Normal-ordering approximation in particle-number-breaking theories

Julien Ripoche CEA, DAM, DIF, F-91297 Arpajon, France

with T. Duguet (CEA Saclay), J.-P. Ebran (CEA DAM), D. Lacroix (IPN Orsay) & A. Tichai (ESNT, CEA Saclay)

[J. Ripoche, A. Tichai, T. Duguet, 2019, in prep.]

ENST Symmetry-breaking Workshop CEA Saclay - May 14th 2019

Outline

Introduction

- Ab Initio symmetry-breaking many-body methods
- Three-body forces handling
- Normal-ordering
- Normal-ordered k-body (NOkB) approximation
- Symmetry-breaking normal-ordering
- Naive NO1B (nNO1B) approximation

2 Particle-number conserving NOkB (PNOkB) approximation

- Motivation
- PNOkB approximation
- Naive vs Particle-number conserving extensions

3 NO1B approximation results

4 Conclusion

Outline

Introduction

- Ab Initio symmetry-breaking many-body methods
- Three-body forces handling
- Normal-ordering
- Normal-ordered k-body (NOkB) approximation
- Symmetry-breaking normal-ordering
- Naive NO1B (nNO1B) approximation

Particle-number conserving NOkB (PNOkB) approximation

- Motivation
- PNOkB approximation
- Naive vs Particle-number conserving extensions

③ NO1B approximation results

Onclusion

Ab Initio symmetry-breaking many-body methods

Courtesy of P. Arthuis, T. Duguet

New methods recently proposed and implemented

- BMBPT [Duguet et al. 2017, Tichai et al. 2018, Arthuis et al. 2019, Demol et al. 2019]
- PBMBPT [Duguet et al. 2017, Ripoche et al. 2019, Tichai et al. 2019]
- GSCGF [Somà et al. 2011]

Ab Initio symmetry-breaking many-body methods

New methods recently proposed and implemented

- BMBPT \rightarrow See Mikael's talk !
- PBMBPT → See Alexander's talk !
- GSCGF \rightarrow See Vittorio's talk !

Nuclear physics requires (at least) a three-body Hamiltonian

$$H \equiv h^{11} + h^{22} + h^{33} = \sum_{i=1}^{3} \frac{1}{i!i!} \sum_{l_1 \dots l_{2i}} h^{ii}_{l_1 \dots l_{2i}} c^{\dagger}_{l_1} \dots c^{\dagger}_{l_i} c_{l_2} \dots c_{l_{i+1}}$$

Three-body forces are very hard to handle

- Mode-6 tensor \rightarrow memory challenge
- Compute and store (\neq EDF)

In realistic model space ($e_{max} = 12$)

- Spherical reduction of tensors [J. Ripoche et al. 2019]
- (A priori) truncation $E3_{max} = 14 \ll 3e_{max}$ (20Gb)
- · Larger model space for heavier nuclei
- → Need to reduce the dimensionality

[R. Roth et al. 2013]

Three-body Hamiltonian need to be fed into the Schrödinger equation

- Formalism with explicit three-body force \rightarrow Formal challenge
- A lot of effort already generated to handle three-body
 - ♦ BMBPT [P. Arthuis et al. 2019]
 - ♦ CC [S. Binder et al. 2013]
 - SCGF [A. Carbone et al. 2013, F. Raimondi et al. 2018]

All what is covered next is relevant for all these methods (and more)

• Focus on CC and BCC

The N-body Hamiltonian

The *N*-body Hamiltonian is particle-number conserving ([H, A] = 0)

$$H \equiv h^{11} + h^{22} + h^{33} + \ldots + h^{NN}$$

in which the *i*-body part h^{ii} is given by

$$h^{ii} = rac{1}{i!i!} \sum_{l_1 \dots l_{2i}} h^{ii}_{l_1 \dots l_i l_{i+1} \dots l_{2i}} c^{\dagger}_{l_1} \dots c^{\dagger}_{l_i} c_{l_{2i}} \dots c_{l_{i+1}}.$$

$\{c, c^{\dagger}\}, 0\rangle$	-6	-4	-2	0	+2	+4	+6
$h^{[0]}$				h^{00}			
$h^{[2]}$				h^{11}			
$h^{[4]}$				h^{22}			
$h^{[6]}$				h^{33}			

Contributions to the three-body operator H

Normal-ordering in single-particle basis

In normal-ordered form, the N-body Hamiltonian reads

$$H = \Lambda^{00} + \Lambda^{11} + \Lambda^{22} + \Lambda^{33} + \ldots + \Lambda^{NN} \,, \label{eq:H}$$

in which the *i*-body field Λ^{ii} is given by

$$\Lambda^{ii} = \frac{1}{i!i!} \sum_{l_1...l_{2i}} \Lambda^{ii}_{l_1...l_i l_{i+1}...l_{2i}} :c_{l_1}^{\dagger} \dots c_{l_i}^{\dagger} c_{l_{2i}} \dots c_{l_{i+1}}: .$$

$\{c, c^{\dagger}\}, S $	$\langle 0 \rangle - 6$	-4	-2	0	+2	+4	+6
$\Lambda^{[0]}$				Λ^{00}			
$\Lambda^{[2]}$				Λ^{11}			
$\Lambda^{[4]}$				Λ^{22}			
$\Lambda^{[6]}$				Λ^{33}			

