Nucleons on a Lattice: Symmetry Breaking \& Restoration

Ulf-G. Meißner, Univ. Bonn \& FZ Jülich

supported by DFG, SFB/TR-110

by CAS, PIFI

chinese academy of sciences
by VolkswagenStftung
$\because:$ volkswagenStiftung
-•••

CONTENTS

- Nuclear lattice EFT - what and why?
- Chiral EFT on a lattice
- Rotational symmetry breaking \& restoration
- scattering on a lattice
- unphysical partial-wave mixing at finite lattice spacing
- Galilean invariance breaking \& restoration
- in the two-nucleon system
- the nuclear center-of-mass problem \& the pinhole algorithm
- Nuclear thermodynamics
- Summary \& outlook

Nuclear lattice EFT: what and why ?

THE NUCLEAR LANDSCAPE: AIMS \& METHODS

- Theoretical methods:
- Lattice QCD: $A=0,1,2, \ldots$
- NCSM, Faddeev-Yakubowsky, GFMC, ... : A = 3-16
- coupled cluster, . . .: A = 16-100
- density functional theory, ...: $A \geq 100$
- Chiral EFT:
- provides accurate $2 \mathrm{~N}, 3 \mathrm{~N}$ and 4 N forces
- successfully applied in light nuclei with $A=2,3,4$
combine with simulations to get to larger A

$$
\Rightarrow \text { Nuclear Lattice Effective Field Theory }
$$

AB INITIO NUCLEAR STRUCTURE and SCATTERING

- Nuclear structure:
* 3-nucleon forces
\star limits of stability
* alpha-clustering

- Nuclear scattering: processes relevant for nuclear astrophysics
\star alpha-particle scattering: ${ }^{4} \mathrm{He}+{ }^{4} \mathrm{He} \rightarrow{ }^{4} \mathrm{He}+{ }^{4} \mathrm{He}$
* triple-alpha reaction:
${ }^{4} \mathrm{He}+{ }^{4} \mathrm{He}+{ }^{4} \mathrm{He} \rightarrow{ }^{12} \mathrm{C}+\gamma$
* alpha-capture on carbon:

```
4}\textrm{He}+\mp@subsup{}{}{12}\textrm{C}->\mp@subsup{}{}{16}\textrm{O}+
```


MANY-BODY APPROACHES

- nuclear physics = notoriously difficult problem: strongly interacting fermions
- define ab initio: combine the precise and well-founded forces from chiral EFT with a many-body approach
- two different approaches followed in the literature:
* combine chiral $\mathrm{NN}(\mathrm{N})$ forces with standard many-body techniques
\rightarrow successful, but problems with cluster states (SM, NCSM,...)
\star combine chiral forces and lattice simulations methods
\rightarrow this new method is called nuclear lattice simulations (NLEFT)
Borasoy, Elhatisari, Epelbaum, Krebs, Lee, Lähde, UGM, Rupak, ...
\rightarrow rest of the talk

LQCD (quarks \& gluons)	NLEFT (nucleons \& pions)
relativistic fermions	non-relativistic fermions
renormalizable th'y	EFT
continuum limit	no continuum limit
(un)physical masses	physical masses
Coulomb - difficult	Coulomb - easy
high T/small ρ	small T/nuclear densities
sign problem severe	sign problem moderate

- similar methods:
hybrid MC, parallel computing, . . .
\hookrightarrow not treated here
- what I want to discuss within the time limitations:

\hookrightarrow how to put the chiral EFT on a lattice
\hookrightarrow scattering on a lattice (not the Lüscher approach)
\hookrightarrow the pinhole algorithm / center-of-mass in AFQMC

Chiral EFT on a lattice

T. Lähde \& UGM

Nuclear Lattice Effective Field Theory - An Introduction
Springer Lecture Notes in Physics 957 (2019) 1-396

NUCLEAR LATTICE EFFECTIVE FIELD THEORY

- new method to tackle the nuclear many-body problem
- discretize space-time $V=L_{s} \times L_{s} \times L_{s} \times L_{t}$: nucleons are point-like particles on the sites
- discretized chiral potential w/ pion exchanges and contact interactions + Coulomb
\rightarrow see Epelbaum, Hammer, UGM, Rev. Mod. Phys. 81 (2009) 1773
- typical lattice parameters

$$
p_{\max }=\frac{\pi}{a} \simeq 314 \mathrm{MeV}[\mathrm{UV} \text { cutoff }]
$$

- strong suppression of sign oscillations due to approximate Wigner SU(4) symmetry E. Wigner, Phys. Rev. 51 (1937) 106; T. Mehen et al., Phys. Rev. Lett. 83 (1999) 931; J. W. Chen et al., Phys. Rev. Lett. 93 (2004) 242302
- physics independent of the lattice spacing for $a=1 . . .2 \mathrm{fm}$

