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Introduction

★ Method applied in atomic physics and quantum chemistry:  
 ↠ Multi-Configuration Hartree-Fock (MCHF), Multi-Configuration Self-Consistent Field (MCSCF) 

★ Based on the determination of a Configuration Interaction (CI) wave function ➡ allows: 

‣ explicit symmetry preservations (particle number, spherical symmetry, Pauli principle),  
‣ indiscriminate treatment of long-range correlations,  
‣ treatment of ground and excited states in even-even, odd-even & odd-odd nuclei  

on the same footing. 

★ The underlying mean-field and the single-particle states evolve with the correlations of the system 

                    ➡ fully self-consistent approach

Multiparticle-Multihole Configuration Mixing Method (MPMH):



✦  Formalism of the MPMH method  

→ role and interpretation of the orbital optimization 

✦  Applications with the Gogny D1S interaction 

✦ Numerical algorithm 
→ doubly iterative convergence process  

✦ Description of even-even sd-shell nuclei 
             → Effect of the orbital optimization on ground and excited states properties: Charge radii,  
                 excitation energies, transition probabilities, inelastic electron and proton scattering… 

✦  Towards an “ab-initio” theory 

→  implementation of a chiral interaction: preliminaries 
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 Variational principle applied to the energy of the system:

MPMH method: Formalism

Two coupled equations to solve:

�E [ ]/{'⇤
i } = 0

�E [ ]/{A⇤
↵} = 0{

Note: formalism shown here for a 2-body Hamiltonian 

derivations for 2-body density-dependent or 3-body interaction available 
in C.R., N. Pillet, D. Peña Arteaga & J.-F. Berger, PRC 93, 024302 (2016). 

E [ ] = h |Ĥ| i = 0



★ 1st variational equation: The mixing coefficients
Usual 

CI diagonalization

➡ introduces explicit correlations in restricted configuration space      P P Q

MPMH method: Formalism

All types of long-range correlations are treated at the same time: 

Interaction vertex           h�↵|V̂ |��i

RPA, pairing
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★ 2nd variational equation: The single-particle states

MPMH method: Formalism

✦ variation of the single-particle states:

T = hermitian 1-body operator

✦ 1st order variation of the many-body wave function:

h
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i
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Generalized  
mean-field 
equation
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i } =h |

h
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i
| i = 0

“Generalized Brillouin condition”

= |� iP + |� iQ

P Q

↠ Note:

the orbital optimization takes into account the coupling HPQ/HQP between P and Q spaces (however not HQQ)↠
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MPMH method: Formalism

= centroid of one-nucleon separation 
energies 
= “most unambiguous definition of  
single-particle energies“ 

(Baranger (1970), Duguet & Hagen (2012)…)
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the mean field h(ρ) is related to the energy while the density ρ contains information on the wave function  
➡ single-particle states= natural orbitals= eigenfunctions of the density that satisfies the general mean field equation

single-particle orbitals
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MPMH method: Formalism

General equation in physics:

Equation of motion for the one-body  
Green’s function (at equal times) ⇒

⇥
h(⇢), ⇢

⇤
= G(�) ⇒ Renormalization of the 

one-body propagator 
— 

equivalent to solving  
a Dyson equation

1-body GF G(1) Connected 2-body GF G(2)
C

⌃(t1 � t2) = ⌃(0)�(t1 � t2) + ⌃(dyn)(t1 � t2)Self-energy:

Static part Dynamical part
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X

kl
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ij
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Z
dt

h
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i

           full consistency between mean-field and correlations,  

which is important to have a fully variational theory  

(see e.g. “Quantum Theory of Finite systems” by Blaizot and Ripka)

★ Role of the orbital equation:  
I) Consistency between correlations and single-particle picture
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MPMH method: Formalism

★ Role of the orbital equation:  
II) Partial compensation of the truncation P/Q

• Ex: truncation in term of the excitation order NpNh

➡ final reference state = superposition of mpmh excitations on the initial reference state = richer 

