Single-particle relaxation effects from the multi-particle-multi-hole configuration mixing approach

Caroline Robin

Institute for Nuclear Theory, University of Washington, Seattle, WA, USA
JINA-CEE, Michigan State University, East Lansing, MI, USA
Nathalie Pillet
CEA, DAM, DIF, France

In collaboration with:
Rémi Bernard, ENS Cachan, France
Ingo Tews, LANL, USA
Guillaume Hupin, IPN Orsay, France
Marc Dupuis, CEA, DAM, DIF, France

Introduction

Multiparticle-Multihole Configuration Mixing Method (MPMH):

* Method applied in atomic physics and quantum chemistry:
\rightarrow Multi-Configuration Hartree-Fock (MCHF), Multi-Configuration Self-Consistent Field (MCSCF)
\star Based on the determination of a Configuration Interaction (CI) wave function \boldsymbol{m} allows:
- explicit symmetry preservations (particle number, spherical symmetry, Pauli principle),
- indiscriminate treatment of long-range correlations,
- treatment of ground and excited states in even-even, odd-even \& odd-odd nuclei on the same footing.
* The underlying mean-field and the single-particle states evolve with the correlations of the system
\Rightarrow fully self-consistent approach

Outline

\downarrow Formalism of the MPMH method
\rightarrow role and interpretation of the orbital optimization

- Applications with the Gogny D1S interaction
- Numerical algorithm
\rightarrow doubly iterative convergence process
- Description of even-even sd-shell nuclei
\rightarrow Effect of the orbital optimization on ground and excited states properties: Charge radii, excitation energies, transition probabilities, inelastic electron and proton scattering...
* Towards an "ab-initio" theory
\rightarrow implementation of a chiral interaction: preliminaries

Outline

\downarrow Formalism of the MPMH method
\rightarrow role and interpretation of the orbital optimization

- Applications with the Gogny D1S interaction
* Numerical algorithm
\rightarrow doubly iterative convergence process
- Description of even-even sd-shell nuclei
\rightarrow Effect of the orbital optimization on ground and excited states properties: Charge radii, excitation energies, transition probabilities, inelastic electron and proton scattering...
- Towards an "ab-initio" theory
\rightarrow implementation of a chiral interaction: preliminaries

MPMH method: Formalism

* Trial wave function $|\Psi\rangle=$ superposition of Slater determinants

$$
|\Psi\rangle=A_{0 p 0 h}\left|\Phi_{0 p 0 h}\right\rangle+\sum_{1 p 1 h} A_{1 p 1 h}\left|\Phi_{1 p 1 h}\right\rangle+\sum_{2 p 2 h} A_{2 p 2 h}\left|\Phi_{2 p 2 h}\right\rangle+\sum_{3 p 3 h} A_{3 p 3 h}\left|\Phi_{3 p 3 h}\right\rangle+\ldots
$$

$+$

$$
\left|\Phi_{0 p 0 h}\right\rangle=\prod_{i} a_{i}^{\dagger}|0\rangle
$$

MPMH method: Formalism

* Trial wave function $|\Psi\rangle$ = superposition of Slater determinants

$$
|\Psi\rangle=A_{0 p 0 h}\left|\Phi_{0 p 0 h}\right\rangle+\sum_{1 p 1 h} A_{1 p 1 h}\left|\Phi_{1 p 1 h}\right\rangle+\sum_{2 p 2 h} A_{2 p 2 h}\left|\Phi_{2 p 2 h}\right\rangle+\sum_{3 p 3 h} A_{3 p 3 h}\left|\Phi_{3 p 3 h}\right\rangle+\ldots
$$

Combinatorial growth of the number of configurations \Rightarrow select the most relevant ones
Possible truncation schemes:

- Core + Valence space
\rightarrow defines subspace \mathcal{P} of Hilbert space
- Excitation order (Np-Nh)
- Excitation energy
- etc (symmetry-constrained)

MPMH method: Formalism

* Trial wave function $|\Psi\rangle$ = superposition of Slater determinants

$$
|\Psi\rangle=A_{0 p 0 h}\left|\Phi_{0 p 0 h}\right\rangle+\sum_{1 p 1 h} A_{1 p 1 h}\left|\Phi_{1 p 1 h}\right\rangle+\sum_{2 p 2 h} A_{2 p 2 h}\left|\Phi_{2 p 2 h}\right\rangle+\sum_{3 p 3 h} A_{3 p 3 h}\left|\Phi_{3 p 3 h}\right\rangle+\ldots
$$

$$
\begin{aligned}
& =\sum_{\substack{00 \\
\bullet 0 \cdot 0}}^{4}+ \\
& \left|\Phi_{0 p 0 h}\right\rangle=\prod_{i} a_{i}^{\dagger}|0\rangle
\end{aligned}
$$

Combinatorial growth of the number of configurations \Rightarrow select the most relevant ones
Possible truncation schemes:

- Core + Valence space
\rightarrow defines subspace \mathcal{P} of Hilbert space
- Excitation order (Np-Nh)
- Excitation energy
- etc (symmetry-constrained)

MPMH method: Formalism

* Trial wave function $|\Psi\rangle=$ superposition of Slater determinants

$$
\left.|\Psi\rangle=A_{0 p 0 h}\left|\Phi_{0 p 0 h}\right\rangle+\sum_{1 p 1 h} A_{1 p 1 h}\left|\Phi_{1 p 1 h}\right\rangle+\sum_{2 p 2 h} A_{2 p 2 h}\left|\Phi_{2 p 2 h}\right\rangle+\sum_{3 p 3 h} A_{3 p 3 h} \Phi_{3 p 3 h}\right\rangle+\ldots
$$

$$
\left|\Phi_{0 p o h}\right\rangle=\prod_{i} a_{i}^{\dagger}|0\rangle
$$

Combinatorial growth of the number of configurations \Rightarrow select the most relevant ones
Possible truncation schemes:

- Core + Valence space
- Excitation order (Np-Nh)
- Excitation energy
- etc (symmetry-constrained)
\rightarrow defines subspace \mathcal{P} of Hilbert space

MPMH method: Formalism

* Trial wave function $|\Psi\rangle=$ superposition of Slater determinants

$$
\left.|\Psi\rangle=A_{0 p 0 h}\left|\Phi_{0 p 0 h}\right\rangle+\sum_{1 p 1 h} A_{1 p 1 h}\left|\Phi_{1 p 1 h}\right\rangle+\sum_{2 p 2 h} A_{2 p 2 h}\left|\Phi_{2 p 2 h}\right\rangle+\sum_{3 p 3 h} A_{3 p 3 h} \Phi_{3 p 3 h}\right\rangle+\ldots
$$