Contributions to the three-body operator ${\boldsymbol{H}}$

cea

Effective zero-body part of H $\Lambda^{00} = \sum_{i} h_{ii}^{11} + \frac{1}{2} \sum_{ij} h_{ijjj}^{22} + \frac{1}{6} \sum_{ijk} h_{ijkijk}^{33}$

Effective one-body part of H $\Lambda_{pq}^{11} = h_{pq}^{11} + \sum_{i} h_{piqi}^{22} + \frac{1}{2} \sum_{ij} h_{pijqij}^{33}$

Effective two-body part of *H* $\Lambda_{pqrs}^{22} = h_{pqrs}^{22} + \sum_{i} h_{pqirsi}^{33}$

Effective three-body part of H

 $\Lambda_{pqrstu}^{33} = h_{pqrstu}^{33}$

Effective zero-body part of \boldsymbol{H}

 $\Lambda^{00} = \textit{E}_0^{\mathsf{HF}} ~_{(\mathsf{If} \ | \Phi \rangle \text{ is solution of HF})}$

Effective one-body part of *H*

 $\Lambda^{11}_{pq}=0$ (If $|\Phi
angle$ is solution of HF)

Effective two-body part of *H* $\Lambda_{pqrs}^{22} = h_{pqrs}^{22} + \sum_{i} h_{pqirsi}^{33}$

Effective three-body part of H

 $\Lambda_{pqrstu}^{33} = h_{pqrstu}^{33}$

- A typical many-body formalism is about computing tensor network
 - \rightarrow Contraction of Hamiltonian tensor and many-body tensors

Coupled Cluster energy equation with explicit three-body

$$E_{0}^{\text{CCSDT}} = \Lambda^{00} + \sum_{ia} \Lambda^{11}_{ia} U_{i}^{a} + \frac{1}{2} \sum_{ijab} \Lambda^{22}_{ijab} U_{i}^{a} U_{j}^{b} + \frac{1}{4} \sum_{ijab} \Lambda^{22}_{ijab} U_{ij}^{ab} + \frac{1}{6} \sum_{ijkabc} \Lambda^{33}_{ijkabc} U_{i}^{a} U_{j}^{b} U_{k}^{c} + \frac{1}{4} \sum_{ijkabc} \Lambda^{33}_{ijkabc} U_{ij}^{ab} U_{k}^{c} + \frac{1}{36} \sum_{ijkabc} \Lambda^{33}_{ijkabc} U_{ijk}^{abc} U_$$

Problem: Three-body force requires coupling to triples (mode-6 tensor)

- → Store: Both Λ^{33} and U_3 (even copy and update it iteratively)
- → CPU time: E^{CCSDT} equation is a N^6 process (E^{CCSD} equation is N^4)

YES: Normal-ordering two-body (NO2B) approximation [R. Roth et al. 2011]

Reduction of the storage ($e_{max} = 12$)

- → **20Gb** for three-body operator ($E3_{max} = 14$)
- → 250Mb for NO2B operator
- → For only 1% of error on the energy

Reduction of the cost

→ Reduces to a N^4 process (previously N^6 process)

Intermediate step between

- Full three-body mean-field (MF) calculation
- e Effective two-body beyond MF (BMF) calculation

Normal-ordered three-body Hamiltonian with respect to a SD

$$H = \Lambda^{00} + \Lambda^{11} + \Lambda^{22} + \Lambda^{33} = \sum_{i=0}^{3} \sum_{l_1...l_{2i}} \Lambda^{ii}_{l_1...l_i l_{i+1}...l_{2i}} : c_{l_1}^{\dagger} \dots c_{l_i}^{\dagger} c_{l_{2i}} \dots c_{l_{i+1}} :$$

NO2B approximation

Put the three-body field Λ³³ to zero (N⁶)
 0,1,2-fields Λ⁰⁰, Λ¹¹, Λ²² (N⁴) contain parts of h³³

NO2B Hamiltonian operator

$$\rightarrow H^{\text{NO2B}} = \Lambda^{00} + \Lambda^{11} + \Lambda^{22}$$

- → Deviation due to NO2B approximation is < 1%
- \rightarrow Very good description at a manageable storage and CPU cost

- \twoheadrightarrow Deviation due to NO2B approximation is <1%
- \rightarrow Very good description at a manageable storage and CPU cost

But what about symmetry-breaking many-body methods ?

Bogoliubov transformation

$$\beta_{k} \equiv \sum_{l} U_{lk}^{*} c_{l} + V_{lk}^{*} c_{l}^{\dagger}$$
$$\beta_{k}^{\dagger} \equiv \sum_{l} U_{lk} c_{l}^{\dagger} + V_{lk} c_{l}$$

Bogoliubov vacuum

$$|\Phi
angle \equiv \mathcal{C} \prod_k eta_k |0
angle$$

Elementary contractions

$$\begin{split} \rho_{l_1 l_2} &\equiv \langle \Phi | c_{l_2}^{\dagger} c_{l_1} | \Phi \rangle / \langle \Phi | \Phi \rangle \\ \kappa_{h_1 l_2} &\equiv \langle \Phi | c_{l_2} c_{l_1} | \Phi \rangle / \langle \Phi | \Phi \rangle \\ \kappa_{h_1 l_2}^* &\equiv \langle \Phi | c_{h_1}^{\dagger} c_{l_2}^{\dagger} | \Phi \rangle / \langle \Phi | \Phi \rangle \,. \end{split}$$

