Proposal of a size-extensive uncontracted MR-PT2

Emmanuel Giner,

Yan Garniron, Celestino Angeli, Athony Scemama, Jean-Paul Malrieu

Laboratoire de Chimie Théorique Sorbonne Université

Single reference systems

Weakly correlated systems

- Qualitatively :
 - $|\Psi\rangle \approx |\mathbf{HF}\rangle$
 - Closed-shell grd. states
 - ► Large HOMO-LUMO gap
- Dynamical correlation
 - ▶ Short-range (\approx cusp)
 - ► Long-range (\approx VdW)
- e-e correlation is weak :
 - Perturbation
 - Coupled Cluster
- Size extensivity
 - Closed-shell systems
 - Large system

Emmanuel Giner (LCT)

Single reference systems

Weakly correlated systems

- Qualitatively :
 - $|\Psi\rangle \approx |\mathbf{HF}\rangle$
 - Closed-shell grd. states
 - Large HOMO-LUMO gap
- Dynamical correlation
 - ▶ Short-range (\approx cusp)
 - ▶ Long-range (\approx VdW)
- e-e correlation is weak :
 - Perturbation
 - Coupled Cluster
- Size extensivity
 - Closed-shell systems
 - Large system

Single-reference (SR) methods

- Perturbative expansion :
 - Rayleigh-Schroedinger
 - $|\Psi^{(0)}\rangle = |\mathbf{HF}\rangle \; (\mathsf{MP}n)$
 - ► Useful guide!!
- Important applications :
 - Linked-Cluster Thm.
 - Size-extensivity
 - Coupled-Cluster
 - CCSD(T)
- Nowadays developments :
 - Bigger system (locality of *e-e* corr.)
 - Basis-set error (f₁₂, DFT-WFT)

Qualitative description of MR systems

- Relatively few strongly correlated electrons
 - Bond breakings
 - Magnetic systems
- ullet But rapidly large expansion for $|\Psi^{(0)}\rangle$!

$$|\Psi^{(0)}\rangle = \sum_{\rm I=1}^{10^3 - 10^6} c_{\rm I} |{\rm I}\rangle$$

- ullet The ratios $rac{c_{
 m I}}{c_{
 m J}}$ drive most of the physical properties
- \bullet Between the $|I\rangle$ and $|J\rangle$
 - ► Large interactions
 - ► Energetic degeneracies
 - $ightharpoonup \frac{\langle \mathbf{J}|H|\mathbf{I}\rangle}{\Delta E_{\mathbf{I}\mathbf{I}}} \gg 1$
- Non perturbative

Quantitative description : the physics beyond $|\Psi^{(0)} angle$

$$|\Psi\rangle = |\Psi^{(0)}\rangle + \sum_{\mu} c_{\mu} |\mu\rangle$$

- In general $|c_{\mu}| \ll 1 \Leftrightarrow \mathsf{Perturbative}$
- Standard dynamical correlation ($r_{12} \ll 1$, dispersion forces)
 - Week differential correlation effects

Differential correlation effects

- ightharpoonup The $|I\rangle$ are different
- lacktriangle Correlation effects depend on $|{
 m I}
 angle$
- Change $|\Psi^{(0)}\rangle$
 - Affects the $\langle {
 m J}|H|{
 m I}
 angle$ and $\Delta E_{
 m IJ}$
 - ▶ Renormalization of *H*

Size consistency

- Able to break bonds
- ightharpoonup Correct scaling of the energy with N

The questions that must be answered for our MR methods

$$|\Psi\rangle = |\Psi^{(0)}\rangle + \sum_{\mu} c_{\mu} |\mu\rangle$$

- How do we compute the energy?
- What choice for $|\Psi^{(0)}\rangle$?
- What choice for the $|\mu\rangle$?
- How do we **determine the** c_{μ} ?

