidis, Prakash 16]

I input: a hidden preference matrix T with Ti,j ∈ {0, 1}, depending on whether product
j is “good” for user i

I output: a high value of row i (i.e. a recommendation for user i)
I idea: the preference matrix is approximately low rank

I step 1 (offline): construction of a low rank approximation of T
I step 2: new customer reveals some preference and the system outputs a recommendation

(good whp) =⇒ speedup

I crucial that the algorithm doesn’t try to reconstruct the full matrix!
I complexity: polylog(mn) =⇒ exponential speedup for a real-life problem!
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Big surprise last year: Ewin Tang

I dequantization of the algorithm
=⇒ classical algorithm with complexity polylog(mn)!!

I but the dependence in the rank of the matrix is terrible
=⇒ still an important polynomial speedup for the quantum computer
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Last 6 months
I Many quantum algorithms have been dequantized!

I situation far from settled but problems with sparse matrices but large rank probably
can’t be dequantized
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quantum supremacy
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What is quantum supremacy?

I we would like a convincing experimental demonstration of the fact that quantum computers
are much more efficient/faster than classical ones

I Shor’s algorithm? exponential speedup?

I not ready to outperform classical algorithms (would need many protected qubits-
I no proof that factoring cannot be done efficiently with a classical computer

I simulation of physical system?

I already been done
I no proof that there doesn’t exist a classical algorithm

I a solution: sampling problems!
=⇒ a quantum computer can efficiently sample from a distribution hard to emulate
classically

I current race to be the first to demonstrate quantum supremacy (Google)
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Boson sampling
The problem

I given input unitary U, sample from specific probability distribution

I Aaronson, Arkhipov (2013): approximate efficient classical algo for
Boson sampling would imply collapse of the polynomial hierarchy
to 2nd level

Quantum solution

I efficient quantum algorithm of a “simple” quantum computer (no
need for quantum error correction)
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Boson sampling: quantum experiments vs classical simulation
Experiments aren’t that easy

I need to prepare many indistinguishable single photons, without
much loss, and good detectors

I state of the art: 5 photons in 12 optical modes:
A. Zhong & al. PRL 121, 250505 (2018)

Progress on the classical side

I better classical algorithms for simulation:
A. Neville & al. Nature Physics, 13(12) 2017

=⇒ maybe not the best approach to quantum supremacy
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Random circuit sampling

I similar to Boson sampling, but with random circuit

(from Google)
I again good theoretical arguments to show that efficient classical simulation is

impossible, but quantum simulation is indeed efficient
I advantage: can use the same superconducting circuits as for quantum computers
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Boson sampling: quantum experiments vs classical simulation

Competition between experimental platforms

I IBM 50-qubit, Intel 49-qubit

I Google Britlescone 72-qubit processor

Progress on the classical side

I better classical algorithms
e.g. with Alibaba supercomputers J. Chen & al. arXiv:1805.01450

I simulation of circuit of depth 40 for grid of 9× 9 qubits

I (right) required 2-qubit gate fidelity to achieve 5% output fidelity

=⇒ very fruitful competition between experiments and classical simulation
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The NISQ era

Noisy Intermediate Scale-Quantum technology

A. Leverrier Quantum computing 13 June 2019 29 / 35



What’s next?

I from Google

I what to do with circuits without fault tolerance?

I Noisy Intermediate-Scale Quantum (NISQ) technology

=⇒ excellent survey addressed to non specialist by John Preskill
“Quantum Computing in the NISQ era and beyond”
https://quantum-journal.org/papers/q-2018-08-06-79
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Optimization problems

I formula with m constraints on n bits

I find an assignment satisfying as many constraints as possible

I what’s the maximum number of constraints that can be satisfied at the same time?

I finding the exact solution (or a good approximate one) is often NP-hard

I but often a large gap between best classical algo and barrier of NP-hardness

=⇒ room for quantum algorithms?
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Quantum optimizers

hybrid classical-quantum algorithms

I quantum processor prepares an n-qubit state

I measure all the qubits and process classical outcomes with classical optimizer

I optimizer instructs how to modify quantum state preparation

I repeat until convergence

e.g.

I Quantum Approximate Optimization Algorithm (QAOA): application to classical
combinatorial optimization pb

I Variational Quantum Eigensolver (VQE): finding low-energy states of many-particle
quantum systems (large molecules)
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Quantum annealing

I What about D-Wave? claims to have a 2000-qubit machine

I not a circuit-based quantum computer, but a quantum annealer

I solves optimization problems, often correctly but no clear speedup

I really a noisy version (with poor quality qubits) of adiabatic quantum computing

I no theoretical argument that it can provide a speedup

I so far, mostly applied to cases where the annealing is stoquastic (= also easy for
classical computer)

I we’ll see what future non-stochastic quantum annealers can do

I also potential applications to quantum simulation?
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Recap
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Recap
I historical quantum algorithms were mostly variations of Grover and Shor

I many recent algorithms based on matrix inversion (HHL)
I very relevant for quantum machine learning, but unclear which algorithms offer a true

speedup (dequantization)

I short-term challenges:

I quantum supremacy: speedup for “useless tasks”

I Noisy Intermediate-Scale Quantum (NISQ) technology: useful tasks with small and noisy
quantum computers

I analog quantum simulation

Thanks!
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