P Q

➡ should have a higher weight in the correlated wave function than the initial one
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★ Gogny D1S interaction (Dechargé, Gogny PRC 21, 1568 (1980)):

Application to sd-shell nuclei with the Gogny force

correlated density 



Application to sd-shell nuclei with the Gogny force

➡ modified coupled equations to solve:
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ĥ(⇢,�), ⇢̂

i
= Ĝ(�)
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MPMH method: Numerical algorithm

Solve the 2nd equation:

In the natural basis ⇢̂|µi = nµ|µi
Qµ⌫(⇢,�) =

Gµ⌫(�)

nµ � n⌫
, if nµ 6= n⌫

Qµ⌫(⇢,�) = 0 , otherwise.

{
⇒ non-linear problem ⇒ iterative solution: 

⇒ self-consistent single-particle states       =  eigenfunctions of h-Q and  ⇢{'i}

orbitals {'(0)}
density ⇢(0)

orbitals {'(1)}
density ⇢(1)(from 1st eq.)

…

until  convergence Back to the 1st equation…

New “correlation field”
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ĥ(⇢,�)� Q̂(⇢,�), ⇢̂

i
= 0

h(⇢(0),�)�Q(⇢(0),�) h(⇢(1),�)�Q(⇢(1),�)



Calculation of the densities 
and source term 

⇢ki = h |a†iak| i

�kiml = h |a†ia
†
malak| i

) G(�)

•  

•  
�(⇢ki⇢lm � ⇢km⇢li)

The full solution requires a doubly-iterative algorithm:

C.R., N. Pillet, D. Peña Arteaga & J.-F. Berger, PRC 93, 024302 (2016). 

starting point: 
Hartree-Fock 

orbitals

Solve 1st equation 

… until convergence

MPMH method: Numerical algorithm

X

�
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• Even-even nuclei with 

• truncation scheme: core of 16O + valence space 

• 9 major oscillator shells

10 6 (Z,N) 6 18

Ex: 28Si → 12p-12h

Application to sd-shell nuclei with the Gogny force

Framework

Calculation of ground- and excited-state properties: 

‣ Binding and separation energies, charge radii 
‣ Excitation energies 
‣ Magnetic dipole moments and quadrupole spectroscopic moments 
‣ Transition probabilities B(E2), B(M1)… 

➡How are these observables impacted by the optimization of orbitals?

nndc.bnl.gov

C. Robin, N. Pillet, M. Dupuis, J. Le Bloas, D. Peña Arteaga and J.F. Berger, PRC 95 044315 (2017).
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Symmetry-preserving scheme 
➡ The information about deformation is contained in the two-body correlation matrices σ :

HFB potential energies

Application to sd-shell nuclei with the Gogny force
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Application to sd-shell nuclei with the Gogny force



 One-body density matrix (neutrons): Representation of in the HF basis:

Equation 1 - iteration 1 Equations 1&2 - iteration 1 After convergence (iteration 22) 

➡ No more  
frozen states

�⇢ = |⇢� ⇢(0)HF |
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Application to sd-shell nuclei
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Application to sd-shell nuclei with the Gogny force

# global 
iteration

# of iterations of  
the orbital equation
20Ne 28Ne

1 19 15
2 20 15
3 18 15
4 17 12
5 16 11
6 13 9
7 12 8
8 11 7
9 9 6
10 8 5
11 7 4
12 6 4
13 6 4
14 5 3
15 5 3
16 4 2
17 4 2
18 3 1
19 2 1
20 2 1
21 1
22 1

Global vs local iterations

 Convergence process:



 Effect on the many-body wave function:

1st equation only 1st+2nd equations 
Starting from HF orbitals

1st+2nd equations 
Starting from HO orbitals

nucleus Weight of P(i) Weight of Q(i) Weight of P(i) Weight of Q(i) Weight of P(i) Weight of Q(i)

20Ne 100% 0% 98% 2% 66% 34%
24Mg 100% 0% 97% 3% 61% 39%
28Si 100% 0% 95% 4% 55% 45%
32S 100% 0% 93% 7% 61% 39%

28Ne 100% 0% 85% 15% 78% 22%
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Starting from HF orbitals