Combinatorial growth of the number of configurations \Rightarrow select the most relevant ones
Possible truncation schemes:

- Core + Valence space
- Excitation order (Np-Nh)
- Excitation energy
- etc (symmetry-constrained)
\rightarrow defines subspace \mathcal{P} of Hilbert space

MPMH method: Formalism

* Variational principle applied to the energy of the system: $\mathcal{E}[\Psi]=\langle\Psi| \hat{H}|\Psi\rangle=0$

Two coupled equations to solve:

$$
\left\{\begin{array}{l}
\delta \mathcal{E}[\Psi]_{/\left\{A_{\alpha}^{*}\right\}}=0 \\
\delta \mathcal{E}[\Psi]_{/\left\{\varphi_{i}^{*}\right\}}=0
\end{array}\right.
$$

Note: formalism shown here for a 2-body Hamiltonian
derivations for 2-body density-dependent or 3-body interaction available in C.R., N. Pillet, D. Peña Arteaga \& J.-F. Berger, PRC 93, 024302 (2016).

MPMH method: Formalism

1st variational equation: The mixing coefficients

$$
\delta \mathcal{E}[\Psi] /\left\{A_{\alpha}^{*}\right\}=0 \quad \sum_{\beta} A_{\beta}\left\langle\phi_{\alpha}\right| \hat{H}\left|\phi_{\beta}\right\rangle=E A_{\alpha}
$$

$$
\left(\begin{array}{l}
H
\end{array}\right)(A)=E(A)
$$

\Rightarrow introduces explicit correlations in restricted configuration space \mathcal{P} All types of long-range correlations are treated at the same time:

Excitation order of the configuration

$$
\left|n_{\alpha}-n_{\beta}\right|=1
$$

Particle-vibration coupling

$$
\left|n_{\alpha}-n_{\beta}\right|=0
$$

RPA

MPMH method: Formalism

\star 2nd variational equation: The single-particle states

\uparrow variation of the single-particle states:
$\downarrow 1^{\text {st }}$ order variation of the many-body wave function:

$$
\begin{aligned}
a_{i}^{\dagger} \rightarrow e^{i \hat{T}} a_{i}^{\dagger} e^{-i \hat{T}} \Rightarrow \delta a_{i}^{\dagger}=i\left[\hat{T}, a_{i}^{\dagger}\right] \\
T=\text { hermitian 1-body operator }
\end{aligned}
$$

\rightarrow Note: $\delta \mathcal{E}[\Psi]_{/\left\{\varphi_{i}^{*}\right\}}={ }_{\mathcal{P}}\langle\Psi| \hat{H}|\delta \Psi\rangle+\langle\Psi| \hat{H}|\delta \Psi\rangle_{\mathcal{P}}$

$$
={ }_{\mathcal{P}}\langle\Psi| \hat{P} \hat{H} \hat{P}|\delta \Psi\rangle_{\mathcal{P}}+{ }_{\mathcal{P}}\langle\Psi| \hat{P} \hat{H} \hat{P}|\delta \Psi\rangle_{\mathcal{P}}+{ }_{\mathcal{P}}\langle\Psi| \hat{P} \hat{H} \hat{Q}|\delta \Psi\rangle_{\mathcal{Q}}+{ }_{\mathcal{Q}}\langle\Psi| \hat{Q} \hat{H} \hat{P}|\delta \Psi\rangle_{\mathcal{P}}
$$

\rightarrow the orbital optimization takes into account the coupling $H_{P Q} / H_{Q P}$ between P and Q spaces (however not $H_{Q Q}$)

$$
\begin{gathered}
\delta \mathcal{E}[\Psi] /\left\{\varphi_{i}^{*}\right\}=\langle\Psi|[\hat{H}, \hat{T}]|\Psi\rangle=0>[\hat{h}(\rho), \hat{\rho}]=\hat{G}(\sigma) \\
\text { "Generalized Brillouin condition" }
\end{gathered} \begin{aligned}
& \begin{array}{l}
\text { Generalized } \\
\text { mean-field } \\
\text { equation }
\end{array}
\end{aligned}
$$

MPMH method: Formalism

$$
[\hat{h}(\rho), \hat{\rho}]=\hat{G}(\sigma)
$$

MPMH method: Formalism

- "canonical basis"
\Rightarrow single-particle energies

$$
\begin{aligned}
\varepsilon_{a}=\sum_{N} & \left.\left|\left\langle\Psi_{N}^{A+1}\right| a_{a}^{\dagger}\right| \Psi\right\rangle\left.\right|^{2}\left(E_{N}^{A+1}-E\right) \\
& \left.+\sum_{M}\left|\left\langle\Psi_{M}^{A-1}\right| a_{a}\right| \Psi\right\rangle\left.\right|^{2}\left(E-E_{M}^{A-1}\right)
\end{aligned}
$$

= centroid of one-nucleon separation energies
= "most unambiguous definition of single-particle energies"
\Rightarrow occupation \wedge^{n} numbers

(Baranger (1970), Duguet \& Hagen (2012)...)

MPMH method: Formalism

- "canonical basis"
\Rightarrow single-particle energies

$$
\begin{aligned}
\varepsilon_{a}=\sum_{N} & \left.\left|\left\langle\Psi_{N}^{A+1}\right| a_{a}^{\dagger}\right| \Psi\right\rangle\left.\right|^{2}\left(E_{N}^{A+1}-E\right) \\
& \left.+\sum_{M}\left|\left\langle\Psi_{M}^{A-1}\right| a_{a}\right| \Psi\right\rangle\left.\right|^{2}\left(E-E_{M}^{A-1}\right)
\end{aligned}
$$

= centroid of one-nucleon separation energies
= "most unambiguous definition of single-particle energies"
(Baranger (1970), Duguet \& Hagen (2012)...)

