High-Order Many-Body Bogoliubov Perturbation Theory

Mikael FROSINI

CEA/DPhN, Saclay, France
P. Demol, M. Frosini, A. Tichai, J. Ripoche, V. Somà, T. Duguet

Contents

- Introduction
- Formalism

O Wave-functions and observables

- Applications

O Resummed observablesA posteriori corrections
\odot Conclusions

Contents

- Introduction
\odot Formalism

O Wave-functions and observables

- Applications

O Resummed observablesA posteriori corrections
\odot Conclusions

Single-reference expansion many-body methods and symmetries
Nuclear Many-Body Methods

Particle number corrections in BMBPT

A. Tichai, P. Arthuis et al. Phys.Lett. B786 (2018) 195-200
arXiv:1806.10931

Single-reference expansion many-body methods

Symmetry conserving expansion

$H=H_{0}+H_{1}$ such that $\begin{aligned} & {\left[H_{0}, A\right]=0} \\ & {\left[H_{1}, A\right]=0}\end{aligned}$
Full $\left|\Psi_{n}^{A}\right\rangle$ as perturbed eigenstate.

Many-body problem

A-Body Hamiltonian $H=T+V^{2 N}+V^{3 N}+\cdots+V^{A N}$

U(1) Symmetry

$$
[H, A]=0
$$

Symmetry breaking expansion

$$
H=H_{0}^{\prime}+H_{1}^{\prime} \quad \text { such that } \quad\left[H_{0}^{\prime}, A\right] \neq 0
$$

Open-shell

- Static / dynamical correlations
- Polynomial cost at given order
- Truncated expansions break symmetry

Non-degenerate
Degenerate
Non-degenerate
Good starting point Improper starting point Proper starting point

High order constrained BMBPT

Constrained BMBPT

- Constrain average A at each order P.
- Convergence?

Workaround

- Numerically costly.
- A posteriori correction.

Order P constraint

Why?
Truncated expansions \rightarrow Wrong average particle number.
Intrisincally iterative

Particle number adjusted at each working order P.

Toward high orders

- Series behavior?
- Particle number asymptotic restoration?
- Check low orders

Truncation

Toy Model / Proof of principle

Realistic interaction

Far from model space convergence

CI truncation contamination at high order

More informations than standard MBPT

Contents

- Introduction
- FormalismWave-functions and observables
\odot Applications

O Resummed observablesA posteriori corrections
\odot Conclusions

Bogoliubov reference state

Bogoliubov transformation

$$
\begin{aligned}
& \beta_{k}=\sum_{p} U_{p k}^{*} c_{p}+V_{p k}^{*} c_{p}^{\dagger} \\
& \beta_{k}^{\dagger}=\sum_{p} U_{p k} c_{p}^{\dagger}+V_{p k} c_{p}
\end{aligned}
$$

$$
\left\{\beta_{k}, \beta_{k^{\prime}}\right\}=0
$$

Bogoliubov state
$|\Phi\rangle \equiv C \prod_{k} \beta_{k}|0\rangle$
$\beta_{k}|\Phi\rangle=0 \quad \forall k$

Vacuum state
Reduces to SD in H_{A} if $\mathrm{V}=0$

$$
\mathcal{W}=\left(\begin{array}{ll}
U & V^{*} \\
V & U^{*}
\end{array}\right) \text { unitary, i.e. }\left\{\beta_{k^{\prime}}^{\dagger}, \beta_{k^{\prime}}^{\dagger}\right\}=0
$$

Breaks U(1) symmetry

$$
A|\Phi\rangle \neq \mathrm{A}|\Phi\rangle
$$

Quasi-particle excitations

$$
\left|\Phi^{\alpha \beta \ldots}\right\rangle \equiv \beta_{\alpha}^{\dagger} \beta_{\beta}^{\dagger} \ldots|\Phi\rangle
$$

Orthonormal basis of Fock space

Reduces to npnh excit. in H_{A} if $\mathrm{V}=0$

Ritz variational problem with a Bogoliubov ansatz $\quad \Omega=H-\lambda A$
Minimize $\frac{\langle\Phi| \Omega|\Phi\rangle}{\langle\Phi \mid \Phi\rangle}=\Omega^{00}$ while keeping