1st+2nd equations 
Starting from HO orbitals

nucleus Weight of P(i) Weight of Q(i) Weight of P(i) Weight of Q(i) Weight of P(i) Weight of Q(i)

20Ne 100% 0% 98% 2% 66% 34%
24Mg 100% 0% 97% 3% 61% 39%
28Si 100% 0% 95% 4% 55% 45%
32S 100% 0% 93% 7% 61% 39%

28Ne 100% 0% 85% 15% 78% 22%

Application to sd-shell nuclei with the Gogny force

The weight of the initial Q space increases when starting further from the final solution



Application to sd-shell nuclei with the Gogny force

➡ Pure HF component decreases: 
self-consistent procedure appears 
to fragment the wave function

Reference state built  
on optimized orbitals

➡ “better” than HF state

 Effect on the many-body wave function:

Pure Hartree-Fock component in correlated ground state
nucleus 1st equation only 1st + 2nd equations

26Ne 71% 62%
28Si 60% 24%
32S 58% 39%
34S 39% 17%

New reference-state componentd state
1st + 2nd equations

69%
26%
47%
18%
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➡ Pure HF component decreases: 
self-consistent procedure appears 
to fragment the wave function

Reference state built  
on optimized orbitals

➡ “better” than HF state

 Effect on the many-body wave function:

Pure Hartree-Fock component in correlated ground state
nucleus 1st equation only 1st + 2nd equations

26Ne 71% 62%
28Si 60% 24%
32S 58% 39%
34S 39% 17%

New reference-state componentd state
1st + 2nd equations

69%
26%
47%
18%

 Correlation energies: Ecorr = E( )� E(�(0)
HF )

Correlation energy Ecorr (MeV)

nucleus 1st equation only 1st + 2nd equations ΔEcorr

28Ne 1.17 1.59 0.42
26Ne 7.32 8.46 1.14
24Ne 5.75 6.98 1.23
22Ne 10.48 12.12 1.64
20Ne 10.93 13.30 2.37

Correlation energy Ecorr (MeV)

nucleus 1st equation only 1st + 2nd equations ΔEcorr

28S 8.05 10.05 2.00
30S 0.59 2.06 1.47
32S 2.82 5.22 2.40
34S 4.27 5.62 1.35



✦Charge radii:

Hartree-Fock orbitals

self-consistent orbitals

Ne S Si

Mg Ar

✦ Radial orbitals: 26Mg

p3/2

2s

p1/2

d3/2d5/2

1s
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Hartree-Fock orbitals

self-consistent orbitals

Ne S Si

Mg Ar

✦ Radial orbitals: 26Mg

p3/2

2s

p1/2

d3/2d5/2

1s

28Ne
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✦ Excitation energies: 30S and 30Si: 
T=0 component of the Gogny force 

(lack of tensor term, Pillet et al. PRC 85, 044315 (2012))

Orbital 
optimization

{

Application to sd-shell nuclei with the Gogny force



✦ Transition probabilities B(E2)

‣ Trends overall well reproduced  

‣ But clear lack of collectivity due to 
the restricted valence space 

‣ Positive but small effect from the 
optimization of orbitals  
(factor 1.7 in 30Si, 1.3 in 28Si & 32S)

No effective charges

Application to sd-shell nuclei with the Gogny force



charge transition density

➡ Electron inelastic scattering on discrete states 

➡ Proton inelastic scattering on discrete states 

form factor

Form factor:

With optimized states:  
• Small increase of the 

magnitude 
• Improvement of the 

trend at high q

F�(q) =

p
4⇡

Z

r
2Jf + 1

2Ji + 1

Z 1

0
r2 dr j�(qr)⇢tr(r)

From MPMH:

factor ~1.3

In collaboration with M. Dupuis, CEA,DAM,DIF 

In the framework of the DWBA,  
with optical and transition potentials  

calculated using transition densities from MPMH

Application to sd-shell nuclei with the Gogny force



 First implementation of the fully self-consistent multiparticle-multihole configuration mixing method


✦ Construction of a general mean-field and orbitals consistent with the correlation of the system,  
complete convergence reached.  