LATTICE NOTATION

\bullet nucleon annihilation ops: $a_{0,0} \equiv a_{\uparrow, p}, a_{1,0} \equiv a_{\downarrow, p}, a_{0,1} \equiv a_{\uparrow, n}, a_{1,1} \equiv a_{\downarrow, n}$
\rightarrow labeling spin and isospin

- spatial \& temporal lattice spacing: $\quad a, a_{t} \rightarrow \alpha_{t} \equiv a_{t} / a$
- lattice size: $L \equiv N a, L_{t} \equiv N_{t} a_{t}$
- lattice momenta: $\overrightarrow{\boldsymbol{k}}=\left(k_{1}, k_{2}, k_{3}\right) \equiv\left(\frac{2 \pi}{N} \hat{k}_{1}, \frac{2 \pi}{N} \hat{k}_{2}, \frac{2 \pi}{N} \hat{k}_{3}\right)$,
\rightarrow in the first Brillouin zone: $\left|\boldsymbol{k}_{\boldsymbol{i}}\right|<\boldsymbol{\pi}$ and $\mathbf{0} \leq\left|\hat{\boldsymbol{k}}_{\boldsymbol{i}}\right|<\boldsymbol{N} / \mathbf{2}$
- any derivative operator requires improvement, as the simplest representation
 in terms of two neighboring points is afflicted by the largest discretization errors

$$
\begin{aligned}
& k_{l} \equiv \sum_{j=1}^{\nu+1}(-1)^{j+1} \theta_{\nu, j} \sin \left(j k_{l}\right)+\mathcal{O}\left(a^{2 \nu+2}\right) \\
& \frac{k_{l}^{2}}{2} \equiv \sum_{j=0}^{\nu+1}(-1)^{j} \omega_{\nu, j} \cos \left(j k_{l}\right)+\mathcal{O}\left(a^{2 \nu+2}\right) \\
& \hookrightarrow \text { no improvement }(\nu=0): \quad \theta_{0,1}=1, \quad \omega_{0,0}=1, \quad \omega_{0,1}=1
\end{aligned}
$$

LATTICE NOTATION continued

\bullet Order a^{2} improvement $(\nu=1): \theta_{1,1}=\frac{4}{3}, \theta_{1,2}=\frac{1}{6}, \omega_{1,0}=\frac{5}{4}, \omega_{1,1}=\frac{4}{3}, \omega_{1,2}=\frac{1}{12}$
\bullet Order a^{4} improvement ($\nu=2$): $\theta_{2,1}=\frac{3}{2}, \theta_{2,2}=\frac{3}{10}, \theta_{2,3}=\frac{1}{30}$

$$
\omega_{2,0}=\frac{49}{36}, \omega_{2,1}=\frac{3}{2}, \omega_{2,2}=\frac{3}{20}, \omega_{2,3}=\frac{1}{90}
$$

\hookrightarrow definition of the first order spatial derivative:

$$
\nabla_{l,(\nu)} f(\vec{n}) \equiv \frac{1}{2} \sum_{j=1}^{\nu+1}(-1)^{j+1} \theta_{\nu, j}\left[f\left(\vec{n}+j \hat{e}_{l}\right)-f\left(\vec{n}-j \hat{e}_{l}\right)\right]
$$

\hookrightarrow second order spatial derivative:

$$
\tilde{\nabla}_{l,(\nu)}^{2} f(\vec{n}) \equiv-\sum_{j=0}^{\nu+1}(-1)^{j} \omega_{\nu, j}\left[f\left(\vec{n}+j \hat{e}_{l}\right)+f\left(\vec{n}-j \hat{e}_{l}\right)\right]
$$

has two zeros in per Brillouin zone \rightarrow beneficial feature for tuning NLO coefficients
\hookrightarrow improved lattice dispersion relation: $\omega^{(\nu)}(\vec{p}) \equiv \frac{1}{\tilde{m}_{N}} \sum_{j=0}^{\nu+1} \sum_{l=1}^{3}(-1)^{j} \omega_{\nu, j} \cos \left(j p_{l}\right)$

$$
\tilde{m}_{N} \equiv m_{N} a
$$

TRANSFER MATRIX METHOD

- Correlation-function for A nucleons: $\quad Z_{A}(\tau)=\left\langle\Psi_{A}\right| \exp (-\tau H)\left|\Psi_{A}\right\rangle$ with Ψ_{A} a Slater determinant for A free nucleons [or a more sophisticated (correlated) initial/final state]
- Transient energy

$$
E_{A}(\tau)=-\frac{d}{d \tau} \ln Z_{A}(\tau)
$$

\rightarrow ground state: $\quad E_{A}^{0}=\lim _{\tau \rightarrow \infty} E_{A}(\tau)$