1) the Bogoliubov transformation unitary
2) particle number fixed on average

HFB eigenvalue equation

$$
\rightleftarrows\left(\begin{array}{cc}
h & \Delta \\
-\Delta^{*} & -h^{*}
\end{array}\right) \underbrace{\binom{U_{k}}{V_{k}}}=E_{k}\binom{U_{k}}{V_{k}} \quad \text { with } \begin{gathered}
h_{p q} \equiv\langle\Phi|\left\{\left[c_{p}, \Omega\right], c_{q}^{\dagger}\right\}|\Phi\rangle \\
\Delta_{p q} \equiv\langle\Phi|\left\{\left[c_{p}, \Omega\right], c_{q}\right\}|\Phi\rangle
\end{gathered}
$$

Fully characterize $|\Phi\rangle \quad$ Quasi-particle energies > 0

Time independent (un)constrained BMBPT

Splitting and basis

$$
\begin{aligned}
& \Omega_{P} \equiv \Omega_{0, P}+\Omega_{1, P} \quad\left|\Phi_{P}^{k_{1} k_{2} \cdots}\right\rangle \equiv \beta_{k_{1}}^{\dagger} \beta_{k_{2}}^{\dagger} \cdots\left|\Phi_{P}\right\rangle \\
& \Omega_{0, P}\left|\Phi^{k_{1} k_{2} \cdots}\right\rangle=\left(\Omega^{00, P}+E_{k_{1}, P}+E_{k_{2}, P}+\cdots\right)\left|\Phi^{k_{1} k_{2} \cdots}\right\rangle
\end{aligned}
$$

Auxiliary problem

$\Omega_{P}(x) \equiv \Omega_{0, P}+x \Omega_{1, P}, x \in[0,1]$
$\Omega_{P}(x)\left|\Psi_{n, P}(x)\right\rangle=\tilde{\mathcal{E}}_{n, P}(x)\left|\Psi_{n, P}(x)\right\rangle$

$$
\begin{aligned}
\lim _{x \rightarrow 1}\left|\Psi_{n}(x)\right\rangle & =\left|\Psi_{n}^{\mathrm{A}}\right\rangle \\
\lim _{x \rightarrow 1} \tilde{\mathcal{E}_{n}}(x) & =\mathcal{E}_{n}^{\mathrm{A}}
\end{aligned}
$$

Perturbative expansion

$$
\begin{aligned}
&\left|\Psi_{n, P}(x)\right\rangle \equiv\left|\Phi_{n, P}^{(0)}\right\rangle+x\left|\Phi_{n, P}^{(1)}\right\rangle+x^{2}\left|\Phi_{n, P}^{(2)}\right\rangle+\ldots=\left|\Phi_{n, P}^{(0)}\right\rangle+\sum_{p \geq 1} x^{p}\left|\Phi_{n, P}^{(p)}\right\rangle \\
& \tilde{\mathcal{E}}_{n, P}(x) \equiv \tilde{\mathcal{E}}_{n, P}^{(0)}+x \tilde{\mathcal{E}}_{n, P}^{(1)}+x^{2} \tilde{\mathcal{E}}_{n, P}^{(2)}+\cdots=\tilde{\mathcal{E}}_{n, P}^{(0)}+\sum_{p \geq 1} x^{p} \tilde{\mathcal{E}}_{n, P}^{(p)}
\end{aligned}
$$

Intermediate normalization

$$
\left\langle\Phi_{n} \mid \Phi_{n}^{(p)}\right\rangle \equiv \delta_{n p}
$$

Order-P approximation

$$
\begin{aligned}
\left|\Psi_{n}^{[P]}(x)\right\rangle & \equiv\left|\Phi_{n, 0}^{(0)}\right\rangle+\sum_{p \geq 1}^{P} x^{p}\left|\Phi_{n, 0}^{(p)}\right\rangle \\
\left|\Psi_{n, P}^{[P]}(x)\right\rangle & \equiv\left|\Phi_{n, P}^{(0)}\right\rangle+\sum_{p=1}^{P} x^{p}\left|\Phi_{n, P}^{(p)}\right\rangle
\end{aligned}
$$

Two subcases considered:

Unconstrained:

- Constrained at HFB level
- $\mathrm{A}_{\text {HFB }}$ matches A
- Series

Constrained:

- Constrained at working order P
- $\mathrm{A}^{[P]}$ matches A
- Iterative process (root finding)

Linked diagrams contributing to the wave-function Computationally: Matrix-Vector product
Visited configuration space increasing at each order