Requirements for a good MR method

- "Truly MR"
 - ightharpoonup Same status for all $|I\rangle$ in $|\Psi^{(0)}\rangle$
- Correct treatment of dynamic correlation
 - No divergences
 - Accurate
- Treat the coupling static / dynamical correlation
 - ▶ Building an effective Hamiltonian \tilde{H} within $\{|I\rangle\}$ $\tilde{H} = \sum_{I,J} \left(H_{IJ} + \tilde{O}_{IJ}\right) |I\rangle\langle J|$
 - lacktriangle Diagonalize $ilde{H}$ can change $|\Psi^{(0)}
 angle$
- Size-consistent
 - $E(A \cdots B) = E(A) + E(B)$
 - ightharpoonup Correct even for open-shell sub-systems A and B
- Lowest computational cost ..

How to compute the energy ...?

Variational calculations

Projection technique

To be variational or not, that is the question ...

Variational calculations : CI calculations

• Average value of H on $|\Psi\rangle$:

$$E_{\Psi}^{\text{Var}} = \frac{\langle \Psi | H | \Psi \rangle}{\langle \Psi | \Psi \rangle} = \frac{\sum_{\text{IJ}} c_{\text{J}} \langle \text{J} | H | \text{I} \rangle c_{\text{I}}}{\langle \Psi | \Psi \rangle}$$

- Upper bound to the FCI energy : ⊙
 - no divergences : can treat strong correlation
 - $E = \min_{\Psi} E_{\Psi}^{\text{Var}}$
 - easy to solve (Lanczos, Davidson)
- Space is not closed : ②
 - lacktriangle always exist some $|\mu
 angle$ such that $\langle\mu|H|\Psi
 angle
 eq0$
 - linear parametrization are required
 - size consistency issues

To be variational or not, that is the question ...

Non-Variational calculations: CC, PT, FCI-QMC

ullet Suppose that $H|\Psi
angle=E|\Psi
angle$ is valid with :

$$|\Psi\rangle = |\Psi^{(0)}\rangle + \sum_{\mu \in \, \mathrm{FOIS}} c_\mu |\mu\rangle + |\mathcal{R}\rangle$$

with FOIS $\Leftrightarrow \langle \Psi^{(0)}|H|\mu\rangle \neq 0$ and $\langle \Psi^{(0)}|H|\mathcal{R}\rangle = 0$ • Non variational \Leftrightarrow **projection** on the **reference WF** $\langle \Psi^{(0)}|$:

$$\begin{split} E_{\Psi}^{\mathrm{Proj}} &= \langle \Psi^{(0)} | H | \Psi \rangle \\ &= \underbrace{\langle \Psi^{(0)} | H | \Psi^{(0)} \rangle}_{E_{\nu(0)}^{\mathrm{Var}}} + \sum_{\mu \in \; \mathrm{FOIS}} c_{\mu} \langle \Psi^{(0)} | H | \mu \rangle \end{split}$$

- not necessary an upper bound ©
- Variational for $|\Psi^{(0)}\rangle$
 - \Rightarrow good for the strongly correlated electrons!
- Only needs the coefficient of the FOIS ©
 - Much easier to close the space ☺
 - ► Size consistency ③

The space in which we are going to work

- The zeroth-order wave function : CAS-CI
 - \blacktriangleright All determinants within n e and m orbitals

$$|\Psi^{(0)}\rangle = \sum_{\mathbf{I}} c_{\mathbf{I}} |\mathbf{I}\rangle$$

- Size extensive ☺
 - ▶ If active space is correctly chosen

$$E^{(0)}(A \cdots B) = E_A^{(0)} + E_B^{(0)}$$

lacktriangle Also works for open-shell systems A and B

Emmanuel Giner (LCT)

How do we determine c_{μ} ?

Rayleigh-Schroedinger Perturbation Theory

ullet Assume a partitioning of H

$$H = H^{(0)} + V$$

ullet and $H^{(0)}$ being diagonal on the $|\mu
angle$ and $|\Psi^{(0)}
angle$

$$\begin{split} H^{(0)}|\Psi^{(0)}\rangle &= E^{(0)}|\Psi^{(0)}\rangle \\ H^{(0)}|\mu\rangle &= E^{(0)}_{\mu}|\mu\rangle \end{split}$$

ullet Then the coefficient c_{μ} at first order is simply :

$$c_{\mu}^{(1)} = \frac{\langle \Psi^{(0)} | H | \mu \rangle}{E^{(0)} - E_{\mu}^{(0)}}$$