- Exp. value of any normal-ordered operator \mathcal{O}

$$
\begin{aligned}
& Z_{A}^{\mathcal{O}}=\left\langle\Psi_{A}\right| \exp (-\tau H / 2) \mathcal{O} \exp (-\tau H / 2)\left|\Psi_{A}\right\rangle \\
& \lim _{\tau \rightarrow \infty} \frac{Z_{A}^{\mathcal{O}}(\tau)}{Z_{A}(\tau)}=\left\langle\Psi_{A}\right| \mathcal{O}\left|\Psi_{A}\right\rangle
\end{aligned}
$$

CONFIGURATIONS

\Rightarrow all possible configurations are sampled
\Rightarrow preparation of all possible initial/final states
\Rightarrow clustering emerges naturally

AUXILIARY FIELD METHOD

- Represent interactions by auxiliary fields:

$$
\exp \left[-\frac{C}{2}\left(N^{\dagger} N\right)^{2}\right]=\sqrt{\frac{1}{2 \pi}} \int d s \exp \left[-\frac{s^{2}}{2}+\sqrt{C} s\left(N^{\dagger} N\right)\right]
$$

COMPUTATIONAL EQUIPMENT

- Past = JUQUEEN (BlueGene/Q)
- Present = JUWELS (modular system) + SUMMIT + ...

12 Pflops

Rotational symmetry on the lattice: Breaking and restoration

spherical wall method: Borasoy, Epelbaum, Krebs, Lee, UGM, EPJA 34 (2007) 185 auxiliary potential method: Lu, Lähde, Lee, UGM, Phys. Lett. B760 (2016) 309

- Two-body scattering theory in the center-of-mass (CMS) frame

$$
\psi(\vec{r}) \underset{r \rightarrow \infty}{\longrightarrow} \exp (i \vec{p} \cdot \vec{r})+f\left(\vec{p}^{\prime}, \vec{p}\right) \frac{\exp (i p r)}{r}
$$

- Phase-shift and partial-wave decomposition:

$$
\begin{aligned}
& f\left(\vec{p}^{\prime}, \vec{p}\right)=\sum_{L=0}^{\infty} f_{L}(p) P_{L}(\cos \theta) \\
& f_{L}(p)=\frac{-i}{2 p}[\underbrace{e^{2 i \delta_{L}(p)}}_{S_{L}(p)}-1]=\frac{1}{p\left[\cot \delta_{L}(p)-i\right]}
\end{aligned}
$$

- partial wave mixing can also be dealt with
 in more complex cases \rightarrow phase shifts \& mixing angles

SCATTERING in a FINITE VOLUME

Lüscher, Comm. Math. Phys. 104 (1986) 177; 105 (1986) 153; Nucl. Phys, B 354 (1991) 531

- cubic lattice: rotation group $\mathrm{SO}(3)$ broken to $\mathrm{SO}(3, Z)$
- 5 irreducible representations $\left(\boldsymbol{A}_{\mathbf{1}}, \boldsymbol{T}_{\mathbf{1}}, \boldsymbol{E}, \boldsymbol{T}_{\boldsymbol{2}}, \boldsymbol{A}_{\boldsymbol{2}}\right)$ include definite \boldsymbol{J} modulo 4
- Lüscher's formula for phase shifts $\left(L M_{\text {light }} \gg 1\right)$

$$
\begin{aligned}
& \exp \left(2 i \delta_{0}\right)=\frac{Z_{00}\left(1 ; q^{2}\right)+i \pi^{3 / 2} q}{Z_{00}\left(1 ; q^{2}\right)-i \pi^{3 / 2} q} \\
& q=2 \pi n / L, n \in \mathbb{Z}^{3} \\
& Z_{00}\left(s ; q^{2}\right)=\frac{1}{\sqrt{4 \pi}} \sum_{n \in \mathbb{Z}^{3}} \frac{1}{\left(n^{2}-q^{2}\right)^{s}}
\end{aligned}
$$

- standard method in lattice QCD, see e.g. NPLQCD on hadron-hadron scattering Beane, Orginos, Savage, Int. J. Mod. Phys. E 17 (2008) 1517
- however: not well suited for nuclear physics, need a different formalism