Wick's theorem

 o^{nr}

$$\begin{split} P &= \frac{1}{n! n!} \sum_{l_1 \dots l_{2n}} o_{l_1 \dots l_{2n}}^{nn} c_{l_1}^{\dagger} \dots c_{l_n}^{\dagger} c_{l_{2n}} \dots c_{l_{n+1}} \\ &= \frac{1}{n! n!} \sum_{l_1 \dots l_{2n}} o_{l_1 \dots l_{2n}}^{nn} \left[: c_{l_1}^{\dagger} \dots c_{l_n}^{\dagger} c_{l_{2n}} \dots c_{l_{n+1}} : \right. \\ &+ \rho_{l_{2n}l_n} : c_{l_1}^{\dagger} \dots c_{l_{n-1}}^{\dagger} c_{l_{2n-1}} \dots c_{l_{n+1}} : + \dots \\ &+ \kappa_{l_{n-1}l_n}^* : c_{l_1}^{\dagger} \dots c_{l_{n-2}}^{\dagger} c_{l_{2n}} \dots c_{l_{n+1}} : + \dots \\ &+ \kappa_{l_{2n-1}l_{2n}} : c_{l_1}^{\dagger} \dots c_{l_n}^{\dagger} c_{l_{2n-2}} \dots c_{l_{n+1}} : + \dots \\ &+ \dots \end{bmatrix} \end{split}$$

→ Apparition of anomalous contraction κ
 → More terms appear in Wick's theorem

Normal-ordering in single-particle basis

In normal-ordered form, the N-body Hamiltonian reads

$$\label{eq:H} H = \Lambda^{00} + \Lambda^{20} + \Lambda^{11} + \Lambda^{02} + \ldots + \Lambda^{NN}\,,$$

in which the (i, j)-field Λ^{ij} is given by

$$\Lambda^{ij} = \frac{1}{i!j!} \sum_{l_1...l_{i+j}} \Lambda^{ij}_{l_1...l_i l_{i+1}...l_{i+j}} :c_{l_1}^{\dagger} \dots c_{l_i}^{\dagger} c_{l_{i+j}} \dots c_{l_{i+1}}:$$

$\{c, c^{\dagger}\}, \Phi\rangle$	-6	-4	-2	0	+2	+4	+6
$\Lambda^{[0]}$				Λ^{00}			
$\Lambda^{[2]}$			Λ^{02}	Λ^{11}	Λ^{20}		
$\Lambda^{[4]}$			Λ^{13}	Λ^{22}	Λ^{31}		
$\Lambda^{[6]}$				Λ^{33}			

Contributions to the three-body operator H

Effective zero-body part of H $\Lambda^{00} = h^{00} + \operatorname{tr}[h^{11}\rho] + \frac{1}{2}\operatorname{tr}[h^{22}\rho\rho] + \frac{1}{4}\operatorname{tr}[h^{22}\kappa^*\kappa] + \frac{1}{6}\operatorname{tr}[h^{33}\rho\rho\rho] + \frac{1}{4}\operatorname{tr}[h^{33}\kappa^*\kappa\rho]$

Effective one-body part of H $\Lambda^{11}_{h_{l_{2}}} = h^{11}_{h_{l_{2}}} + tr[h^{22}\rho]_{h_{l_{2}}} + \frac{1}{2}tr[h^{33}\rho\rho]_{h_{l_{2}}} + \frac{1}{4}tr[h^{33}\kappa^*\kappa]_{h_{l_{2}}}$ $\Lambda^{20}_{h_{l_{2}}} = \frac{1}{2}tr[h^{22}\kappa]_{h_{l_{2}}} + \frac{1}{2}tr[h^{33}\kappa\rho]_{h_{l_{2}}}$ $\Lambda^{01}_{h_{l_{2}}} = \frac{1}{2}tr[h^{22}\kappa^*]_{h_{l_{2}}} + \frac{1}{2}tr[h^{33}\kappa^*\rho]_{h_{l_{2}}}$

Effective two-body part of H

$$\begin{split} \Lambda^{22}_{l_1 l_2 l_3 l_4} &= h^{22}_{l_1 l_2 l_3 l_4} + \text{tr}[h^{33}\rho]_{l_1 l_2 l_3 l_4} \\ \Lambda^{31}_{l_1 l_2 l_3 l_4} &= \frac{1}{2} \text{tr}[h^{33}\kappa]_{l_1 l_2 l_3 l_4} \\ \Lambda^{13}_{l_1 l_2 l_3 l_4} &= \frac{1}{2} \text{tr}[h^{33}\kappa^*]_{l_1 l_2 l_3 l_4} \end{split}$$

Effective three-body part of H

 $\Lambda^{33}_{l_1 l_2 l_3 l_4 l_5 l_6} = h^{33}_{l_1 l_2 l_3 l_4 l_5 l_6}$

Normal-ordering in quasi-particle basis

In normal-ordered form, the N-body Hamiltonian reads

$$H = H^{00} + H^{20} + H^{11} + H^{02} + \ldots + H^{NN},$$

in which the (i, j)-part H^{ij} is given by

$$H^{ij} = \frac{1}{i!j!} \sum_{k_1...k_{i+j}} H^{ij}_{k_1...k_ik_{i+1}...k_{i+j}} \beta^{\dagger}_{k_1} \dots \beta^{\dagger}_{k_i} \beta_{k_{i+j}} \dots \beta_{k_{i+1}}.$$