Emmanuel Giner (LCT) 11 / 37

Choice of the $|\mu\rangle$

ullet The $|\mu\rangle$: connected to $|\Psi^{(0)}\rangle$

$$|\mu\rangle$$
 such that $\langle\mu|H|\Psi^{(0)}\rangle\neq0$

ullet Singles and doubles exc. on top of $|\Psi^{(0)}
angle$

$$|\Psi
angle = |\Psi^{(0)}
angle + \sum_{\mu} c_{\mu} \; |\mu
angle$$
 singles and doubles exc.

ullet In SR methods $|\mu
angle$ are Slater determinants

$$|\mu\rangle = a_a^{\dagger} a_b^{\dagger} a_i a_j |\mathbf{HF}\rangle$$

• In MR methods it is more complicated ..

Emmanuel Giner (LCT) 12 / 37

Choice of the $|\mu\rangle$ in MR method

• Linear combinations (Internally-contracted)

$$|\mu\rangle = a_a^\dagger a_b^\dagger a_i a_j \ |\Psi^{(0)}\rangle = \sum_{\mathbf{I}} \ c_{\mathbf{I}} \ a_a^\dagger a_b^\dagger a_i a_j \ |\mathbf{I}\rangle$$

• Single determinants (Externally-uncontracted)

$$|\mu\rangle = a_a^{\dagger} a_b^{\dagger} a_k a_j |I\rangle \quad \forall |I\rangle$$

- Key questions :
 - Size-extensivity
 - lacktriangle Changing $|\Psi^{(0)}
 angle\Leftrightarrow$ building $ilde{H}$
 - Computational cost

Computational cost

The number of perturbers $|\mu\rangle$

• Using Linear combinations : number of excitations

$$(N_e * n_v)^2$$

- Independent of the size of $N_{
 m I}$
- Using Single Slater determinants : much more!

$$\frac{N_{\rm I}}{N_{\rm I}} * (N_e * n_v)^2$$

Be aware that $N_{\rm I}$ scales exponentially with the size of the CAS!

Better to work with Linear contractions regarding the computational cost

...

Emmanuel Giner (LCT)

The size-extensivity

MRPT2 using Linear combinations

CASPT2

- Quite accurate (but empirical ..)
- ► Empirical parameters (IP-EA shifts, imaginary shifts ...) ©
- $ightharpoonup H^{(0)}$ is a generalized Fock operator
- ▶ One body operator ⇔ Not size consistent ②

NEVPT2

- Quite accurate
- ► No empirical parameters ©
- $ightharpoonup H^{(0)}$ is hybrid : the Dyall Hamiltonian

$$\hat{H}_D = \hat{F}_{\rm core} + \hat{F}_{\rm virtuals} + \frac{1}{2} \sum_{a,b,c,d} (ab|cd) a_b^\dagger a_d^\dagger a_c a_a$$

► Two body operator in the active space + Linear combination ⇒ size consistent!! ©

Emmanuel Giner (LCT) 15 / 37

The size-extensivity

MRPT2 using Linear combinations

CASPT2

- Quite accurate (but empirical ..)
- ► Empirical parameters (IP-EA shifts, imaginary shifts ...) ○
- $\blacktriangleright H^{(0)}$ is a generalized Fock operator
- ▶ One body operator ⇔ Not size consistent ②

NEVPT2

- Quite accurate
- No empirical parameters ©
- $ightharpoonup H^{(0)}$ is hybrid : the Dyall Hamiltonian

$$\hat{H}_D = \hat{F}_{\rm core} + \hat{F}_{\rm virtuals} + \frac{1}{2} \sum_{a,b,c,d} (ab|cd) a_b^\dagger a_d^\dagger a_c a_a$$