SO(3,Z) REPRESENTATIONS

- Irreducible SO(3,Z) representations

	$J_{z}(\bmod 4)$	$\boldsymbol{Y}_{L, M}(\theta, \phi)$
A_{1}	0	$\boldsymbol{Y}_{0,0}$
\boldsymbol{T}_{1}	$0,1,3$	$\left\{\boldsymbol{Y}_{1,0}, \boldsymbol{Y}_{1,1}, \boldsymbol{Y}_{1,-1}\right\}$
E	0,2	$\left\{\boldsymbol{Y}_{2,0},\left(\boldsymbol{Y}_{2,-2}+\boldsymbol{Y}_{2,2}\right) / \sqrt{2}\right\}$
$\boldsymbol{T}_{\mathbf{2}}$	$1,2,3$	$\left\{\boldsymbol{Y}_{2,1},\left(\boldsymbol{Y}_{2,-2}-\boldsymbol{Y}_{2,2}\right) / \sqrt{2}, \boldsymbol{Y}_{2,-1}\right\}$
\boldsymbol{A}_{2}	2	$\left\{\left(\boldsymbol{Y}_{3,2}-\boldsymbol{Y}_{3,-2}\right) / \sqrt{2}\right\}$

- $\mathrm{SO}(3, Z)$ decompositions

$\mathrm{SO}(3)$	$\mathrm{SO}(3, Z)$
$J=\mathbf{0}$	A_{1}
$J=1$	T_{1}
$J=\mathbf{2}$	$E \oplus T_{\mathbf{2}}$
$J=\mathbf{3}$	$\boldsymbol{T}_{1} \oplus \boldsymbol{T}_{\mathbf{2}} \oplus A_{2}$

SO(3)	SO(3,Z)
$J=4$	$A_{1} \oplus T_{1} \oplus E \oplus T_{2}$
$J=5$	$\mathbf{T}_{\mathbf{1}} \oplus \mathrm{T}_{\mathbf{1}} \oplus \mathrm{E} \oplus \mathrm{T}_{\mathbf{2}}$
$J=6$	$A_{1} \oplus T_{1} \oplus E \oplus T_{2} \oplus T_{2} \oplus A_{2}$
$J=7$	$T_{1} \oplus T_{1} \oplus E \oplus T_{2} \oplus T_{2} \oplus A_{2}$

SPHERICAL WALL METHOD

Borasoy, Epelbaum, Krebs, Lee, M., Eur. Phys. J. A 34 (2007) 185 see also: Carlson et al., Nucl. Phys. A 424 (1984) 47

- Spherical wall method:
place a wall at sufficiently large R
\rightarrow standing wave allows to extract phase shifts δ_{L} and mixings ϵ_{L}

$$
\Psi(\vec{r})=\left[\cos \delta_{L} j_{L}(k r)-\sin \delta_{L} y_{L}(k r)\right] Y_{L, m}(\theta, \phi)
$$

$$
\Psi(R)=0 \Rightarrow \tan \delta_{L}=\frac{j_{L}(k R)}{y_{L}(k R)}
$$

(similar for triplet case)

MEASURING PHASE SHIFTS on the LATTICE II

- Toy model: attractive Gaussian potential w/ central \& tensor forces
reproduces continuum phase shifts accurately
extra copies of the 2-particle interaction due to periodic b.c. removed
much better than standard boxes

$$
V(r)=C\left\{1+\frac{r^{2}}{R_{0}^{2}} S_{12}(\hat{r})\right\} \exp \left(-\frac{1}{2} \frac{r^{2}}{R_{0}^{2}}\right)
$$

$$
S_{12}(\hat{r})=3\left(\hat{r} \cdot \vec{\sigma}_{1}\right)\left(\hat{r} \cdot \vec{\sigma}_{2}\right)-\vec{\sigma}_{1} \cdot \vec{\sigma}_{2}
$$

$$
C=-2 \mathrm{MeV}, \quad R_{0}=0.02 \mathrm{MeV}^{-1}
$$

$$
m=938.92 \mathrm{MeV}
$$

$$
\Downarrow
$$

a shallow bound-state in the ${ }^{3} S_{1}{ }^{3} D_{1}$ channel with a binding energy of $\mathbf{- 0 . 1 5 5} \mathrm{MeV}$

MEASURING PHASE SHIFTS on the LATTICE II

- Free particle spectrum for $R=10+\epsilon$

$1^{1} S_{0}$ energy $=0.9280 \mathrm{MeV}_{\left[E=k^{2} / m\right]}$ \Downarrow
$k_{\text {free }}=29.52 \mathrm{Mev}, j_{0}\left(k_{\text {free }} R\right)=\mathbf{0}$
\Downarrow
$R=\frac{\pi}{k_{\text {free }}}=\mathbf{0 . 1 0 6 4} \mathrm{MeV}^{-1}$
- Interacting spectrum for $\boldsymbol{S}=\mathbf{0}$

$$
k=24.60 \mathrm{MeV}
$$

\Downarrow

$$
\delta\left({ }^{1} S_{0}\right)=\tan ^{-1}\left[\frac{j_{0}(k R)}{y_{0}(k R)}\right]=30^{\circ}
$$