$\{eta,eta^{\dagger}\}, \Phi$) -6	-4	-2	0	+2	+4	+6
$H^{[0]}$				H^{00}			
$H^{[2]}$			H^{02}	H^{11}	H^{20}		
$H^{[4]}$		H^{04}	H^{13}	H^{22}	H^{31}	H^{40}	
$H^{[6]}$	H^{06}	H^{15}	H^{24}	H^{33}	H^{42}	H^{51}	H^{60}

Contributions to the three-body operator H

Effective zero-body part of H

 $H^{00} = \Lambda^{00}$

Effective one-body part of H

$$\begin{split} H^{20}_{k_1k_2} &= \sum_{l_1l_2} \Lambda^{11}_{l_1l_2} U^*_{l_1k_1} V^*_{l_2k_2} - \Lambda^{11}_{l_1l_2} V^*_{l_2k_1} U^*_{l_1k_2} + \Lambda^{20}_{l_1l_2} U^*_{l_1k_1} U^*_{l_2k_2} - \Lambda^{02}_{l_1l_2} V^*_{l_1k_1} V^*_{l_2k_2} \\ H^{11}_{k_1k_2} &= \sum_{l_1l_2} \Lambda^{11}_{l_1l_2} U^*_{l_1k_1} U^*_{l_2k_2} - \Lambda^{11}_{l_1l_2} V^*_{l_2k_1} V^*_{l_1k_2} + \Lambda^{20}_{l_1l_2} U^*_{l_1k_1} V^*_{l_2k_2} - \Lambda^{02}_{l_1l_2} V^*_{l_1k_1} U^*_{l_2k_2} \\ H^{02}_{k_1k_2} &= \sum_{l_1l_2} \Lambda^{11}_{l_1l_2} U^*_{l_2k_1} V^*_{l_1k_2} - \Lambda^{11}_{l_1l_2} V^*_{l_1k_1} U^*_{l_2k_2} - \Lambda^{20}_{l_1l_2} V^*_{l_1k_1} V^*_{l_2k_2} + \Lambda^{02}_{l_1l_2} U^*_{l_1k_1} U^*_{l_2k_2} \\ \end{split}$$

Effective two-body part of H

$$\begin{split} H^{40}_{k_{1}k_{2}k_{3}k_{4}} = \sum_{l_{1}l_{2}l_{3}l_{4}} \Lambda^{22}_{l_{1}l_{2}l_{3}l_{4}} \left(\begin{array}{c} -U^{*}_{l_{1}k_{1}}U^{*}_{l_{2}k_{2}}V^{*}_{l_{3}k_{3}}V^{*}_{l_{4}k_{4}} + U^{*}_{l_{1}k_{1}}V^{*}_{l_{3}k_{2}}U^{*}_{l_{2}k_{3}}V^{*}_{l_{4}k_{4}} \\ -U^{*}_{l_{1}k_{1}}V^{*}_{l_{3}k_{2}}V^{*}_{l_{4}k_{3}}U^{*}_{l_{2}k_{4}} - V^{*}_{l_{3}k_{1}}U^{*}_{l_{4}k_{2}}U^{*}_{l_{2}k_{3}}V^{*}_{l_{4}k_{4}} \\ +V^{*}_{l_{3}k_{1}}U^{*}_{l_{4}k_{2}}U^{*}_{l_{4}k_{3}}U^{*}_{l_{2}k_{4}} - V^{*}_{l_{3}k_{1}}U^{*}_{l_{4}k_{2}}U^{*}_{l_{4}k_{3}}V^{*}_{l_{4}k_{4}} \\ +V^{*}_{l_{3}k_{1}}U^{*}_{l_{4}k_{2}}U^{*}_{l_{3}k_{3}}U^{*}_{l_{2}k_{4}} - V^{*}_{l_{3}k_{1}}V^{*}_{l_{4}k_{2}}U^{*}_{l_{4}k_{3}}U^{*}_{l_{2}k_{4}} \right) \\ +\Lambda^{31}_{l_{1}l_{2}l_{3}l_{4}} \left(\begin{array}{c} +U^{*}_{l_{1}k_{1}}U^{*}_{l_{2}k_{2}}U^{*}_{l_{3}k_{3}}U^{*}_{l_{4}k_{4}} - U^{*}_{l_{1}k_{1}}U^{*}_{l_{2}k_{2}}U^{*}_{l_{4}k_{3}}U^{*}_{l_{3}k_{4}} \\ +U^{*}_{l_{1}k_{1}}V^{*}_{l_{4}k_{2}}U^{*}_{l_{2}k_{3}}U^{*}_{l_{3}k_{4}} - U^{*}_{l_{4}k_{1}}U^{*}_{l_{4}k_{2}}U^{*}_{l_{4}k_{3}}U^{*}_{l_{3}k_{4}} \\ +U^{*}_{l_{1}k_{1}}V^{*}_{l_{4}k_{2}}U^{*}_{l_{2}k_{3}}U^{*}_{l_{3}k_{4}} - V^{*}_{l_{4}k_{1}}U^{*}_{l_{1}k_{2}}U^{*}_{l_{4}k_{3}}U^{*}_{l_{3}k_{4}} \\ & -V^{*}_{l_{1}k_{1}}V^{*}_{l_{4}k_{2}}U^{*}_{l_{4}k_{3}}U^{*}_{l_{4}k_{4}} + V^{*}_{l_{4}k_{1}}U^{*}_{l_{4}k_{2}}U^{*}_{l_{4}k_{3}}U^{*}_{l_{3}k_{4}} \\ & -V^{*}_{l_{1}k_{1}}V^{*}_{l_{6}k_{2}}U^{*}_{l_{4}k_{3}}U^{*}_{l_{4}k_{4}} + V^{*}_{l_{5}k_{1}}U^{*}_{l_{4}k_{2}}U^{*}_{l_{6}k_{3}}U^{*}_{l_{4}k_{4}} \\ & -V^{*}_{l_{5}k_{1}}V^{*}_{l_{6}k_{2}}U^{*}_{l_{1}k_{3}}V^{*}_{l_{2}k_{4}} + V^{*}_{l_{5}k_{1}}V^{*}_{l_{6}k_{2}}V^{*}_{l_{6}k_{3}}U^{*}_{l_{4}k_{4}} \\ & -V^{*}_{l_{5}k_{1}}V^{*}_{l_{6}k_{2}}U^{*}_{l_{4}k_{3}}U^{*}_{l_{4}k_{4}} + V^{*}_{l_{5}k_{1}}V^{*}_{l_{6}k_{2}}V^{*}_{l_{6}k_{3}}U^{*}_{l_{4}k_{4}} \\ \end{array} \right) \end{split}$$