Two body operator in the active space + Linear combination ⇒ size consistent!! ©

But really hard to build \hat{H} ... \odot

Building of \tilde{H}

MRPT2 using Slater determinants

• The first order coefficient of $|\mu\rangle$:

$$c_{\mu}^{(1)} = \frac{\langle \mu | H | \Psi^{(0)} \rangle}{E^{(0)} - E_{\mu}^{(0)}} = \sum_{\mathbf{I}} c_{\mathbf{I}} \frac{\langle \mu | H | \mathbf{I} \rangle}{E^{(0)} - E_{\mu}^{(0)}}$$

ullet The contribution of $|\mu
angle$ to the **energy at second order** :

$$e_i^{(2)} = c_\mu^{(1)} \langle \Psi^{(0)} | H | \mu \rangle = \frac{\langle \Psi^{(0)} | H | \mu \rangle^2}{E^{(0)} - E_\mu^{(0)}}$$

ullet The total contribution $E^{(2)}$ is of course the sum over $e_{\mu}^{(2)}$:

$$E^{(2)} = \sum_{\mu} e_{\mu}^{(2)}$$

Emmanuel Giner (LCT) 16 / 37

Building of \tilde{H}

MRPT2 using Slater determinants : the Shifted- B_k

ullet $E^{(2)}$ can be reinterpreted as an **expectation value** of a new operator :

$$E^{(2)} = \sum_{\mathrm{IJ}} c_{\mathrm{J}} \left(\sum_{\mu} \frac{\langle \mathrm{J}|H|\mu\rangle\langle\mu|H|\mathrm{I}\rangle}{E^{(0)} - E_{\mu}^{(0)}} \right) c_{\mathrm{I}}$$
$$= \langle \Psi^{(0)}|\tilde{O}|\Psi^{(0)}\rangle$$
$$\langle \mathrm{J}|\tilde{O}|\mathrm{I}\rangle = \sum_{\mu} \frac{\langle \mathrm{J}|H|\mu\rangle\langle\mu|H|\mathrm{I}\rangle}{E^{(0)} - E_{\mu}^{(0)}}$$

• And so the total dressed \tilde{H} is simply : (Shavitt, 1968; Davidson, 1983, Nakano, 1993)

$$\langle \mathbf{J}|\tilde{H}|\mathbf{I}\rangle = \langle \mathbf{J}|H|\mathbf{I}\rangle + \sum_{\mu} \frac{\langle \mathbf{J}|H|\mu\rangle\langle\mu|H|\mathbf{I}\rangle}{E^{(0)} - E_{\mu}^{(0)}}$$

Emmanuel Giner (LCT) 17 / 37

A few remarks on \tilde{H} ...

- Differential correlation effects in Shifted- B_k
 - ▶ Example : the diagonal terms of the dressed matrix

$$\tilde{O}_{\rm II} = \sum_{\mu} \frac{(H_{\rm I}_{\mu})^2}{E_0^{(0)} - E_{\mu}^{(0)}} < 0$$

- lacktriangle Always stabilize the configurations $|{
 m I}
 angle$
- $|I\rangle = \text{neutral } \dot{A} \dot{A} / |J\rangle = \text{ionic } A^+ A^-$
- lacktriangle particles are closer in $A^-\Leftrightarrow$ correlation effects are much larger
- ullet $| ilde{O}_{
 m II}$ | larger for ionic forms
- lacktriangle changes the energy differences within the $|I\rangle$ and $|J\rangle$
- lacktriangle Diagonalization of $ilde{H}$ will change $|\Psi^{(0)}\rangle$!
- ▶ Shifted- B_k got it! ©

A few remarks on \tilde{H} ...

- Differential correlation effects in Shifted- B_k
 - Example : the diagonal terms of the dressed matrix

$$\tilde{O}_{\rm II} = \sum_{\mu} \frac{(H_{\rm I}_{\mu})^2}{E_0^{(0)} - E_{\mu}^{(0)}} < 0$$

- ightharpoonup Always stabilize the configurations $|I\rangle$
- $|I\rangle = \text{neutral } \dot{A} \dot{A} / |J\rangle = \text{ionic } A^+ A^-$
- ightharpoonup particles are closer in $A^- \Leftrightarrow$ correlation effects are much larger
- ullet $| ilde{O}_{
 m II}|$ larger for ionic forms
- lacktriangle changes the energy differences within the $|I\rangle$ and $|J\rangle$
- Diagonalization of \tilde{H} will change $|\Psi^{(0)}\rangle$!
- ▶ Shifted- B_k got it! ©
- But ... Size consistency errors ...