AUXILIARY POTENTIAL METHOD

- Spherical wall: small energies require large volumes, accuracy limited
- Improved method: auxiliary potential \rightarrow shift energy levels

$$
V_{\mathrm{aux}}=V_{0} \exp \left[-\left(r-\boldsymbol{R}_{W}\right)^{2} / a^{2}\right], \quad \boldsymbol{R}_{0} \leq r \leq \boldsymbol{R}_{W}
$$

- Single channel potential $\left(V_{0}=\mathbf{- 2 5} \mathrm{MeV}\right)$
- typical phase shift

- Extension to coupled channels requires time-reversal symmetry breaking \hookrightarrow details see in the above reference

AUXILIARY POTENTIAL METHOD: RESULTS

Lu, Lähde, Lee, UGM, Phys. Lett. B 760 (2016) 309

- same toy model with $R_{I}=9.02 a, R_{0}=12.02 a, R_{W}=15.02 a$

$$
\text { and } U_{0}=20.0 \mathrm{MeV}
$$

- continuum results from solving the LS equation

- Ulf-G. Meißner, Nucleons on a Lattice: Symmetry breaking and restoration - talk, Saclay Workshop, May 17, 2019 -
- $\mathrm{SO}(3) \rightarrow \mathrm{SO}(3, \mathrm{Z})$: new operators at NLO $O\left(Q^{2}\right)$:

$$
\sum_{l=1}^{3} q_{l}^{2}\left(\sigma_{A}\right)_{l}\left(\sigma_{B}\right)_{l}, \quad\left(\tau_{A} \cdot \tau_{B}\right) \sum_{l=1}^{3} q_{l}^{2}\left(\sigma_{A}\right)_{l}\left(\sigma_{B}\right)_{l}
$$

\rightarrow terms with total spin $S=0,2,4 . S=0$ terms already included in NLO contact operators. Others introduce unphysical mixing such as ${ }^{3} D_{3}$ into ${ }^{3} S_{1}-{ }^{3} D_{1}$
\rightarrow introduce two lattice operators

$$
\begin{aligned}
& \tilde{V}_{R 1}=\frac{1}{2} \tilde{C}_{R 1}: \sum_{S=1}^{3} \sum_{\vec{n}}\left[\nabla_{S,(\nu)} \rho_{S}^{a^{\dagger}, a}(\vec{n})\right] \nabla_{S,(\nu)} \rho_{S}^{a^{\dagger}, a}(\vec{n}): \\
& \tilde{V}_{R 2}=\frac{1}{2} \tilde{C}_{R 2}: \sum_{S=1}^{3} \sum_{I=1}^{3} \sum_{\vec{n}}\left[\nabla_{S,(\nu)} \rho_{S, I}^{a^{\dagger}, a}(\vec{n})\right] \nabla_{S,(\nu)} \rho_{S, I}^{a^{\dagger}, a}(\vec{n}):
\end{aligned}
$$

\rightarrow adjust the isoscalar combination of these terms to eliminate the unphysical mixing of the ${ }^{\mathbf{3}} \boldsymbol{D}_{\mathbf{3}}$ partial wave. The isovector combination is set to zero (unphysical mixing tiny)

- also rotational symmetry breaking terms in the OPE, can be dealt with by a perturbative improvement of the $\boldsymbol{\pi} \boldsymbol{N}$ coupling

FURTHER ROTATIONAL SYMMETRY BREAKING

- The $2 J+1$ magnetic quantum number degeneracy is broken:

$$
\begin{aligned}
& \mathcal{H}_{J=0}=A_{1} \\
& \mathcal{H}_{J=1}=T_{1} \\
& \mathcal{H}_{J=2}=E \oplus T_{2} \\
& \mathcal{H}_{J=0}=A_{2} \oplus T_{1} \oplus T_{2}
\end{aligned}
$$

- The $J=2$ eigenfunctions are:

$$
\begin{aligned}
\mathcal{H}_{J=2} & =E\left[\sqrt{\frac{1}{2}} \boldsymbol{Y}_{2,2}+\sqrt{\frac{1}{2}} \boldsymbol{Y}_{2,-2}, \boldsymbol{Y}_{2,0}\right] \\
& \oplus \boldsymbol{T}_{2}\left[\sqrt{\frac{1}{2}} \boldsymbol{Y}_{2,2}-\sqrt{\frac{1}{2}} \boldsymbol{Y}_{2,-2}, Y_{2, \pm 1}\right]
\end{aligned}
$$

\Rightarrow Detailed studies in cluster models

FURTHER ROTATIONAL SYMMETRY BREAKING cont'd ${ }^{27}$

- Improved kinetic energy/dispersion relation
\rightarrow standard use in NLEFT (discussed before)
- Further methods developed in cluster models:
- weighted average for the energy