 $H^{31}_{k_1k_2k_3k_4} = \dots$

Effective zero-body part of H

 $H^{00} = E_0^{\text{HFB}}$ (If $|\Phi\rangle$ is solution of HFB)

Effective one-body part of H

$$\begin{split} H^{20}_{k_1k_2} &= 0 \ (\text{If } |\Phi\rangle \text{ is solution of HFB}) \\ H^{11}_{k_1k_2} &= 0 \ (\text{If } |\Phi\rangle \text{ is solution of HFB}) \\ H^{02}_{k_1k_2} &= 0 \ (\text{If } |\Phi\rangle \text{ is solution of HFB}) \end{split}$$

Effective two-body part of H

$$\begin{split} H^{40}_{k_{1}k_{2}k_{3}k_{4}} = \sum_{l_{1}l_{2}l_{3}l_{4}} \Lambda^{22}_{l_{1}l_{2}l_{3}l_{4}} \left(\begin{array}{c} -U^{*}_{l_{1}k_{1}}U^{*}_{l_{2}k_{2}}V^{*}_{l_{3}k_{3}}V^{*}_{l_{4}k_{4}} + U^{*}_{l_{1}k_{1}}V^{*}_{l_{2}k_{2}}U^{*}_{l_{2}k_{3}}V^{*}_{l_{4}k_{4}} \\ -U^{*}_{l_{1}k_{1}}V^{*}_{l_{3}k_{2}}V^{*}_{l_{4}k_{3}}U^{*}_{l_{2}k_{4}} - V^{*}_{l_{3}k_{1}}U^{*}_{l_{1}k_{2}}U^{*}_{l_{2}k_{3}}V^{*}_{l_{4}k_{4}} \\ +V^{*}_{l_{3}k_{1}}U^{*}_{l_{1}k_{2}}V^{*}_{l_{4}k_{3}}U^{*}_{l_{2}k_{4}} - V^{*}_{l_{3}k_{1}}U^{*}_{l_{4}k_{2}}U^{*}_{l_{4}k_{3}}U^{*}_{l_{2}k_{4}} \right) \\ +\Lambda^{31}_{l_{1}l_{2}l_{3}l_{4}} \left(\begin{array}{c} +U^{*}_{l_{1}k_{1}}U^{*}_{l_{2}k_{2}}U^{*}_{l_{3}k_{3}}V^{*}_{l_{4}k_{4}} - U^{*}_{l_{1}k_{1}}U^{*}_{l_{2}k_{2}}U^{*}_{l_{4}k_{3}}U^{*}_{l_{3}k_{4}} \\ & +U^{*}_{l_{1}k_{1}}V^{*}_{l_{4}k_{2}}U^{*}_{l_{2}k_{3}}U^{*}_{l_{3}k_{4}} - U^{*}_{l_{4}k_{1}}U^{*}_{l_{1}k_{2}}U^{*}_{l_{4}k_{3}}U^{*}_{l_{3}k_{4}} \\ & +V^{*}_{l_{1}k_{1}}V^{*}_{l_{4}k_{2}}U^{*}_{l_{2}k_{3}}U^{*}_{l_{3}k_{4}} - U^{*}_{l_{4}k_{1}}U^{*}_{l_{1}k_{2}}U^{*}_{l_{4}k_{3}}U^{*}_{l_{3}k_{4}} \\ & +U^{*}_{l_{1}k_{1}}V^{*}_{l_{4}k_{2}}U^{*}_{l_{2}k_{3}}U^{*}_{l_{3}k_{4}} - V^{*}_{l_{4}k_{1}}U^{*}_{l_{1}k_{2}}U^{*}_{l_{4}k_{3}}U^{*}_{l_{3}k_{4}} \\ & +U^{*}_{l_{1}k_{1}}V^{*}_{l_{4}k_{2}}U^{*}_{l_{4}k_{3}}U^{*}_{l_{4}k_{4}} - U^{*}_{l_{4}k_{1}}U^{*}_{l_{1}k_{2}}U^{*}_{l_{4}k_{3}}U^{*}_{l_{3}k_{4}} \\ & +U^{*}_{l_{1}k_{1}}V^{*}_{l_{4}k_{2}}U^{*}_{l_{4}k_{3}}U^{*}_{l_{4}k_{4}} + V^{*}_{l_{4}k_{1}}U^{*}_{l_{1}k_{2}}U^{*}_{l_{4}k_{3}}U^{*}_{l_{3}k_{4}} \\ & +V^{*}_{l_{1}k_{1}}V^{*}_{l_{6}k_{2}}U^{*}_{l_{4}k_{3}}U^{*}_{l_{4}k_{4}} + V^{*}_{l_{5}k_{1}}U^{*}_{l_{6}k_{2}}V^{*}_{l_{6}k_{3}}U^{*}_{l_{4}k_{4}} \\ & -V^{*}_{l_{5}k_{1}}V^{*}_{l_{6}k_{2}}U^{*}_{l_{4}k_{3}}U^{*}_{l_{4}k_{4}} + V^{*}_{l_{5}k_{1}}V^{*}_{l_{6}k_{2}}V^{*}_{l_{6}k_{3}}U^{*}_{l_{4}k_{4}} \\ & -V^{*}_{l_{5}k_{1}}V^{*}_{l_{6}k_{2}}U^{*}_{l_{4}k_{3}}U^{*}_{l_{6}k_{4}} + V^{*}_{l_{5}k_{1}}V^{*}_{l_{6}k_{2}}V^{*}_{l_{6}k_{3}}U^{*}_{l_{4}k_{4}} \\ & -V^{*}_{l_{5}k_{1}}V^{*}_{l_{6}k_{2}}U^{*}_{l_{6}k_{3}}U^{*}_{l_{6}k_{4}}$$