Why a size consistency issue

The problem of Slater determinants ...

• The problem comes from the energy denominators

$$\Delta E_{\mu}^{(0)} = E^{(0)} - E_{\mu}^{(0)}$$

ullet Let's assume a Epstein-Nesbet H_0

$$E^{(0)} = \langle \Psi^{(0)} | H | \Psi^{(0)} \rangle$$

$$E^{(0)}_{\mu} = \langle \mu | H | \mu \rangle$$

- This comparaison is unfair!!
 - $E^{(0)}$ contains correlation effects \odot
 - $\triangleright E_{\mu}^{(0)}$ does not! \bigcirc
 - ▶ Unlinked terms in $E^{(0)} E^{(0)}_{\mu}$
- Leads to non separable correlated energies ...

$$E(A \cdots B) \neq E(A) + E(B)$$

Some mumerical test of separability

TABLE – Total energies (a. u.) for the numerical separability check on $F_2 \dots FH$.

	CASSCF	$Shifted\text{-}B_k$	
F_2	-198.746157368569	-199.122170300	
FH	-100.031754985880	-100.289784498	
$F_2 + FH$	-298.777912354448	-299. <mark>41</mark> 1954798	
$F_2 \ldots FH$	-298.777912354443	-299. <mark>39</mark> 6752116	
Absolute error (a.u.)	5.0×10^{-12}	1.5×10^{-2}	
Relative error	1.7×10^{-14}	5.1×10^{-5}	

Emmanuel Giner (LCT) 20 / 37

Alternatives

• Proposal by Lindgren (QD-PT, 1974)

$$\Delta E_{\mu}^{(0)} = E_{\rm I}^{(0)} - E_{\mu}^{(0)} = \langle {\rm I}|H|{\rm I}\rangle - \langle \mu|H|\mu\rangle$$

Intruder state problem $\Leftrightarrow \Delta E_{\mu}^{(0)}$ too small ...

- \Rightarrow systematically diverges!! \odot
- Proposal by Heully et al. (H_{int}, 1996)

$$\Delta E_{\mathrm{I}\mu}^{(0)} = \langle \mathrm{I}|H|\mathrm{I}\rangle - \langle \mu|H|\mu\rangle + \delta_{\mathrm{I}\mu}$$

- ⇒ Numerically instable ©
- Related proposal by Mukherjee et al. (Mk-MRPT2, 1999)
 - ⇒ Numerically instable ②
- Pathaket al. (2017): diagonalize entirely the Dyall $H^{(0)}$
 - ⇒ Numerically stable and accurate ©
 - ⇒ Computationally expensive ②

Proposal of a solution (Giner et al., 2017): key concept

ullet Each $|\mu\rangle$ might have many parents $|{
m I}\rangle$

$$\langle \mu | H | {\rm I} \rangle \neq 0 \quad \Leftrightarrow \quad | {\rm I} \rangle \text{ is a parent of } \ | \mu \rangle$$

• As in Mk-MRPT or HMZ-MRPT, why not a $\mathbf{H}^{(0)}(I)$?

$$c_{\mu} = \sum_{\mathbf{I}} \frac{\langle \mathbf{I}|H|\mu\rangle}{\Delta E_{\mathbf{I}\mu}^{(0)}}$$

• $\langle \mu | H | {
m I} \rangle
eq 0 \Leftrightarrow$ there is an excitation process $\hat{T}_{{
m I}\mu}$ linking $|{
m I} \rangle$ and

$$\langle \mu | H | {\bf I} \rangle \neq 0 \quad \Leftrightarrow \quad \exists \quad \hat{T}_{{\bf I} \mu} | {\bf I} \rangle = | \mu \rangle, \qquad \hat{T}_{{\bf I} m u} = a_p^\dagger a_q^\dagger a_n a_m \equiv \hat{T}_{mn}^{pq}$$

- ullet We choose $\Delta E_{{
 m I}\mu}^{(0)}=f(m,n,p,q)=\Delta E_{mn}^{pq}$
- Same $\Delta E_{{
 m I}\mu}^{(0)}$ for many couples $(|{
 m I}\rangle, |\mu\rangle)$
- Definition of a size extensive excitation energy ΔE_{mn}^{pq} ?