- orientation average for tensor ops Ex: quadrupole moment $\left\langle r^{2} Y_{2 \mu}\right\rangle$ of ${ }^{12} \mathrm{C}$
- finite volume angular momentum corrections Ex: squared ang. mom. in ${ }^{8} \mathrm{Be}\left(4_{2}^{+}, 6_{2}^{+}\right)$

Lu, Lähde, Lee, UGM, Phys. Rev. D90 (2014) 034507
Lu, Lähde, Lee, UGM, Phys. Rev. D92 (2015) 014506
Stellin, Elhatisari, UGM, EPJA 54 (2018) 232

Galilean invarince on the lattice: Breaking and restoration

NN system: Li, Elhatisari, Epelbaum, Lu, Lee, UGM, [arXiv:1902.01295]
pinhole algorithm: Elhatisari, Epelbaum, Krebs, Lähde, Lee, Li, Lu, UGM, Rupak, Phys. Rev. Lett. 119 (2017) 222505

GALILEAN INVARIANCE BREAKING: NN SYSTEM

- Consider np scattering first with total momentum $\overrightarrow{\boldsymbol{P}}=\mathbf{0}$, match to Nijmegen PWA
- then boost to a moving frame with $\overrightarrow{\boldsymbol{P}}=(2 \pi / L) \vec{k}$
\Rightarrow if the results are different, then there is Galilean invariance breaking \rightarrow slide
- introduce operators to compensate for GIB (up-to-next-to-next-to-nearest neighbors)

$$
\begin{aligned}
& V_{\mathrm{GIR}}=V_{\mathrm{GIR}}^{0}+V_{\mathrm{GIR}}^{1}+V_{\mathrm{GIR}}^{2} \\
& V_{\mathrm{GIR}}^{0}=C_{\mathrm{GIR}}^{0} \sum_{\mathrm{n}, i, j, i^{\prime}, j^{\prime}} a_{i, j}^{\dagger}(\mathrm{n}) a_{i^{\prime}, j^{\prime}}^{\dagger}(\mathrm{n}) a_{i^{\prime}, j^{\prime}}(\mathrm{n}) a_{i, j}(\mathrm{n} \\
& V_{\mathrm{GIR}}^{1}=C_{\mathrm{GIR}}^{1} \sum_{\mathrm{n}, i, j, i^{\prime}, j^{\prime}} \sum_{\left|\mathrm{n}^{\prime}\right|=1} a_{i, j}^{\dagger}\left(\mathrm{n}+\mathrm{n}^{\prime}\right) a_{i^{\prime}, j^{\prime}}^{\dagger}\left(\mathrm{n}+\mathrm{n}^{\prime}\right) a_{i^{\prime}, j^{\prime}}(\mathrm{n}) a_{i, j}(\mathrm{n}) \\
& V_{\mathrm{GIR}}^{2}=C_{\mathrm{GIR}}^{2} \sum_{\mathrm{n}, i, j, i^{\prime}, j^{\prime}} \sum_{\left|\mathrm{n}^{\prime}\right|=\sqrt{2}} a_{i, j}^{\dagger}\left(\mathrm{n}+\mathrm{n}^{\prime}\right) a_{i^{\prime}, j^{\prime}}^{\dagger}\left(\mathrm{n}+\mathrm{n}^{\prime}\right) a_{i^{\prime}, j^{\prime}}(\mathrm{n}) a_{i, j}(\mathrm{n})
\end{aligned}
$$

- restore GI by fixing the coefficients (in each partial wave such that)

$$
C_{\text {GIR }}^{0}+6 C_{\text {GIR }}^{1}+12 C_{\text {GIR }}^{2}=0
$$

BREAKING and RESTORATION of GALILEAN INV.

- Consider highly smeared N3LO interactions, compare rest-frame $k=[0,0,0]$ with moving frame $k=[3,3,3]$

\Rightarrow effects i.g. small but must be taken care of

CENTER-of-MASS PROBLEM

- AFQMC calculations involve states that are superpositions of many different center-of-mass (com) positions

$$
\begin{aligned}
& Z_{A}(\tau)=\left\langle\Psi_{A}(\tau) \mid \Psi_{A}(\tau)\right\rangle \\
& \left|\Psi_{A}(\tau)\right\rangle=\exp (-\boldsymbol{H} \tau / 2)\left|\Psi_{A}\right\rangle
\end{aligned}
$$

- but: translational invariance requires summation over all transitions

$$
Z_{A}(\tau)=\sum_{i_{\mathrm{com}}, j_{\mathrm{com}}}\left\langle\Psi_{A}\left(\tau, i_{\mathrm{com}}\right) \mid \Psi_{A}\left(\tau, j_{\mathrm{com}}\right)\right\rangle, \quad \text { com }=\bmod \left(\left(i_{\mathrm{com}}-j_{\mathrm{com}}\right), L\right)
$$