MPMH method: Formalism

- "canonical basis"
- single-particle energies

$\left.\varepsilon_{a}=\sum_{N}\left|\left\langle\Psi_{N}^{A+1}\right| a_{a}^{\dagger}\right| \Psi\right\rangle\left.\right|^{2}\left(E_{N}^{A+1}-E\right)$

$$
\left.+\sum_{M}\left|\left\langle\Psi_{M}^{A-1}\right| a_{a}\right| \Psi\right\rangle\left.\right|^{2}\left(E-E_{M}^{A-1}\right)
$$

= centroid of one-nucleon separation energies
= "most unambiguous definition of single-particle energies"
(Baranger (1970), Duguet \& Hagen (2012)...)

$$
\begin{aligned}
& G_{i j}(\sigma)=\frac{1}{2} \sum_{k l m}\left(\widetilde{V}_{k m j l} \sigma_{k i m l}-\widetilde{V}_{k i m l} \sigma_{j l k m}\right) \\
& \sigma=\text { two-body correlation matrix } \\
& \sigma_{k i m l}=\langle\Psi| a_{i}^{\dagger} a_{m}^{\dagger} a_{l} a_{k}|\Psi\rangle \\
& \quad-\left(\rho_{k i} \rho_{l m}-\rho_{k m} \rho_{l i}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \text { correlated } \\
& \text { one-body density } \\
& \rho_{k i}=\langle\Psi| a_{i}^{\dagger} a_{k}|\Psi\rangle \\
& \Rightarrow \text { "natural" basis } \\
& \Rightarrow \begin{array}{l}
\text { occupation } \\
\text { numbers }
\end{array}
\end{aligned}
$$

Note: Because of the source term \Rightarrow no common eigenbasis for $h(\rho)$ and $\rho \Rightarrow$ which basis do we choose ?

MPMH method: Formalism

= centroid of one-nucleon separation energies
= "most unambiguous definition of single-particle energies"
(Baranger (1970), Duguet \& Hagen (2012)...)

$$
G_{i j}(\sigma)=\frac{1}{2} \sum_{k l m}\left(\widetilde{V}_{k m j l} \sigma_{k i m l}-\tilde{V}_{k i m l} \sigma_{j l k m}\right)
$$

correlated one-body density

$$
\rho_{k i}=\langle\Psi| a_{i}^{\dagger} a_{k}|\Psi\rangle
$$

$$
\Rightarrow \text { "natural" basis }
$$

\Rightarrow occupation $\wedge^{n_{k}} \quad \square$ single-particle orbitals numbers

Note: Because of the source term \Rightarrow no common eigenbasis for $h(\rho)$ and $\rho \Rightarrow$ which basis do we choose ? the mean field $h(\rho)$ is related to the energy while the density ρ contains information on the wave function \Rightarrow single-particle states $=$ natural orbitals= eigenfunctions of the density that satisfies the general mean field equation

MPMH method: Formalism

Role of the orbital equation:

I) Consistency between correlations and single-particle picture

$\Gamma_{i j}(\rho)=\sum_{k l}\langle i k| \tilde{V}|j l\rangle \rho_{k l}=\Sigma_{i j}^{(0)}$

- $G(\sigma)=\lim _{t_{2} \rightarrow t_{1}^{+}} \int d t\left[\mathcal{G}^{(1)}\left(t-t_{2}\right), \Sigma^{(d y n)}\left(t_{1}-t\right)\right]$

\square
full consistency between mean-field and correlations, which is important to have a fully variational theory (see e.g. "Quantum Theory of Finite systems" by Blaizot and Ripka)

MPMH method: Formalism

Role of the orbital equation:
II) Partial compensation of the truncation P/Q

- Ex: truncation core/valence space
\rightarrow Without orbital equation:

Empty

states

MPMH method: Formalism

Role of the orbital equation:

II) Partial compensation of the truncation P/Q

- Ex: truncation core/valence space
\rightarrow Without orbital equation:

$$
\rho_{i j}\left\{\begin{array}{l}
=\delta_{i \mathrm{ij}} \text { if } \mathrm{i}, \mathrm{j} \in \text { core } \\
\in[0,1] \text { if } \mathrm{i}, \mathrm{j} \in \text { valence } \\
=0 \text { otherwise }
\end{array}\right.
$$

\rightarrow With orbital equation:

$$
\begin{aligned}
& {[h[\rho], \rho]=G[\sigma] \Rightarrow \rho_{i j}=\frac{G_{i j}[\sigma]}{\varepsilon_{i}-\varepsilon_{j}} } \\
& G_{\hat{i j}}(\sigma)= \frac{1}{2} \sum_{k l m} \widetilde{V}_{k m j \gamma} \sigma_{k i, m l}-\frac{1}{2} \sum_{k l m} \widetilde{V}_{k i m l} \sigma_{j l, k m} \\
& \in \text { whole basis } \in \text { valence }
\end{aligned}
$$

Empty
 states

valence
core

Single-particle energies

\Rightarrow coupling between valence space and rest of the basis.

MPMH method: Formalism

Role of the orbital equation:

II) Partial compensation of the truncation P/Q

- Ex: truncation in term of the excitation order NpNh

Orbital transformation: $\quad b_{i}^{\dagger}=e^{i \hat{T}} a_{i}^{\dagger} e^{-i \hat{T}}$

$$
\begin{aligned}
\Rightarrow\left|\phi^{(f)}\right\rangle & =e^{i T}\left|\phi^{(i)}\right\rangle \\
& =\left|\phi^{(i)}\right\rangle+i \sum_{p h} T_{p h} a_{p}^{\dagger} a_{h}\left|\phi^{(i)}\right\rangle-\frac{1}{2} \sum_{p h p^{\prime} h^{\prime}} T_{p h} T_{p^{\prime} h^{\prime}} a_{p}^{\dagger} a_{h} a_{p^{\prime}}^{\dagger} a_{h^{\prime}}\left|\phi^{(i)}\right\rangle+\ldots \\
\overline{\overline{-a-0}} & \frac{\nabla}{\overline{-0-0}}
\end{aligned}
$$

\Rightarrow final reference state $=$ superposition of mpmh excitations on the initial reference state $=$ richer
\Rightarrow should have a higher weight in the correlated wave function than the initial one

Outline

\uparrow Formalism of the MPMH method
\rightarrow role and interpretation of the orbital optimization
\downarrow Applications with the Gogny D1S interaction

* Numerical algorithm
\rightarrow doubly iterative convergence process
- Description of even-even sd-shell nuclei
\rightarrow Effect of the orbital optimization on ground and excited states properties: Charge radii, excitation energies, transition probabilities, inelastic electron and proton scattering...
* Towards an "ab-initio" theory
\rightarrow implementation of a chiral interaction: preliminaries

Application to sd-shell nuclei with the Gogny force

* Gogny D1S interaction (Dechargé, Gogny PRC 21, 1568 (1980)):

$$
\begin{aligned}
& V[\rho]= \sum_{j=1,2}\left(W_{j}+B_{j} P_{\sigma}-H_{j} P_{\tau}-M_{j} P_{\sigma} P_{\tau}\right) e^{-\frac{\left(\vec{r}_{1}-\vec{r}_{2}\right)^{2}}{\mu_{j}^{2}}} \\
&+t_{3}\left(1+x_{0} P_{\sigma}\right) \delta\left(\vec{r}_{1}-\vec{r}_{2}\right) \rho^{\alpha}\left(\frac{\vec{r}_{1}+\vec{r}_{2}}{2}\right)
\end{aligned}
$$