Emmanuel Giner (LCT)

Proposal of a solution: key concept

- ullet $|\Psi^{(1)}
 angle$ can be built directly in 2 different ways :
 - lacktriangle By browsing the individual determinants $|\mu
 angle$

$$|\Psi^{(1)}\rangle = \sum_{\mu} \sum_{\mathbf{I}} c_{\mathbf{I}} \frac{\langle \mathbf{I}|H|\mu\rangle}{\Delta E_{\mathbf{I}\mu}^{(0)}} |\mu\rangle$$

ightharpoonup By browsing the individual excitations \hat{T}

$$\begin{aligned} |\Psi^{(1)}\rangle &= \sum_{T} \frac{1}{\Delta E_{\hat{T}}^{(0)}} \sum_{\mathbf{I}} c_{\mathbf{I}} \langle \mathbf{I} | H \, \hat{T} | \mathbf{I} \rangle \quad \hat{T} | \mathbf{I} \rangle \\ &= \sum_{T} \frac{1}{\Delta E_{\hat{T}}^{(0)}} |\Psi(\hat{T})\rangle \end{aligned}$$

ullet A possible definition for $\Delta E^{(0)}(\hat{T})$ could be :

$$\Delta E^{(0)}(\hat{T}) = \langle \Psi^{(0)} | H | \Psi^{(0)} \rangle - \frac{\langle \Psi(\hat{T}) | H | \Psi(\hat{T}) \rangle}{\langle \Psi(\hat{T}) | | \Psi(\hat{T}) \rangle}$$

Emmanuel Giner (LCT)

Proposal of a solution: actual equations

- ullet $\Delta E^{(0)}(\hat{T})$ is free of unlinked terms :
 - $lackbox \langle \Psi^{(0)}|H|\Psi^{(0)}
 angle$ contains correlation effects
 - $\blacktriangleright \frac{\langle \Psi(\hat{T}) | H | \Psi(\hat{T}) \rangle}{\langle \Psi(\hat{T}) | | \Psi(\hat{T}) \rangle} \text{ also !}$
- Nevertheless ... expensive quantities!
- ullet Solution use the Dyall Hamiltonian! $H o H^D$

$$H^D = F_{core} + F_{virt} + \underbrace{\frac{1}{2} \sum_{abcd} V_{ab}^{cd} a_c^\dagger a_d^\dagger a_b a_a}_{\text{active space}}$$

• Still size extensive! correlation effects \leftrightarrow CAS and H^D is two-body within the CAS

Emmanuel Giner (LCT) 24 / 37

Proposal of a solution: actual equations

• Decomposition of the $\Delta E^{(0)}(\hat{T})$

$$\hat{T} = \hat{T}_{act} + \hat{T}_{core/virt}$$

$$\Delta E^{(0)}(\hat{T}) = \Delta E^{(0)}(\hat{T}_{core/virt}) + \Delta E^{(0)}(\hat{T}_{act})$$

 \bullet $\Delta E^{(0)}(\hat{T}_{core/virt})$ is determined by a generalized Fock operator

$$\Delta E^{(0)}(\hat{T}_{core/virt}) = \sum_{h \in \{\text{holes}\}} \epsilon_h - \sum_{p \in \{\text{particles}\}} \epsilon_p$$

- \bullet $\Delta E^{(0)}(\hat{T}_{core/virt})$ is determined by a generalized Fock operator
- \bullet $\Delta E^{(0)}(\hat{T}_{act})$ is an approx. to the energetical cost of the change of N_e in the active space

$$\Delta E^{(0)}(\hat{T}_{act}) = \langle \Psi^{(0)} | H^D | \Psi^{(0)} \rangle - \frac{\langle \Psi(\hat{T}_{act}) | \, H^D \, | \Psi(\hat{T}_{act}) \rangle}{\langle \Psi(\hat{T}_{act}) | | \Psi(\hat{T}_{act}) \rangle}$$