 $H^{31}_{k_1k_2k_3k_4} = \dots$

NO2B approximation wrt a Bogoliubov state

Normal-ordered three-body Hamiltonian wrt a Bogoliubov state

$$H = H^{00} + \{H^{20} + H^{11} + H^{02}\} + \{H^{40} + H^{31} + H^{22} + H^{13} + H^{04}\} + H^{[6]}$$

Bogoliubov Coupled Cluster (BCC) energy equation

$$\begin{split} E_0^{\text{BCCSDT}} &= H^{00} + \frac{1}{2!} \text{tr}[H^{02} U^{20}] + \frac{1}{8} \text{tr}[H^{04} U^{20} U^{20}] + \frac{1}{4!} \text{tr}[H^{04} U^{40}] \\ &+ \frac{1}{48} \text{tr}[H^{06} U^{20} U^{20} U^{20}] + \frac{1}{48} \text{tr}[H^{06} U^{40} U^{20}] + \frac{1}{6!} \text{tr}[H^{06} U^{60}] \end{split}$$

NO2B approximation

Put the three-body part H⁰⁶ (Λ³³) to zero
 0,1,2-body parts H⁰⁰, H⁰², H⁰⁴ contain parts of h³³

NO2B approximation wrt a Bogoliubov state

Normal-ordered three-body Hamiltonian wrt a Bogoliubov state

$$H = H^{00} + \{H^{20} + H^{11} + H^{02}\} + \{H^{40} + H^{31} + H^{22} + H^{13} + H^{04}\} + H^{[6]}$$

Bogoliubov Coupled Cluster (BCC) energy equation

$$\begin{split} E_0^{\text{BCCSDT}} &= H^{00} + \frac{1}{2!} \text{tr}[H^{02} U^{20}] + \frac{1}{8} \text{tr}[H^{04} U^{20} U^{20}] + \frac{1}{4!} \text{tr}[H^{04} U^{40}] \\ &+ \frac{1}{48} \text{tr}[H^{06} U^{20} U^{20} U^{20}] + \frac{1}{48} \text{tr}[H^{06} U^{40} U^{20}] + \frac{1}{6!} \text{tr}[H^{06} U^{60}] \end{split}$$

NO2B approximation

Put the three-body part H⁰⁶ (Λ³³) to zero
 0,1,2-body parts H⁰⁰, H⁰², H⁰⁴ contain parts of h³³

This approximation is actually not well behaved !

J. Ripoche - CEA, DAM, DIF

Single projection vs double projection

Particle-number projection operator P^{A} (where $R(\varphi) \equiv e^{iA\varphi}$)

$${\cal P}^{\sf A}\equiv rac{1}{2\pi}\int_{0}^{2\pi}darphi e^{-iarphi {\sf A}}R(arphi)\,,$$

If an operator O commutes with A, it must also commute with P^A

$$P^{A}O = P^{A}OP^{A}$$

Projected mean-field quantities

- Single projection $O_{\Phi}^{A(s)} = \langle \Phi | P^A O | \Phi \rangle$
- Double projection $O^{\mathsf{A}(\mathsf{d})}_{\Phi} = \langle \Phi | P^{\mathsf{A}} O P^{\mathsf{A}} | \Phi \rangle$

If the operator O is

- Particle-number conserving $\Rightarrow O_{\Phi}^{A(s)} = O_{\Phi}^{A(d)}$
- Particle-number violating $\Rightarrow O_{\Phi}^{\mathsf{A}(\mathsf{s})} \neq O_{\Phi}^{\mathsf{A}(\mathsf{d})}$

Single projection vs double projection

[J. Ripoche, A. Tichai, T. Duguet, in prep.]