✦ Effect of orbital optimization always positive.  
   With single valence shell: large impact on the ground-state wave function, but small effect on the 
transition probabilities…  

➡ solve orbital equation for each state 

➡ try truncation schemes involving larger single-particle spaces 
(excitation order, excitation energy, symmetry-constrained combinations etc.) 

Conclusion from the study with Gogny
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 But:  

✦ The D1S Gogny interaction is in principle not  
adapted (double counting of correlations…), and 

✦ can lead to divergent behaviors when enlarging  
the valence space due to the zero-range spin-orbit 
and ρ-dependent terms. See e.g. study of 12C:

Conclusion from the study with Gogny

(W
.u

.)

collectivity     , excitation energies      , overbinding ~ 60 MeV!

collectivity     ,excitation energies     , overbinding ~ 6 MeV
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transition probabilities…  

➡ solve orbital equation for each state 

➡ try truncation schemes involving larger single-particle spaces 
(excitation order, excitation energy, symmetry-constrained combinations etc.) 

 But:  

✦ The D1S Gogny interaction is in principle not  
adapted (double counting of correlations…), and 

✦ can lead to divergent behaviors when enlarging  
the valence space due to the zero-range spin-orbit 
and ρ-dependent terms. See e.g. study of 12C:

Conclusion from the study with Gogny

(W
.u

.)

collectivity     , excitation energies      , overbinding ~ 60 MeV!

collectivity     ,excitation energies     , overbinding ~ 6 MeV

Need a better suited interaction

‣ fully finite-range, better constrained Gogny interaction 
with tensor (see Nathalie Pillet’s talk) 

or 

‣ interaction derived from chiral EFT (here)



✦  Formalism of the MPMH method  

→ role and interpretation of the orbital optimization 

✦  Applications with the Gogny D1S interaction 

✦ Numerical algorithm 
→ doubly iterative convergence process  

✦ Description of even-even sd-shell nuclei 
             → Effect of the orbital optimization on ground and excited states properties: Charge radii,  
                 excitation energies, transition probabilities, inelastic electron and proton scattering… 

✦  Towards an “ab-initio” theory 

→  implementation of a chiral interaction: preliminaries 

Outline

— in collaboration with I. Tews (LANL), R. Bernard (ENS Cachan) and G. Hupin (IPN Orsay)



Application of the MPMH method with a chiral interaction

✦ In MPMH, have to do the CI diagonalization and 
calculation of the mean field at each iteration  

↠ use matrix elements (e.g. in HO basis) as only 
input would be very inefficient  

↠ need potential in coordinate space  
and ideally Gaussians 



✦ Ingo Tews and collaborators have developed  
local chiral interactions  

with Gaussian regulators  
that can be written in coordinate space 

Application of the MPMH method with a chiral interaction

Chiral expansion:

See e.g. A. Gezerlis, I. Tews, E. Epelbaum et al.,  
Phys. Rev. C 90, 054323 (2014) 

At each order: 

contact terms 
+ 

long-range pion-exchange terms

✦ In MPMH, have to do the CI diagonalization and 
calculation of the mean field at each iteration  

↠ use matrix elements (e.g. in HO basis) as only 
input would be very inefficient  

↠ need potential in coordinate space  
and ideally Gaussians 



✦ Ingo Tews and collaborators have developed  
local chiral interactions  

with Gaussian regulators  
that can be written in coordinate space 

Application of the MPMH method with a chiral interaction

Chiral expansion:

See e.g. A. Gezerlis, I. Tews, E. Epelbaum et al.,  
Phys. Rev. C 90, 054323 (2014) 

At each order: 

contact terms 
+ 

long-range pion-exchange terms

✦ In MPMH, have to do the CI diagonalization and 
calculation of the mean field at each iteration  

↠ use matrix elements (e.g. in HO basis) as only 
input would be very inefficient  

↠ need potential in coordinate space  
and ideally Gaussians 

1st step: leading order



V LO
OPE(r) =

⇣
W (0)