Density- $\quad+i W_{L S} \vec{\nabla}_{12} \delta\left(\vec{r}_{1}-\overrightarrow{r_{2}}\right) \times \overleftarrow{\nabla}_{12}\left(\sigma_{1}+\sigma_{2}\right)$
dependent term
(zero-range, $\alpha=1 / 3$)

$$
+\left(1+2 \tau_{1 z}\right)\left(1+2 \tau_{2 z}\right) \frac{e^{2}}{\left|\overrightarrow{r_{1}}-\overrightarrow{r_{2}}\right|}
$$

Coulomb

Central part: two gaussians (two ranges $\mu=0.7 \mathrm{fm}$ and $\mu=1.2 \mathrm{fm})$
ρ-dependency \leftrightarrow resummation of short range correlations, many-body effects ..

$$
\rightarrow \mathcal{E}[\Psi]=\langle\Psi| \hat{H}[\rho]|\Psi\rangle
$$

Application to sd-shell nuclei with the Gogny force

\Rightarrow modified coupled equations to solve:
1)

$$
\delta \mathcal{E}[\Psi]_{/ A_{\alpha}^{*}}=0 \Leftrightarrow \sum_{\beta} A_{\beta}\left\langle\phi_{\alpha}\right| \hat{H}[\rho]+\hat{\mathcal{R}}[\rho, \sigma]\left|\phi_{\beta}\right\rangle=\lambda A_{\alpha}
$$

- where $\hat{\mathcal{R}}[\rho, \sigma]=\int d^{3} r\langle\Psi| \frac{\delta V[\rho]}{\delta \rho(\vec{r})}|\Psi\rangle \hat{\rho}(\vec{r})$
rearrangement terms
- ρ and σ-dependency \Rightarrow non-linear equation

2) $\delta \mathcal{E}[\Psi]_{/ \varphi_{i}^{*}}=0 \Leftrightarrow[\hat{h}(\rho, \sigma), \hat{\rho}]=\hat{G}(\sigma)$

- where $h_{i j}(\rho, \sigma)=K_{i j}+\sum_{k l}\langle i k| \widetilde{V}|j l\rangle \rho_{l k}+\frac{1}{4} \sum_{k l m n}\langle k l| \frac{\partial \tilde{V}}{\partial \mid \rho_{j i}}|m n\rangle\langle\Psi| a_{k}^{\dagger} a_{l}^{\dagger} a_{n} a_{m}|\Psi\rangle$
\Rightarrow explicit dependence on σ

Outline

\downarrow Formalism of the MPMH method
\rightarrow role and interpretation of the orbital optimization
\downarrow Applications with the Gogny D1S interaction

- Numerical algorithm
\rightarrow doubly iterative convergence process
- Description of even-even sd-shell nuclei
\rightarrow Effect of the orbital optimization on ground and excited states properties: Charge radii, excitation energies, transition probabilities, inelastic electron and proton scattering...
- Towards an "ab-initio" theory
\rightarrow implementation of a chiral interaction: preliminaries

MPMH method: Numerical algorithm

The full solution requires a doubly-iterative algorithm:

C.R., N. Pillet, D. Peña Arteaga \& J.-F. Berger, PRC 93, 024302 (2016).

MPMH method: Numerical algorithm

The full solution requires a doubly-iterative algorithm:
large-scale shell-model techniques developped by

Solve 1st equation

```
starting point:
Hartree-Fock
    orbitals
```

 Solve \(2^{\text {nd }}\) equation
 \([\hat{h}(\rho, \sigma), \hat{\rho}]=\hat{G}(\sigma)\)
 \(\Rightarrow\) single-particle orbitals \(\left\{\varphi_{i}\right\}\)
 $$
\begin{aligned}
& \text { Calculation of the densities } \\
& \quad \text { and source term } \\
& \text { - } \rho_{k i}=\langle\Psi| a_{i}^{\dagger} a_{k}|\Psi\rangle \\
& \text { - } \sigma_{k i m l}=\langle\Psi| a_{i}^{\dagger} a_{m}^{\dagger} a_{l} a_{k}|\Psi\rangle \\
& \quad-\left(\rho_{k i} \rho_{l m}-\rho_{k m} \rho_{l i}\right) \\
& \Rightarrow G(\sigma)
\end{aligned}
$$

C.R., N. Pillet, D. Peña Arteaga \& J.-F. Berger, PRC 93, 024302 (2016).

MPMH method: Numerical algorithm

The full solution requires a doubly-iterative algorithm:
large-scale shell-model techniques developped by E. Caurier (m-scheme)

> starting point: Hartree-Fock orbitals

Solve 1st equation

$$
\begin{gathered}
\sum_{\beta} A_{\beta}\left\langle\phi_{\alpha}\right| \hat{H}[\rho]+\hat{\mathcal{R}}[\rho, \sigma]\left|\phi_{\beta}\right\rangle=\lambda A_{\alpha} \\
\Rightarrow \text { Mixing coefficients }\left\{A_{\alpha}\right\}
\end{gathered}
$$

Solve 2nd equation

$$
[\hat{h}(\rho, \sigma), \hat{\rho}]=\hat{G}(\sigma)
$$

\Rightarrow single-particle orbitals $\left\{\varphi_{i}\right\}$

$$
\begin{aligned}
& \text { Calculation of the densities } \\
& \text { and source term } \\
& \text { - } \rho_{k i}=\langle\Psi| a_{i}^{\dagger} a_{k}|\Psi\rangle \\
& \text { - } \sigma_{k i m l}=\langle\Psi| a_{i}^{\dagger} a_{m}^{\dagger} a_{l} a_{k}|\Psi\rangle \\
& \quad-\left(\rho_{k i} \rho_{l m}-\rho_{k m} \rho_{l i}\right) \\
& \Rightarrow G(\sigma)
\end{aligned}
$$

until convergence

MPMH method: Numerical algorithm

The full solution requires a doubly-iterative algorithm:

Solve the $2^{\text {nd }}$ equation:

$$
[\hat{h}(\rho, \sigma), \hat{\rho}]=\hat{G}(\sigma) \Leftrightarrow[\hat{h}(\rho, \sigma)-\hat{Q}(\rho, \sigma), \hat{\rho}]=0
$$