Emmanuel Giner (LCT) 25 / 37

Some examples: the 1h2p excitation class

• Double excitations $\hat{T}_{i\sigma}^{rv}$

$$\hat{T}^{rv}_{i\pmb{a}} = a^\dagger_r a^\dagger_v a_{\pmb{a}} a_i$$
 Excitation energy $\Delta E^{rv}_{i\pmb{a}}$

$$\Delta E_{ia}^{rv} = \Delta E^{(0)}(a_r^{\dagger} a_v^{\dagger} a_i) + \Delta E^{(0)}(a_a)$$

$$\Delta E^{(0)}(a_r^{\dagger} a_v^{\dagger} a_i) = \epsilon_i - \epsilon_r - \epsilon_v$$

$$\Delta E^{(0)}(a_a) = \langle \Psi^{(0)} | H^D | \Psi^{(0)} \rangle - \frac{\langle \Psi^{(0)} | a_a^{\dagger} H^D a_a | \Psi^{(0)} \rangle}{\langle \Psi^{(0)} | a_a^{\dagger} a_a | \Psi^{(0)} \rangle}$$

• $\Delta E^{(0)}(a_a)$ is the IP of the active orbital a

Emmanuel Giner (LCT) 26 / 37

Some other examples

Electronic affinities

$$\Delta E^{(0)}(a_{\mathbf{a}}^{\dagger}) = \langle \Psi^{(0)} | H^{D} | \Psi^{(0)} \rangle - \frac{\langle \Psi^{(0)} | a_{\mathbf{a}} H^{D} a_{\mathbf{a}}^{\dagger} | \Psi^{(0)} \rangle}{\langle \Psi^{(0)} | a_{\mathbf{a}} a_{\mathbf{a}}^{\dagger} | \Psi^{(0)} \rangle}$$

Double electronic affinities

$$\Delta E^{(0)}(a_b^{\dagger} a_a^{\dagger}) = \langle \Psi^{(0)} | H^D | \Psi^{(0)} \rangle - \frac{\langle \Psi^{(0)} | a_b a_a H^D a_b^{\dagger} a_a^{\dagger} | \Psi^{(0)} \rangle}{\langle \Psi^{(0)} | a_b a_a a_b^{\dagger} a_a^{\dagger} | \Psi^{(0)} \rangle}$$

And so on ...

Emmanuel Giner (LCT) 27 / 37

Important points

- Size extensive provided that active orbitals are localized
- Good definition of the excitation process ⇔ no intruder state problem
 - Exemple in CASPT2 for a singly occupied MO

$$\epsilon_a = -\frac{1}{2}(IP_a + EA_a)$$

- ▶ IP_a and EA_a have opposite signs in general ...
- ϵ_a can be close to $0 \dots$
- No empirical parameters

Emmanuel Giner (LCT) 28 / 37

At the end of the day ...

• The dressing hamiltonian is :

$$\langle \mathbf{J} | \tilde{O} | \mathbf{I} \rangle = \sum_{\mu} \frac{\langle \mathbf{J} | H | \mu \rangle \langle \mu | H | \mathbf{I} \rangle}{\Delta E^{(0)}(\hat{T}_{\mathbf{I}i})} \; , \qquad \hat{T}_{\mathbf{I}\mu} \; | \mathbf{I} \rangle = | \mu \rangle$$

• The second order correction to the energy is :

$$E^{(2)} = \langle \Psi^{(0)} | \tilde{O} | \Psi^{(0)} \rangle$$

ullet The dressed Hamiltonian $ilde{H}$ is :

$$\langle \mathbf{J}|\tilde{H}|\mathbf{I}\rangle = \langle \mathbf{J}|H|\mathbf{I}\rangle + \langle \mathbf{J}|\tilde{O}|\mathbf{I}\rangle$$

• The corresponding dressed energy and wave function are obtained by :

$$\tilde{H} \mid \tilde{\Psi} \rangle = \tilde{\mathcal{E}} \mid \tilde{\Psi} \rangle$$

Emmanuel Giner (LCT) 29 / 37

Some mumerical proof of separability

TABLE – Total energies (a. u.) for the numerical separability check on $F_2 \dots FH$.