S (r)~⌧1 · ~⌧2 �1 · �2 +W (0)
T (r)~⌧1 · ~⌧2 S12

⌘
⇥

⇣
1� e�(r/R0)

2
⌘2

V LO
contact(r) = (CS + CT�1 · �2)⇥

⇣
↵ e�(r/R0)

2
⌘

★ Chiral interaction at leading order with Gaussian regulators:

{

regulator

{

regulator

↠ purely gaussian

Application of the MPMH method with a chiral interaction

cut-off R0= 1 fm

✦ contact term:

✦ long-range one-pion exchange:

central spin-isospin term:

tensor isospin term:

↠ Yukawa or Yukawa-like x Gaussians



to use the machinery already developed in the original code for the Gogny interaction 

Application of the MPMH method with a chiral interaction

★ Strategy: fit the regularized Yukawa or Yukawa-like functions to a sum of Gaussians

Note:  
such fits of Yukawa to Gaussians already applied in J. Dobaczewski & J. Engel, Phys. Rev. Lett. 94, 232502 (2005),  

or more recently in e.g. R. Navarro Perez et al. PRC 97, 054304 (2018).

W (0)
T,reg(r) /

e�M⇡r

r

✓
1 +

3

M⇡r
+

3

(M⇡r)2

◆
⇥ (1� e�(r/R0)

2

)2 '
X

i

aTi e
�(r/bTi )2

W (0)
S,reg(r) /

e�M⇡r

r
⇥ (1� e�(r/R0)

2

)2 '
X

i

aSi e
�(r/bSi )2



true function

fit to 4 Gaussians

fit to 5 Gaussians

regularized central term

r (fm)

W (0)
S,reg,fit(r)

W (0)
S,reg,true(r)

ratio

fit to 4 Gaussians

fit to 5 Gaussians

r (fm)

↠ Central term:

Choose 5 Gaussians

Application of the MPMH method with a chiral interaction

Courtesy of I. Tews

W (0)
S,reg(r)/D

D =
M3

⇡

12⇡

✓
gA
2F⇡

◆2

Very preliminary!



↠ Tensor term:

Application of the MPMH method with a chiral interaction

Courtesy of I. Tews

D =
M3

⇡

12⇡

✓
gA
2F⇡

◆2

true function

fit to 5 Gaussians

regularized tensor term

r (fm)

W (0)
T,reg(r)/D

0 1 2 3 4 5 6

1

2

3

4

ratio

r (fm)

W (0)
T,reg,fit(r)

W (0)
T,reg,true(r)

0 1 2 3 4 5

0.6

0.8

1.0

1.2

1.4

Very preliminary!



Application of the MPMH method with a chiral interaction

↠ Test for the central term:

e�M⇡r

r
(1� e�(r/R0)

2

)2 =
2p
⇡

Z 1

0
dX

⇣
e�r2X2�M2

⇡/4X
2

� 2e�r2(X2+1/R2
0)�M2

⇡/4X
2

+ e�r2(X2+2/R2
0)�M2

⇡/4X
2
⌘

difference in interaction matrix elements   
(5 HO shells)

= 1.20⇥ 10�4 MeV

= 2.10⇥ 10�5 MeV

e�M⇡r

r
=

2p
⇡

Z 1

0
dXe�r2X2�M2

⇡/4X
2 (exact)

to do the exact integration of the central term and check the accuracy of the Gaussian fit

Use the relation

✴ Average difference: 

s =
q

h�eV 2i � h�eV i2

✴ standard deviation:

   
  

fit
[M

eV
]

↠ impact on observables to be investigated 

h�eV i = 1

N

NX

{ijkl}=1

|eV exact

ijkl

� eV fit

ijkl

|

Very preliminary!



Application of the MPMH method with a chiral interaction

To do next:

★ Finish the implementation of the tensor term 

★ Implement the next orders: NLO, N2LO 

              ↠ finite range spin-orbit 
              ↠ three-body interaction 

★ Check convergence of the results with respect to the cut-off and the size of the single-particle basis …
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