In the natural basis $\hat{\rho}|\mu\rangle=n_{\mu}|\mu\rangle$

$$
\left\{\begin{array}{l}
Q_{\mu \nu}(\rho, \sigma)=\frac{G_{\mu \nu}(\sigma)}{n_{\mu}-n_{\nu}}, \text { if } n_{\mu} \neq n_{\nu} \\
Q_{\mu \nu}(\rho, \sigma)=0, \text { otherwise }
\end{array}\right.
$$

\Rightarrow self-consistent single-particle states $\left\{\varphi_{i}\right\}=$ eigenfunctions of h-Q and ρ
\Rightarrow non-linear problem \Rightarrow iterative solution:

| orbitals $\left\{\varphi^{(0)}\right.$
 density $\rho^{(0)}$
 (from 1st eq.) |
| :--- |$\rightarrow h\left(\rho^{(0)}, \sigma\right)-Q\left(\rho^{(0)}, \sigma\right) \longrightarrow$| orbitals $\left\{\varphi^{(1)}\right\}$ |
| :--- |
| density $\rho^{(1)}$ |$\rightarrow h\left(\rho^{(1)}, \sigma\right)-Q\left(\rho^{(1)}, \sigma\right) \longrightarrow \ldots$

MPMH method: Numerical algorithm

The full solution requires a doubly-iterative algorithm:

C.R., N. Pillet, D. Peña Arteaga \& J.-F. Berger, PRC 93, 024302 (2016).

Outline

\downarrow Formalism of the MPMH method
\rightarrow role and interpretation of the orbital optimization
\downarrow Applications with the Gogny D1S interaction

+ Numerical algorithm
\rightarrow doubly iterative convergence process
- Description of even-even sd-shell nuclei
\rightarrow Effect of the orbital optimization on ground and excited states properties: Charge radii, excitation energies, transition probabilities, inelastic electron and proton scattering...
- Towards an "ab-initio" theory
\rightarrow implementation of a chiral interaction: preliminaries

Application to sd-shell nuclei with the Gogny force

Framework

- Even-even nuclei with $10 \leqslant(Z, N) \leqslant 18$
- truncation scheme: core of ${ }^{16} \mathbf{O}+$ valence space
- 9 major oscillator shells
Ex: ${ }^{28} S i \rightarrow 12 p-12 h$

[$1 \mathrm{f}_{7 / 2}$	$\ldots 1 \mathrm{f}_{7 / 2}$
$--e^{2 d_{3 / 2}}$	$\frac{-1 d_{3 / 2}}{-0-0-0-1 d_{5 / 2}}$
$\underbrace{1 p_{1 / 2}}_{\text {Protons }} 1 \mathrm{p}_{3 / 2}$	$\underset{\text { Neutrons }}{1 \mathrm{~s}_{1 / 2}}$

nndc.bnl.gov

> Calculation of ground- and excited-state properties:

- Binding and separation energies, charge radii
- Excitation energies
- Magnetic dipole moments and quadrupole spectroscopic moments
- Transition probabilities $B(E 2), B(M 1) \ldots$
= How are these observables impacted by the optimization of orbitals?

Application to sd-shell nuclei with the Gogny force

Symmetry-preserving scheme
\Rightarrow The information about deformation is contained in the two-body correlation matrices σ :

Application to sd-shell nuclei with the Gogny force

* Source term of the orbital equation: $\begin{aligned} & G(j j(\sigma)=\frac{1}{2} \sum_{k l m} \tilde{V}_{k m j l} \sigma_{k j i n l}-\frac{1}{2} \sum_{k l m} \tilde{V}_{k i m l} \sigma_{j l k m} \\ & \in \text { whole basis } \in \text { valence space }\end{aligned}$
\Rightarrow Introduces couplings between the valence space and the rest of the single-particle basis.

At iteration \#1:

Application to sd-shell nuclei with the Gogny force

* One-body density matrix (neutrons): \quad Representation of $\Delta \rho=\left|\rho-\rho_{H F}^{(0)}\right|$ in the HF basis:

Equation 1 - iteration 1

Equations $1 \& 2$ - iteration 1
After convergence (iteration 22)

Application to sd-shell nuclei with the Gogny force

* One-body density matrix (neutrons): \quad Representation of $\Delta \rho=\left|\rho-\rho_{H F}^{(0)}\right|$ in the HF basis:

Equation 1 - iteration 1

Equations $1 \& 2$ - iteration 1

After convergence (iteration 22)

Application to sd-shell nuclei

* Convergence of the one-body density matrix (neutrons):

Iteration 1
 COMPARISON OF THE NEUTRON DENSITY FROM EQ. 1 AND 2

Application to sd-shell nuclei

* Convergence of the one-body density matrix (neutrons):

Iteration 2
 COMPARISON OF THE NEUTRON DENSITY FROM EQ. 1 AND 2

Application to sd-shell nuclei

* Convergence of the one-body density matrix (neutrons):

Iteration 3
 COMPARISON OF THE NEUTRON DENSITY FROM EQ. 1 AND 2

Application to sd-shell nuclei

* Convergence of the one-body density matrix (neutrons):

Iteration 4
 COMPARISON OF THE NEUTRON DENSITY FROM EQ. 1 AND 2

Application to sd-shell nuclei

* Convergence of the one-body density matrix (neutrons):

Iteration 5
 COMPARISON OF THE NEUTRON DENSITY FROM EQ. 1 AND 2

Application to sd-shell nuclei

* Convergence of the one-body density matrix (neutrons):

Iteration 6
 COMPARISON OF THE NEUTRON DENSITY FROM EQ. 1 AND 2

Application to sd-shell nuclei

* Convergence of the one-body density matrix (neutrons):

Application to sd-shell nuclei

* Convergence of the one-body density matrix (neutrons):

Iteration 8
 COMPARISON OF THE NEUTRON DENSITY FROM EQ. 1 AND 2

Application to sd-shell nuclei

* Convergence of the one-body density matrix (neutrons):

20 Ne
Iteration 9 COMPARISON OF THE NEUTRON DENSITY FROM EQ. 1 AND 2

Application to sd-shell nuclei

* Convergence of the one-body density matrix (neutrons):

Application to sd-shell nuclei

* Convergence of the one-body density matrix (neutrons):

Application to sd-shell nuclei

* Convergence of the one-body density matrix (neutrons):

Iteration 12
COMPARISON OF THE NEUTRON DENSITY FROM EQ. 1 AND 2

Application to sd-shell nuclei

* Convergence of the one-body density matrix (neutrons):

Application to sd-shell nuclei

* Convergence of the one-body density matrix (neutrons):