- Filled (empty) symbol for single (double) projection
- Single and double projection different for nNO1B

What does it tell us ?

Single projection vs double projection

[J. Ripoche, A. Tichai, T. Duguet, in prep.]

- Filled (empty) symbol for single (double) projection
- Single and double projection different for nNO1B

What does it tell us ?

The approximate operator does not commute with A !

J. Ripoche - CEA, DAM, DIF

Normal-ordering approximation in particle-number-breaking theories

Outline

Introduction

- Ab Initio symmetry-breaking many-body methods
- Three-body forces handling
- Normal-ordering
- Normal-ordered k-body (NOkB) approximation
- Symmetry-breaking normal-ordering
- Naive NO1B (nNO1B) approximation

2 Particle-number conserving NOkB (PNOkB) approximation

- Motivation
- PNOkB approximation
- Naive vs Particle-number conserving extensions

O1B approximation results

Onclusion

The N-body Hamiltonian in different forms

$$H \equiv h^{00} + h^{11} + h^{22} + h^{33} + \ldots + h^{NN}$$

= $\Lambda^{00} + \Lambda^{20} + \Lambda^{11} + \Lambda^{02} + \ldots + \Lambda^{NN}$
= $H^{00} + H^{20} + H^{11} + H^{02} + \ldots + H^{NN}$.

Requirements of the approximation

- **1** Throw normal-ordered pieces Λ^{ij} (H^{ij}) of H with i + j > k
- 2 Get an approximate operator that still is particle-number conserving

For the naive extension of NOkB approximation

- → First requirement is fulfilled but not the second one
- → To do both requires to further approximate fields Λ^{ij} with $i + j \le k$

Particle-number conserving NOkB approximation

The particle-number conserving NOkB (PNOkB) Hamiltonian operator

$$H^{\text{PNOkB}} \equiv \tilde{o}^{00} + \tilde{o}^{11} + \tilde{o}^{22} + \tilde{o}^{33} + \ldots = \sum_{n=0}^{n} \tilde{o}^{nn}$$

with

$$\tilde{o}^{nn} \equiv \frac{1}{n! n!} \sum_{l_1 \dots l_{2n}} \tilde{o}^{nn}_{l_1 \dots l_{2n}} c^{\dagger}_{l_1} \dots c^{\dagger}_{l_n} c_{l_{2n}} \dots c_{l_{n+1}}$$

and where $\tilde{o}^{nn}_{l_1\ldots l_{2n}} \; (n \leq k)$ are recursively defined in decreasing order by

$$\widetilde{o}_{l_1 \dots l_{2k}}^{kk} \equiv \Lambda_{l_1 \dots l_{2k}}^{kk}$$

$$\widetilde{o}_{l_1 \dots l_{2n}}^{nn} \equiv \Lambda_{l_1 \dots l_{2n}}^{nn} - \sum_{m=n+1}^k \widetilde{\Lambda}_{l_1 \dots l_{2n}}^{nn(mm)} \text{ for } n < k$$

Leading argument

- → Same normal fields $\tilde{\Lambda}^{nn} = \Lambda^{nn}$
- → For details on the derivation [J. Ripoche, A. Tichai, T. Duguet, in prep.]

PNOkB operator in its normal-ordered form in the single-particle basis

$$\mathcal{H}^{\mathrm{PNOkB}} = \sum_{i,j=0}^{\max(i,j) \leq k} \tilde{\Lambda}^{ij} = \sum_{i,j=0}^{\max(i,j) \leq k} \Lambda^{ij} + \check{\Lambda}^{ij}$$

where the extra term $\check{\Lambda}^{ij}$ are possibly non-vanishing for $i \neq j$ and $N \geq 4$ \Rightarrow For anomalous fields of an original four-body operator (or higher rank)

In practice the PNO2B approximation of a three-body Hamiltonian gives

$$H^{\mathsf{PNO2B}} = \sum_{i,j=0}^{\max(i,j) \le 2} \Lambda^{ij}$$

Naive vs Particle-number conserving extensions

(Naive ext. of) NOkB approximation

PNOkB approximation

$$H^{\mathsf{nNOkB}} = \sum_{i+j=0}^{i+j \leq k} \Lambda^{ij}$$

NO2B approximation of a three-body operator

$$H^{nNO2B} = \Lambda^{00} \qquad H^{PNO2B} = \Lambda^{00} + \Lambda^{20} + \Lambda^{11} + \Lambda^{02} + \Lambda^{20} + \Lambda^{11} + \Lambda^{02} + \Lambda^{20} + \Lambda^{11} + \Lambda^{02} + \Lambda^{22} + \Lambda^{31} + \Lambda^{22} + \Lambda^{13} + \Lambda^{22} + \Lambda^{13} + \Lambda^{22} + \Lambda^{11} + \Lambda^{02} + \Lambda^{11} + \Lambda^{1$$