- Vacuum, splitting, expansion P-dependent
- Sequence of partial sums

Evaluation of observables

Observable O

$$
O\left|\Psi_{n}^{A}\right\rangle=\mathcal{O}_{n}\left|\Psi_{n}^{A}\right\rangle
$$

$$
O=\Omega, \Omega(x), H, A, A^{2}
$$

Projective approach

$$
\begin{aligned}
\mathcal{O}_{n, P}^{[P]}(x) & \equiv \operatorname{Re} \frac{\left\langle\Phi_{n, P}^{(0)}\right| O\left|\Psi_{n, P}^{[P]}(x)\right\rangle}{\left\langle\Phi_{n, P}^{(0)} \mid \Psi_{n, P}^{(P)}(x)\right\rangle} \\
& =\sum_{p=0}^{P} x^{p}\left\langle\Phi_{n, P}^{(0)}\right| O\left|\Phi_{n, P}^{(p)}\right\rangle
\end{aligned}
$$

- Partial sum of series.
- Visits smaller configuration space than the wave-function.
- Traditionally used in realistic calculations.
- Matches eigenvalue for eigenvectors.

$$
\begin{aligned}
& \rightarrow\left\{\begin{array}{l}
\mathcal{O}_{n}=\left\langle\Phi_{n}\right| O\left|\Psi_{n}^{A}\right\rangle \\
\mathcal{O}_{n}=\frac{\left\langle\Psi_{n}^{A}\right| O\left|\Psi_{n}^{A}\right\rangle}{\left\langle\Psi_{n}^{A} \mid \Psi_{n}^{A}\right\rangle}
\end{array}\right. \\
& \left|\Psi_{n}^{A}\right\rangle \rightarrow\left|\Psi_{n}^{[P]}\right\rangle,\left|\Psi_{n, P}^{[P]}\right\rangle
\end{aligned}
$$

Expectation value approach

$\langle O\rangle_{n, P}^{[P]}(x) \equiv \frac{\left\langle\Psi_{n, P}^{[P]}(x)\right| O\left|\Psi_{n, P}^{[P]}(x)\right\rangle}{\left\langle\Psi_{n, P}^{[P]}(x) \mid \Psi_{n, P}^{[P]}(x)\right\rangle}$
$=\frac{\sum_{p q=0}^{P} x^{p+}{ }^{q}\left\langle\Phi_{n, P}^{(p)}\right| O\left|\Phi_{n, P}^{(q)}\right\rangle}{\sum_{f s=0}^{P} x^{r+s}\left\langle\Phi_{n, P}^{(r)} \mid \Phi_{n, P}^{(s)}\right\rangle}$

- Rationalfraction.
- Visits same configuration space as the wave-function
- Computationally expansive in realistic calculations.

Bounded from below.

Summary

Operator	Eigenvalue	Projective	Pade resummation	Eigenvector Continuation	Exact Diagonalization
Ω	\mathcal{E}_{n}^{A}	$\mathcal{E}_{n, P}^{[P]}$			$\mathcal{E}_{n, P, e x}$
A	\mathcal{A}_{n}^{A}	$\mathcal{A}_{n, P}^{[P]}$			$\mathcal{A}_{n, P, e x}$
H	E_{n}^{A}	$E_{n, P}^{[P]}$			$E_{n, P, e x}$
$(A-\mathcal{A})^{2}$	$\Delta \mathcal{A}_{n}^{A}(=0)$	$\Delta \mathcal{A}_{n, P}^{[P]}$			$\Delta \mathcal{A}_{n, P, e x}$
$(A-\mathcal{A})^{2} / \mathcal{A}_{0}$	$\rho_{\mathcal{A} n}^{2}(=0)$	$\rho_{\mathcal{A} n, P}^{2}$			$\rho_{\mathcal{A} n, e x, P}^{2}$

Lower index P removed in case of unconstrained BMBPT

Contents

\odot Introduction
\odot Formalism

O Wave-functions and observables
\bigcirc ApplicationsResummed observablesA posteriori corrections
\odot Conclusions

First results of unconstrained BMBPT

See A. Tichai talk
Maybe constraining would help?

Constrained BMBPT Taylor series

Resummation of projective observables using Pade approximants

$\mathrm{O}_{n, P}^{[P]}(x)=\sum_{p=0}^{P} x^{p}\left\langle\Phi_{n, p}^{(0)}\right| O\left|\Phi_{n, p}^{(p)}\right\rangle \quad$ How to deal with divergent partial sums at $\mathbf{x}=\mathbf{1}$?
$\mathcal{O}(x)\left(=\sum o_{i} x^{i}\right) \quad \mathcal{O}[M / N](x)=\frac{\sum_{i=1}^{M} a_{i} x^{i}}{1+\sum_{i=1}^{N} b_{i} x^{i}}$ so that $\left.\frac{\mathrm{d}^{k} \mathcal{O}[M / N]}{\mathrm{d} x^{k}}\right|_{x=0}=\left.\frac{\mathrm{d}^{k} \mathcal{O}}{\mathrm{~d} x^{k}}\right|_{x=0} \quad \forall 0 \leq k \leq M+N$.