Iteration 14

COMPARISON OF THE NEUTRON DENSITY FROM EQ. 1 AND 2

Application to sd-shell nuclei

* Convergence of the one-body density matrix (neutrons):

Iteration 15
 COMPARISON OF THE NEUTRON DENSITY FROM EQ. 1 AND 2

Application to sd-shell nuclei

* Convergence of the one-body density matrix (neutrons):

Application to sd-shell nuclei

* Convergence of the one-body density matrix (neutrons):

Iteration 17

COMPARISON OF THE NEUTRON DENSITY FROM EQ. 1 AND 2

Application to sd-shell nuclei

* Convergence of the one-body density matrix (neutrons):

Application to sd-shell nuclei

* Convergence of the one-body density matrix (neutrons):

Application to sd-shell nuclei

* Convergence of the one-body density matrix (neutrons):

Application to sd-shell nuclei

* Convergence of the one-body density matrix (neutrons):

Application to sd-shell nuclei

* Convergence of the one-body density matrix (neutrons):

Application to sd-shell nuclei with the Gogny force

* Convergence process:

Global vs local iterations

\# global iteration	\# of iterations of the orbital equation	
	20 Ne	28 Ne
1	19	15
2	20	15
3	18	15
4	17	12
5	16	11
6	13	9
7	12	8
8	11	7
9	9	6
10	8	5
11	7	4
12	6	4
13	6	4
14	5	3
15	5	3
16	4	2
17	4	2
18	3	1
19	2	1
20	2	1
21	1	
22	1	

Application to sd-shell nuclei with the Gogny force

* Effect on the many-body wave function:

Orbital transformation: $\quad b_{i}^{\dagger}=e^{i \hat{T}} a_{i}^{\dagger} e^{-i \hat{T}}$

$\Longrightarrow\left|\Psi^{(f)}\right\rangle=\sum_{\alpha \in \mathcal{P}^{(f)}} A_{\alpha}^{(f)}\left|\phi_{\alpha}^{(f)}\right\rangle$

$$
=\sum_{\beta \in \mathcal{P}^{(i)}} A_{\beta}^{(i)}\left|\phi_{\beta}^{(i)}\right\rangle+\sum_{\beta \in \mathcal{Q}^{(i)}} A_{\beta}^{(i)}\left|\phi_{\beta}^{(i)}\right\rangle \text { How big? }
$$

	1st equation only 2		1st $2^{\text {nd }}$ equations Starting from HF orbitals	
nucleus	Weight of P()	Weight of Q0	Weight of P()	Weight of Q0)
20 Ne	100%	0%	98%	2%
24 Mg	100%	0%	97%	3%
$28 S \mathrm{Si}$	100%	0%	95%	4%
32 S	100%	0%	93%	7%
28 Ne	100%	0%	85%	15%

Application to sd-shell nuclei with the Gogny force

* Effect on the many-body wave function:

Orbital transformation: $\quad b_{i}^{\dagger}=e^{i \hat{T}} a_{i}^{\dagger} e^{-i \hat{T}}$

$\begin{aligned} \rightleftarrows\left|\Psi^{(f)}\right\rangle & =\sum_{\alpha \in \mathcal{P}^{(f)}} A_{\alpha}^{(f)}\left|\phi_{\alpha}^{(f)}\right\rangle \\ & =\sum_{\beta \in \mathcal{P}^{(i)}} A_{\beta}^{(i)}\left|\phi_{\beta}^{(i)}\right\rangle+\sum_{\beta \in \mathcal{Q}^{(i)}} A_{\beta}^{(i)}\left|\phi_{\beta}^{(i)}\right\rangle \text { How big? }\end{aligned}$

	1 st equation only		$1^{\text {st }}+2^{\text {nd }}$ equations Starting from HF orbitals		$1^{\text {st }}+2^{\text {nd }}$ equations Starting from HO orbitals	
nucleus	Weight of P()	Weight of Q0	Weight of P()	Weight of Q ${ }^{(0)}$	Weight of P()	Weight of Q ${ }^{(0)}$
${ }^{20} \mathrm{Ne}$	100\%	0\%	98\%	2\%	66\%	34\%
${ }^{24} \mathrm{Mg}$	100\%	0\%	97\%	3\%	61\%	39\%
28Si	100\%	0\%	95\%	4\%	55\%	45\%
32 S	100\%	0\%	93\%	7\%	61\%	39\%
${ }^{28} \mathrm{Ne}$	100\%	0\%	85\%	15\%	78\%	22\%

The weight of the initial Q space increases when starting further from the final solution

Application to sd-shell nuclei with the Gogny force

* Effect on the many-body wave function: Orbital transformation: $\quad b_{i}^{\dagger}=e^{i \hat{T}} a_{i}^{\dagger} e^{-i \hat{T}}$

Pure Hartree-Fock component in correlated ground state		
nucleus	$1^{\text {st }}$ equation only	$1^{\text {st }}+2^{\text {nd }}$ equations
26 Ne	71%	62%
28 Si	60%	24%
32 S	58%	39%
34 S	39%	17%

- Pure HF component decreases: self-consistent procedure appears to fragment the wave function

New reference-state componentd state
$1^{\text {st }}+2^{\text {nd }}$ equations

69%
26%
47%
18%

Reference state built on optimized orbitals

- "better" than HF state

Application to sd-shell nuclei with the Gogny force

* Effect on the many-body wave function: Orbital transformation: $\quad b_{i}^{\dagger}=e^{i \hat{T}} a_{i}^{\dagger} e^{-i \hat{T}}$

Pure Hartree-Fock component in correlated ground state		
nucleus	1st $^{\text {st }}$ equation only	1st $^{\text {st }}$ 2nd equations
${ }^{26} \mathrm{Ne}$	71%	62%
28 Si	60%	24%
32 S	58%	39%
34 S	39%	17%

New reference-state componentd state $1^{\text {st }}+2^{\text {nd }}$ equations

69%
26%
47%
18%

Reference state built on optimized orbitals

- "better" than HF state
* Correlation energies: $\quad E_{c o r r}=E(\Psi)-E\left(\Phi_{H F}^{(0)}\right)$

Correlation energy Ecorr (MeV)			
nucleus	$1{ }^{\text {st }}$ equation only	$1{ }^{\text {st }}+2^{\text {nd }}$ equations	$\Delta \mathrm{E}_{\text {corr }}$
${ }^{28} \mathrm{Ne}$	1.17	1.59	0.42
${ }^{26} \mathrm{Ne}$	7.32	8.46	1.14
${ }^{24} \mathrm{Ne}$	5.75	6.98	1.23
${ }^{22} \mathrm{Ne}$	10.48	12.12	1.64
${ }^{20} \mathrm{Ne}$	10.93	13.30	2.37