Naive vs Particle-number conserving extensions

(Naive ext. of) NOkB approximation PNOkB approximation $H^{nNOkB} = \sum_{i+j=0}^{i+j \le k} \Lambda^{ij} \qquad H^{PNOkB} = \sum_{i+j=0}^{\max(i,j) \le k} \tilde{\Lambda}^{ij}$ NO1B approximation of a three-body operator $H^{nNO1B} = \Lambda^{00} \qquad H^{PNO1B} = \Lambda^{00}$ $+ \Lambda^{20} + \Lambda^{11} + \Lambda^{02} \qquad + \Lambda^{11}$

$$\begin{aligned} \mathcal{H}^{\mathsf{n}\mathsf{NO1B}} &= \tilde{o}^{00} \qquad \qquad \mathcal{H}^{\mathsf{P}\mathsf{NO1B}} &= \tilde{o}^{00} \\ &+ \tilde{o}^{20} + \tilde{o}^{11} + \tilde{o}^{02} \qquad \qquad \qquad + \tilde{o}^{11} \end{aligned}$$

Outline

Introduction

- Ab Initio symmetry-breaking many-body methods
- Three-body forces handling
- Normal-ordering
- Normal-ordered k-body (NOkB) approximation
- Symmetry-breaking normal-ordering
- Naive NO1B (nNO1B) approximation

Particle-number conserving NOkB (PNOkB) approximation

- Motivation
- PNOkB approximation
- Naive vs Particle-number conserving extensions

3 NO1B approximation results

Onclusion

Projected energy for some isotopic chains

[J. Ripoche, A. Tichai, T. Duguet, in prep.]

- Empty circle are farther to zero than filled ones
- Filled and empty squares lie on top of one another \rightarrow PN conserving

[J. Ripoche, A. Tichai, T. Duguet, in prep.]

- Projected neutron-number variance is indeed vanishing
- Filled and empty squares lie on top of one another \rightarrow PN conserving

Outline

Introduction

- Ab Initio symmetry-breaking many-body methods
- Three-body forces handling
- Normal-ordering
- Normal-ordered k-body (NOkB) approximation
- Symmetry-breaking normal-ordering
- Naive NO1B (nNO1B) approximation

Particle-number conserving NOkB (PNOkB) approximation

- Motivation
- PNOkB approximation
- Naive vs Particle-number conserving extensions

O1B approximation results

4 Conclusion

Nuclear structure

- Three-body forces requirement
- ◊ Storage/cost problem

NOkB approximation

- $\diamond~$ Intermediate step between MF and BMF
- ◊ Powerful tool to reduce storage/cost

Extension to symmetry-breaking normal-ordering

- $\diamond~$ Naive extension leads to particle-number non-conserving operator
- $\diamond~$ Particle-number conserving extension needs further approximation

P. Demol T. Duguet J.-P. Ebran M. Frosini F. Raimondi V. Somà A. Tichai

D. Lacroix

P. Arthuis

BACK UP

Gauge-rotated Bogoliubov state

$$|\Phi(\varphi)
angle\equiv R(arphi)|\Phi
angle$$
 .

Singly- and doubly-rotated mean-field norm kernels

$$\mathcal{N}^{(0)}(\varphi) \equiv \langle \Phi(\varphi) | \Phi \rangle ,$$

$$\mathcal{N}^{(0)}(\varphi, \varphi') \equiv \langle \Phi(\varphi) | \Phi(\varphi') \rangle = \mathcal{N}^{(0)}(\varphi - \varphi') .$$

Singly- and doubly-rotated mean-field operator kernels

$$O^{(0)}(\varphi) \equiv \langle \Phi(\varphi) | O | \Phi \rangle,$$

 $O^{(0)}(\varphi, \varphi') \equiv \langle \Phi(\varphi) | O | \Phi(\varphi') \rangle.$

Connected singly- and doubly-rotated mean-field operator kernels

$$egin{aligned} & o^{(0)}(arphi) \equiv O^{(0)}(arphi) / \mathcal{N}^{(0)}(arphi) \,, \ & o^{(0)}(arphi,arphi') \equiv O^{(0)}(arphi,arphi') / \mathcal{N}^{(0)}(arphi,arphi') \end{aligned}$$

Single projection

$$egin{aligned} & O^{\mathsf{A}(\mathsf{s})}_{\Phi} \equiv \langle \Phi | P^{\mathsf{A}} O | \Phi
angle \ & = \int_{0}^{2\pi} rac{d arphi}{2\pi} e^{i arphi^{\mathsf{A}}} o^{(0)}(arphi) \mathcal{N}^{(0)}(arphi) \,. \end{aligned}$$

Double projection

$$\begin{split} O_{\Phi}^{\mathsf{A}(\mathsf{d})} &\equiv \langle \Phi | P^{\mathsf{A}} O P^{\mathsf{A}} | \Phi \rangle \\ &= \int_{0}^{2\pi} \int_{0}^{2\pi} \frac{d\varphi}{2\pi} \frac{d\varphi'}{2\pi} e^{i(\varphi - \varphi')\mathsf{A}} o^{(0)}(\varphi, \varphi') \mathcal{N}^{(0)}(\varphi - \varphi') \,. \end{split}$$

Mean-field Hamiltonian kernel for O18