$i_{\text {com }}\left(j_{\text {com }}\right)=$ position of the center-of-mass in the final (initial) state
\rightarrow density distributions of nucleons can not be computed directly, only moments
\rightarrow need to overcome this deficieny

- Solution to the CM-problem:
track the individual nucleons using the pinhole algorithm
- Insert a screen with pinholes with spin \& isospin labels that allows nucleons with corresponding spin \& isospin to pass = insertion of the A-body density op.:

$$
\begin{aligned}
& \rho_{i_{1}, j_{1}, \cdots i_{A}, j_{A}}\left(\mathrm{n}_{1}, \cdots \mathrm{n}_{A}\right) \\
& \quad=: \rho_{i_{1}, j_{1}}\left(\mathrm{n}_{1}\right) \cdots \rho_{i_{A}, j_{A}}\left(\mathbf{n}_{A}\right):
\end{aligned}
$$

- MC sampling of the amplitude:

$$
\begin{array}{r}
\boldsymbol{A}_{i_{1}, j_{1}, \cdots i_{A}, j_{A}}\left(\mathrm{n}_{1}, \ldots, \mathrm{n}_{A}, L_{t}\right) \\
=\left\langle\Psi_{A}(\tau / 2)\right| \rho_{i_{1}, j_{1}, \cdots i_{A}, j_{A}}\left(\mathrm{n}_{1}, \ldots, \mathrm{n}_{A}\right)\left|\Psi_{A}(\tau / \mathbf{2})\right\rangle
\end{array}
$$

HMC updates for aux./pion fields

$$
\tau_{i}=\tau
$$

- Allows to measure proton and neutron distributions
- Resolution scale $\sim a / \boldsymbol{A}$ as cm position r_{cm} is an integer n_{cm} times a / \boldsymbol{A}

PROTON and NEUTRON DENSITIES in CARBON

- first NLEFT calculation of the charge density in ${ }^{12} \mathrm{C}$ [proton size accounted for]
- asymptotic properties of the distributions from the volume dependence of N -body bound states

König, Lee, Phys. Lett. B779 (2018) 9

- open symbols: neutron / closed symbols: proton

\Rightarrow independent of projection time \rightarrow ground state
\Rightarrow small error bars \rightarrow sign problem under control

FORM FACTORS

- Fit charge distributions by a Wood-Saxon shape
\hookrightarrow get the form factor from the Fourier-transform (FT)
\hookrightarrow uncertainties from a direct FT of the lattice data

\Rightarrow detailed structure studies become possible

Nuclear Thermodynamics

B. N. Lu, D. Lee, UGM, et al., in preparation

TRACE PINHOLE ALGORITHM

- The pinhole states span the whole A-body Hilbert space
- The canonical partition function can be expressed using pinholes:

$$
\begin{aligned}
Z_{A} & =\operatorname{Tr}_{\mathrm{A}}[\exp (-\beta H)], \beta=1 / T \\
& =\sum_{n_{1}, \cdots, n_{A}} \int \mathcal{D} s \mathcal{D} \pi\left\langle n_{1}, \cdots, n_{A}\right| \exp [-\beta H(s, \pi)]\left|n_{1}, \cdots, n_{A}\right\rangle
\end{aligned}
$$

- allows to study: liquid-gas phase transition at $\boldsymbol{T} \simeq 10 \mathrm{MeV}$
thermodynamics of finite nuclei
thermal dissociation of hot nuclei
cluster yields of dissociating nuclei

HOT CARBON in a BOX

- 6 protons and 6 neutrons in a box with $L=12 \mathrm{fm}$ w/periodic b.c.
- specific heat peaks at $T=3.3 \mathrm{MeV}$
- rise of the entropy w/ temperature, saturates at $\boldsymbol{T} \simeq \mathbf{2 5} \mathrm{MeV}$
- similar behavior of the level density
- liquid to alpha-particle gas transition smeared due to finite size effects
\rightarrow look at this in more detail

HOT CARBON in a BOX: DENSITY PROFILE

- intrinsic density profile collapses w/ increasing temperature
- α-clusters evaporate form the liquid drop
- radius increases gradually, evidencing a smeared phase transition

HOT CARBON in a BOX: DENSITY PROFILE

- intrinsic density profile collapses w/ increasing temperature
- α-clusters evaporate form the liquid drop
- radius increases gradually, evidencing a smeared phase transition

\rightarrow similar results for ${ }^{16} \mathrm{O}$ and ${ }^{40} \mathrm{Ca}$

HOT CALCIUM in a BOX: CLUSTER YIELDS

- A hot nucleus is hard to detect, can not control temperature, pressure etc
- but we can measure cluster yields in nuclear collisions
- ab initio calculation of the cluster yields of ${ }^{40} \mathrm{Ca}$:

SUMMARY \& OUTLOOK

- Nuclear lattice simulations: a new quantum many-body approach
\rightarrow based on the successful continuum nuclear chiral EFT
\rightarrow a number of highly visible results already obtained
- Rotational symmetry breaking and its consequences
\rightarrow scattering can be treated using the spherical wall \& aux. potential method
\rightarrow cures: improvement, averaging over multiplets and unphysical operators
- Galilean invariance breaking and its consequences
\rightarrow GIR operators in the two-nucleon system
\rightarrow COM problem in AFQMC calculations: pinhole algorithm to the rescue
- Nuclear thermodynamics
\rightarrow partition function via the trace pinhole algorithm
\rightarrow first promising results for nuclei at finite temperature

SPARES

COULOMB INTERACTION

- Proton-proton repulsion in coordinate space:

$$
\mathcal{A}\left[V_{\mathrm{em}}\right]=\frac{\alpha_{\mathrm{EM}}}{r}\left(\frac{1+\tau_{3}}{2}\right)_{A}\left(\frac{1+\tau_{3}}{2}\right)_{B}, \alpha_{\mathrm{EM}} \simeq 1 / 137
$$

- Lattice operator:
$\tilde{V}_{\mathrm{em}}=\frac{1}{2}: \sum_{\vec{n}, \vec{n}^{\prime}} \frac{\alpha_{\mathrm{em}}}{R\left(\vec{n}-\vec{n}^{\prime}\right)} \frac{1}{4}\left[\rho^{a^{\dagger}, a}(\vec{n})+\rho_{I=3}^{a^{\dagger}, a}(\vec{n})\right]\left[\rho^{a^{\dagger}, a}\left(\vec{n}^{\prime}\right)+\rho_{I=3}^{a^{\dagger}, a}\left(\vec{n}^{\prime}\right)\right]:$
$R(\vec{n})=\max (1 / 2,|\vec{n}|)$
\rightarrow effect of two protons on the same site not observable, $R(\vec{n})=|\vec{n}|$ absorbed in $p p$ contact term
\rightarrow include $p p$ and $n \boldsymbol{n}$ contact terms to allow for $a_{n p} \neq a_{n n} \neq a_{p p}$ \& other IB terms
$\mathcal{A}\left[V_{n n}\right]=C_{n n}\left(\frac{1-\tau_{3}}{2}\right)_{A}\left(\frac{1-\tau_{3}}{2}\right)_{B}, \mathcal{A}\left[V_{p p}\right]=C_{p p}\left(\frac{1+\tau_{3}}{2}\right)_{A}\left(\frac{1+\tau_{3}}{2}\right)_{B}$

HYBRID MONTE CARLO

Duane et al., Phys. Lett. B 195 (1986) 216

- apply hybrid MC to fields s, s_{I}, π_{I} for the calculation of the path-integral
- introduce conjugate fields $p_{\pi_{I}}, p_{s}, p_{S_{I}}$

$$
\begin{aligned}
& H_{H M C}=\frac{1}{2} \sum_{I, \vec{n}}\left(p_{\pi_{I}}^{2}(\vec{n})+p_{s}^{2}(\vec{n})+p_{s_{I}}^{2}(\vec{n})\right)+V\left(\pi_{I}, s, s_{I}\right) \\
& V\left(\pi_{I}, s, s_{I}\right)=S_{\pi \pi}+S_{s s}-\log \{|\operatorname{det} \mathcal{M}|\}
\end{aligned}
$$

generate new configs for $p_{\pi_{I}}, p_{s}, p_{S_{I}}, \pi_{I}, S, s_{I}$ by molecular dynamics trajectories

repeat steps many times

EXTRACTING PHASE SHIFTS on the LATTICE

- Lüscher's method:

Two-body energy levels below the inelastic threshold on a periodic lattice are related to the phase shifts in the continuum

Lüscher, Comm. Math. Phys. 105 (1986) 153
Lüscher, Nucl. Phys. B 354 (1991) 531

- Spherical wall method:

Impose a hard wall on the lattice and use the fact that the wave function vanishes for $r=R_{\text {wall }}$:

$$
\psi_{\ell}(r) \sim\left[\cos \delta_{\ell}(p) F_{\ell}(p r)+\sin \delta_{\ell}(p) G_{\ell}(p r)\right]
$$

Borasoy, Epelbaum, Krebs, Lee, UGM, EPJA 34 (2007) 185
Carlson, Pandharipande, Wiringa, NPA 424 (1984) 47

PROTON and NEUTRON DENSITIES in CARBON

- open symbols: neutron
- closed symbols: proton
- proton size accounted for
- asymptotic properties of the distributions from the volume dependence of N -body bound states

König, Lee, Phys. Lett. B779 (2018) 9

- consistent with data
- fit to data from

Kline et al., Nucl. Phys. A209 (1973) 381