Correlation energy $\mathrm{E}_{\text {corr }}(\mathrm{MeV})$			
nucleus	1st $^{\text {equation only }}$	$1^{\text {st }}+2^{\text {nd }}$ equations	$\boldsymbol{\Delta} \boldsymbol{E}_{\text {corr }}$
28 S	8.05	10.05	$\mathbf{2 . 0 0}$
30 S	0.59	2.06	$\mathbf{1 . 4 7}$
32 S	2.82	5.22	$\mathbf{2 . 4 0}$
34 S	4.27	5.62	$\mathbf{1 . 3 5}$

Application to sd-shell nuclei with the Gogny force

†Charge radii:

$\left\langle\Delta r_{c}\right\rangle=0.021 \mathrm{fm} \rightarrow 0.018 \mathrm{fm}$

- Standard deviation:
$\sigma\left(\Delta r_{c}\right)=0.017 \mathrm{fm} \rightarrow 0.018 \mathrm{fm}$

A
Hartree-Fock orbitals

self-consistent orbitals

Application to sd-shell nuclei with the Gogny force

Charge radii:

$\left\langle\Delta r_{c}\right\rangle=0.021 \mathrm{fm} \rightarrow 0.018 \mathrm{fm}$

- Standard deviation:
$\sigma\left(\Delta r_{c}\right)=0.017 \mathrm{fm} \rightarrow 0.018 \mathrm{fm}$

A
Hartree-Fock orbitals

self-consistent orbitals

Application to sd-shell nuclei with the Gogny force

Excitation energies:
${ }^{30} \mathrm{~S}$ and ${ }^{30} \mathrm{Si}$:
$\mathrm{T}=0$ component of the Gogny force
(lack of tensor term, Pillet et al. PRC 85, 044315 (2012))

$$
\text { All }\left\{\begin{array}{l}
\left\langle\Delta E^{*}\right\rangle=373 \mathrm{keV} \\
\sigma\left(\Delta E^{*}\right)=517 \mathrm{keV}
\end{array}\right.
$$

${ }^{30} \mathrm{~S} \&{ }^{30} \mathrm{Si} \quad \int\left\langle\Delta E^{*}\right\rangle=226 \mathrm{keV}$
excluded $\quad \sigma\left(\Delta E^{*}\right)=214 \mathrm{keV}$

$$
\text { All }\left\{\begin{array}{l}
\left\langle\Delta E^{*}\right\rangle=235 \mathrm{keV} \\
\sigma\left(\Delta E^{*}\right)=323 \mathrm{keV}
\end{array}\right.
$$

$$
{ }^{30} \mathrm{~S} \&{ }^{30} \mathrm{Si} \quad \int\left\langle\Delta E^{*}\right\rangle=142 \mathrm{keV}
$$

$$
\text { excluded }\left\{\begin{array}{l}
\sigma\left(\Delta E^{*}\right)=122 \mathrm{keV}
\end{array}\right.
$$

Application to sd-shell nuclei with the Gogny force

Transition probabilities B(E2)

- Trends overall well reproduced
- But clear lack of collectivity due to the restricted valence space
- Positive but small effect from the optimization of orbitals (factor 1.7 in ${ }^{30} \mathrm{Si}, 1.3$ in ${ }^{28} \mathrm{Si}$ \& ${ }^{32} \mathrm{~S}$)

No effective charges

Application to sd-shell nuclei with the Gogny force

\Rightarrow Electron inelastic scattering on discrete states

With optimized states:

- Small increase of the magnitude
- Improvement of the trend at high q
\Rightarrow Proton inelastic scattering on discrete states

In the framework of the DWBA, with optical and transition potentials calculated using transition densities from MPMH

In collaboration with M. Dupuis, CEA,DAM,DIF

Conclusion from the study with Gogny

* First implementation of the fully self-consistent multiparticle-multihole configuration mixing method
\downarrow Construction of a general mean-field and orbitals consistent with the correlation of the system, complete convergence reached.
\downarrow Effect of orbital optimization always positive.
With single valence shell: large impact on the ground-state wave function, but small effect on the transition probabilities...
\Rightarrow solve orbital equation for each state
\Rightarrow try truncation schemes involving larger single-particle spaces (excitation order, excitation energy, symmetry-constrained combinations etc.)

Conclusion from the study with Gogny

* First implementation of the fully self-consistent multiparticle-multihole configuration mixing method
\downarrow Construction of a general mean-field and orbitals consistent with the correlation of the system, complete convergence reached.
\downarrow Effect of orbital optimization always positive.
With single valence shell: large impact on the ground-state wave function, but small effect on the transition probabilities...
\Rightarrow solve orbital equation for each state
\Rightarrow try truncation schemes involving larger single-particle spaces (excitation order, excitation energy, symmetry-constrained combinations etc.)

But:

- The D1S Gogny interaction is in principle not adapted (double counting of correlations...), and
\uparrow can lead to divergent behaviors when enlarging the valence space due to the zero-range spin-orbit and ρ-dependent terms. See e.g. study of ${ }^{12} \mathrm{C}$:

1 $0 \hbar \omega$ space
collectivity \mathbb{K},excitation energies
overbinding $\sim 6 \mathrm{MeV}$

$N \hbar \omega$ space

Conclusion from the study with Gogny

* First implementation of the fully self-consistent multiparticle-multihole configuration mixing method
\downarrow Construction of a general mean-field and orbitals consistent with the correlation of the system, complete convergence reached.
\downarrow Effect of orbital optimization always positive.
With single valence shell: large impact on the ground-state wave function, but small effect on the transition probabilities...
\Rightarrow solve 0
\Rightarrow try trur (excitat
* But:
- The D1S Goo adapted (dol
\uparrow can lead to d the valence sp and ρ-dependent terms. See e.g. study of ${ }^{12} \mathrm{C}$:

Oћ ω space
collectivity \mathbf{X}, excitation energies , overbinding $\sim 6 \mathrm{MeV}$
$N \hbar \omega$ space

Need a better suited interaction

- fully finite-range, better constrained Gogny interaction with tensor (see Nathalie Pillet's talk)
or
- interaction derived from chiral EFT (here)
collectivity $\sqrt{ }$, excitation energies $\$, overbinding $\sim 60 \mathrm{MeV}$!