$$
\mathcal{O}[M / N](x) \equiv \frac{\left|\begin{array}{cccc}
o_{M-N+1} & o_{M-N+2} & \cdots & o_{M+1} \\
o_{M-N+2} & o_{M-N+3} & \cdots & o_{M+2} \\
\vdots & \vdots & & \ddots \\
\sum_{i=0}^{M-N} o_{i} x^{N+i} & \sum_{i=0}^{M-N_{M+1}} o_{i} x^{N+i-1} & \cdots & \vdots \\
\left|\begin{array}{cccc}
o_{M-N+1} & o_{M-N+2} & \cdots & o_{M+1} \\
o_{M-N+2} & o_{M-N+3} x^{i}
\end{array}\right| \\
\vdots & \cdots & o_{M+2} \\
o_{M-1} & \vdots & \ddots & \vdots \\
o_{M} & o_{M+1} & \cdots & o_{M+N} \\
x^{N} & x^{N-1} & \cdots & 1
\end{array}\right|}{}
$$

Unconstrained: resummation of the projective truncated series.
Constrained: resummation of the partial sum at each order.

Remarks:

- Captures poles in the complex plane.
- Efficient at high order only: instabilities.
- No extra work: post-treatment only.

Eigen-vector continuation

D. K. Frame et al. Phys. Rev. Lett 121.3 (2018) arXiv: 1711.07090
$\left|\Psi_{n}^{[P]}(x)\right\rangle \quad$ visits a small space and is converging for small $\mathrm{x} \quad 0<x_{0}<\cdots<x_{P} \ll 1$
\longrightarrow Extrapolate $\left|\Psi_{n}^{[P]}\right\rangle$ by diagonalizing Ω on $\left|\Psi_{n}^{[P]}\left(x_{0}\right)\right\rangle, \cdots,\left|\Psi_{n}^{[P]}\left(x_{P}\right)\right\rangle$ or equivalently on $\left|\Phi_{n}^{(0)}\right\rangle, \cdots,\left|\Phi_{n}^{(P)}\right\rangle$

$$
\begin{aligned}
\boldsymbol{\Omega}_{i j, P} & \equiv\left\langle\Phi_{n, P}^{(i)}\right| \Omega\left|\Phi_{n, P}^{(j)}\right\rangle \\
\mathbf{N}_{i j, P} & \equiv\left\langle\Phi_{n, P}^{(i)} \mid \Phi_{n, P}^{(j)}\right\rangle
\end{aligned}
$$

Generalized

$\boldsymbol{\Omega} X=\lambda \boldsymbol{N} X$.

Eigenvalue Problem
$\mathcal{K}_{n}^{P} \equiv \operatorname{Vect}\left\{\Omega^{p}\left|\Phi_{n}\right\rangle, p \leq P\right\} \quad$ Diagonalization on Krylov space: similar to Lanczos algorithm

Ground state

$\left|\bar{\Psi}_{0, P, E C}^{[P]}(x)\right\rangle \equiv \operatorname{argmin}_{|\Psi\rangle \in \mathcal{K}_{0}^{P}} \frac{\langle\Psi| \Omega_{P}|\Psi\rangle}{\langle\Psi \mid \Psi\rangle}$
P-order approx. of Ω ground state connected to $\left|\Phi_{0}\right\rangle$

Excited states

Not done here but reachable too.

Observables

$$
\mathcal{O}_{n, P, E C}^{[P]} \equiv \frac{\left\langle\Phi_{n}\right| O\left|\Psi_{n, P, E C}^{[P]}\right\rangle}{\left\langle\Phi_{n} \mid \Psi_{n, P, E C}^{[P]}\right\rangle}
$$

Remarks

- No need of computing the vectors explicitly
- Increases complexity
- Valid also at low orders
- Variational: improves at each iteration