Outline

\downarrow Formalism of the MPMH method
\rightarrow role and interpretation of the orbital optimization

- Applications with the Gogny D1S interaction
* Numerical algorithm
\rightarrow doubly iterative convergence process
- Description of even-even sd-shell nuclei
\rightarrow Effect of the orbital optimization on ground and excited states properties: Charge radii, excitation energies, transition probabilities, inelastic electron and proton scattering...
\checkmark Towards an "ab-initio" theory
\rightarrow implementation of a chiral interaction: preliminaries

Application of the MPMH method with a chiral interaction

- In MPMH, have to do the CI diagonalization and calculation of the mean field at each iteration
\rightarrow use matrix elements (e.g. in HO basis) as only
input would be very inefficient
\rightarrow need potential in coordinate space and ideally Gaussians

Application of the MPMH method with a chiral interaction

- In MPMH, have to do the CI diagonalization and calculation of the mean field at each iteration
\rightarrow use matrix elements (e.g. in HO basis) as only input would be very inefficient
\rightarrow need potential in coordinate space and ideally Gaussians
- Ingo Tews and collaborators have developed local chiral interactions with Gaussian regulators that can be written in coordinate space

See e.g. A. Gezerlis, I. Tews, E. Epelbaum et al., Phys. Rev. C 90, 054323 (2014)

At each order:
contact terms
$+$
long-range pion-exchange terms

Chiral expansion:

Application of the MPMH method with a chiral interaction

- In MPMH, have to do the CI diagonalization and calculation of the mean field at each iteration
\rightarrow use matrix elements (e.g. in HO basis) as only input would be very inefficient
\rightarrow need potential in coordinate space and ideally Gaussians
- Ingo Tews and collaborators have developed
local chiral interactions
with Gaussian regulators that can be written in coordinate space

See e.g. A. Gezerlis, I. Tews, E. Epelbaum et al., Phys. Rev. C 90, 054323 (2014)

At each order:
contact terms
$+$
long-range pion-exchange terms

Chiral expansion:

Application of the MPMH method with a chiral interaction

* Chiral interaction at leading order with Gaussian regulators:
cut-off $R_{0}=1 \mathrm{fm}$
- contact term:

$$
V_{\text {contact }}^{L O}(r)=\left(C_{S}+C_{T} \boldsymbol{\sigma}_{1} \cdot \boldsymbol{\sigma}_{2}\right) \times \underbrace{\left.\alpha e^{-\left(r / R_{0}\right)^{2}}\right)}_{\text {regulator }}
$$

- long-range one-pion exchange:

$$
W_{S}^{(0)}(r)=\frac{M_{\pi}^{3}}{12 \pi}\left(\frac{g_{A}}{2 F_{\pi}}\right)^{2} \frac{e^{-M_{\pi} r}}{M_{\pi} r}
$$

tensor isospin term:

$$
W_{T}^{(0)}(r)=\frac{M_{\pi}^{3}}{12 \pi}\left(\frac{g_{A}}{2 F_{\pi}}\right)^{2} \frac{e^{-M_{\pi} r}}{M_{\pi} r}\left(1+\frac{3}{M_{\pi} r}+\frac{3}{\left(M_{\pi} r\right)^{2}}\right)
$$

\rightarrow Yukawa or Yukawa-like x Gaussians

Application of the MPMH method with a chiral interaction

* Strategy: fit the regularized Yukawa or Yukawa-like functions to a sum of Gaussians

$$
\begin{gathered}
W_{S, r e g}^{(0)}(r) \propto \frac{e^{-M_{\pi} r}}{r} \times\left(1-e^{-\left(r / R_{0}\right)^{2}}\right)^{2} \simeq \sum_{i} a_{i}^{S} e^{-\left(r / b_{i}^{S}\right)^{2}} \\
W_{T, \text { reg }}^{(0)}(r) \propto \frac{e^{-M_{\pi} r}}{r}\left(1+\frac{3}{M_{\pi} r}+\frac{3}{\left(M_{\pi} r\right)^{2}}\right) \times\left(1-e^{-\left(r / R_{0}\right)^{2}}\right)^{2} \simeq \sum_{i} a_{i}^{T} e^{-\left(r / b_{i}^{T}\right)^{2}}
\end{gathered}
$$

to use the machinery already developed in the original code for the Gogny interaction

Application of the MPMH method with a chiral interaction

\rightarrow Central term:

Courtesy of I. Tews

Very preliminary!

$$
D=\frac{M_{\pi}^{3}}{12 \pi}\left(\frac{g_{A}}{2 F_{\pi}}\right)^{2}
$$

Application of the MPMH method with a chiral interaction

Very preliminary!
$D=\frac{M_{\pi}^{3}}{12 \pi}\left(\frac{g_{A}}{2 F_{\pi}}\right)^{2}$
\rightarrow Tensor term:

Courtesy of I. Tews

Application of the MPMH method with a chiral interaction

\rightarrow Test for the central term:
Use the relation $\frac{e^{-M_{\pi} r}}{r}=\frac{2}{\sqrt{\pi}} \int_{0}^{\infty} d X e^{-r^{2} X^{2}-M_{\pi}^{2} / 4 X^{2}} \quad$ (exact)
to do the exact integration of the central term and check the accuracy of the Gaussian fit

* Average difference:

$$
\begin{aligned}
& \langle\Delta \tilde{V}\rangle=\frac{1}{N} \sum_{\{i j k l\}=1}^{N}\left|\tilde{V}_{i j k l}^{\text {exact }}-\tilde{V}_{i j k l}^{f i t}\right| \\
& =2.10 \times 10^{-5} \mathrm{MeV} \\
& \text { * standard deviation: } \\
& s=\sqrt{\left\langle\Delta \widetilde{V}^{2}\right\rangle-\langle\Delta \widetilde{V}\rangle^{2}} \\
& =1.20 \times 10^{-4} \mathrm{MeV}
\end{aligned}
$$

\rightarrow impact on observables to be investigated

Application of the MPMH method with a chiral interaction

To do next:

\star Finish the implementation of the tensor term

* Implement the next orders: NLO, N2LO
\rightarrow finite range spin-orbit
\rightarrow three-body interaction
\star Check convergence of the results with respect to the cut-off and the size of the single-particle basis ..

Application of the MPMH method with a chiral interaction

To do next:

\star Finish the implementation of the tensor term

* Implement the next orders: NLO, N2LO
\rightarrow finite range spin-orbit
\rightarrow three-body interaction
* Check convergence of the results with respect to the cut-off and the size of the single-particle basis ...

Thank you!

This work is supported by
INT US-DOE Grant DE-FG02-00ER41132 and JINA-CEE US-NSF Grant PHY-1430152