Summary

Operator	Eigenvalue	Projective	Pade resummation	Eigenvector Continuation	Exact
Ω	\mathcal{E}_{n}^{A}	$\mathcal{E}^{[P]}\left[\begin{array}{l} {[P]} \end{array}\right.$	$\mathcal{E}_{n, P, P a d e}^{[P]}$	$\mathcal{E}_{n, P, E C}^{[P]}$	$\mathcal{E}_{n, P, e x}$
A	\mathcal{A}_{n}^{A}	$\mathcal{A}_{n, P}^{[P]}$	$\mathcal{A}_{n, P, P a d e}^{[P]}$	$\mathcal{A}_{n, P, E C}^{[P]}$	$\mathcal{A}_{n, P, e x}$
H	E_{n}^{A}	$E_{n, P}^{[P]}$	$\begin{aligned} & E_{n, P, P a d e}^{[P]} \end{aligned}$	$\begin{aligned} & E_{n, P, E C}^{[P]} \end{aligned}$	$E_{n, P, e x}^{[P]}$
$(A-A)^{2}$	$\Delta A_{n}^{A}(=0)$	$\Delta A_{n, P}^{[P]}$	$\Delta \mathcal{A}_{n, P, P a d e}^{[P]}$	$\Delta \mathcal{A}_{n, P, E C}^{[P]}$	$\Delta \mathcal{A}_{n, P, e x}^{[P]}$
$(A-\mathcal{A})^{2} / \mathcal{A}_{0}$	$\rho_{\mathcal{A} n}^{2}(=0)$	$\rho^{2} \mathcal{A} n, P$	$\rho^{2} \mathcal{A} n, P, P a d e$	$\begin{aligned} & \rho^{2[P]} \\ & \mathcal{A} n, P, E C \end{aligned}$	$\rho^{2} \mathcal{A}_{n, e x, P}$

Lower indice P removed in case of unconstrained BMBPT

Resummed observables in unconstrained BMBPT

Still wrong particle number even in the limit...

Resummed observables wrt. HFB

Constrained BMBPT

A posteriori correction

Goal : Correct for the discrepancy in average neutron / proton number without constraining at order $\mathrm{P}>0$

$$
\left.E_{0}^{[P]}\right|_{A_{0}}=\mathcal{E}_{0}^{[P]}+\lambda A_{0} .\left.\left.\quad E_{0}^{[P]}\right|_{A_{0}+\delta A} \approx E_{0}^{[P]}\right|_{A_{0}}+\lambda \delta A
$$

$$
\left.\left.\tilde{E}_{0}^{P}\right|_{A} \equiv E_{0}^{[P]}\right|_{A[P]}+\lambda\left(A-A^{[P]}\right)=\left.\mathcal{E}_{0}^{[P]}\right|_{A[P]}+\lambda A
$$

- No additional work (only one vacuum).
- Valid for small corrections.
- Apply to all computation methods of observables.
- Already used at order 3 in realistic calculations.

A posteriori correction vs. HFB vacuum

Comparison with constrained BMBPT

$$
\leadsto \mathcal{E}_{0,0, \text { Pade }}^{[P]}+\lambda 18 \quad \star \mathcal{E}_{0,0, E C}^{[P]}+\lambda 18
$$

Contents

- Introduction
© Formalism

O Wave-functions and observables

- Applications

O Resummed observablesA posteriori corrections

- Conclusions

Conclusion

Accurate results at low order

A posteriori corrections

Resummation techniques

Particle number restoration

- Standard projective approach accurate (divergence at high order)
- Significant contamination to A appear early.
- Accurate workaround to constrained BMBPT.
- No additional cost.
- Pade does not help at low order.
- Eigenvector continuation: promising result
- What about computational cost?
- Increases convergence rate.
- Need commutation between A and $\mathrm{H} .$. .
- ... seem to appear at larger configuration space.
- SDT(Q)(P) : higher order in PT with full operator.
- Underlines the need for projection techniques.

Thank you!

- Pepijn Demol
- Julien Ripoche
- Alexander Tichai
- Thomas Duguet
- Vittorio Somà

KU LEUVEN

Analytic continuation

Dillon Frame et al. Phys. Rev. Lett 121.3 (2018) arXiv: 1711.07090

$$
\begin{aligned}
& |\Psi(c)\rangle=\sum_{n} \frac{c^{n}}{n!}\left|\Psi^{(n)}(0)\right\rangle \\
& |\Psi(x)\rangle=\sum_{m} \frac{(x-c)^{m}}{m!}\left|\Psi^{(m)}(x)\right\rangle
\end{aligned}
$$

$$
|\Psi(x)\rangle=\sum_{n m} \frac{(x-c)^{m} c^{n}}{n!m!}\left|\Psi^{(m+n)}(0)\right\rangle
$$

Importance truncation

$$
\text { A. Tichai, J. Ripoche, T. Duguet } \quad \text { arXiv:1902.09043 } \quad \mathrm{P}=2
$$