	CASSCF	$E^{(2)}$
F_2	-198.746157368569	-0.337009510134933
FH	-100.031754985880	-0.230422886638017
$F_2 + FH$	-298.777912354448	-0.56743239677 <mark>29</mark>
$F_2 \ldots FH$	-298.777912354443	-0.56743239677 <mark>30</mark>
Absolute error (a.u.)	5.0×10^{-12}	8.6×10^{-14}
Relative error	1.7×10^{-14}	1.5×10^{-13}

Emmanuel Giner (LCT) 30 / 37

Some mumerical proof of separability

TABLE – Total energies (a. u.) for the numerical separability check on $F_2 \dots FH$.

	CASSCF	$ ilde{\mathcal{E}}$
F_2	-198.746157368569	-199.085305155169
FH	-100.031754985880	-100.262424667296
$F_2 + FH$	-298.777912354448	-299.347729822466
$F_2 \ldots FH$	-298.77791235444 <mark>3</mark>	-299.34772982246 <mark>2</mark>
Absolute error (a.u.)	5.0×10^{-12}	4.4×10^{-12}
Relative error	1.7×10^{-14}	1.4×10^{-14}

Emmanuel Giner (LCT) 31 / 37

Some examples of calculations

TABLE – Non parallelism error with respect to FCI (cc-pVDZ)

	H_2O	C_2H_4	N_2
CASSCF	40.9	26.2	18.2
SC-NEVPT2	2.4	2.4	2.3
PC-NEVPT2	2.5	3.2	1.3
CASPT2 (IPEA=0.)	5.5	6.0	9.6
CASPT2 (IPEA=0.25)	3.0	4.5	4.4
Shifted Bk	30.8	7.6	5.9
$E^{(2)}$	3.0	3.7	3.4
$ ilde{\mathcal{E}}$	4.8	4.0	4.5

Comparable accuracy with respect to NEVPT2, often better than CASPT2, no empirical parameter

Emmanuel Giner (LCT) 32 / 37

Working on the computational cost ..

Main source of computational cost

- Keep in mind that we are interested in systems where
 - $10^3 < N_I < 10^8$
 - $> 30 < n_e < 500$
 - $100 < n_{orb} < 1500$
- CPU time : the browsing of $|\mu\rangle$
 - ► The number scales as $N_{\rm I} \times (n_e \times n_{orb})^2$
 - For each $|\mu\rangle$ needs to compute $\langle \Psi^{(0)}|H|\mu\rangle$ \Rightarrow scales as $N_{\rm I}$

$$\approx (N_{\rm I})^2 \times (n_e \times n_{orb})^2$$

ullet Memory : storing of the $ilde{O}$

$$\approx (N_{\rm I})^2$$

Emmanuel Giner (LCT) 33 / 37

Working on the computational cost ..

ullet But the $\Delta E_{{
m I}\mu}^{(0)}=f(m,n,p,q)$ do not depend on $|{
m I}
angle$

$$E^{(2)} = \sum_{\mu} \sum_{\mathbf{I},\mathbf{J}} c_{\mathbf{I}} c_{\mathbf{J}} \frac{\langle \mathbf{J} | H | \mu \rangle \langle \mu | H | \mathbf{I} \rangle}{\Delta E_{\mathbf{I}\mu}^{(0)}} , \qquad |\mu\rangle = \hat{T}_{\mathbf{I}\mu} |\mathbf{I}\rangle = a_{n}^{\dagger} a_{m}^{\dagger} a_{p} a_{q} |\mathbf{I}\rangle$$

$$= \sum_{\mathbf{I},\mathbf{J}} c_{\mathbf{I}} c_{\mathbf{J}} \sum_{\substack{e,f,g,h,i,j,k,l,m,n,p,q\\ \mathbf{J}_{ij}^{k} V_{gh}^{ef}}} \frac{V_{ij}^{lk} V_{gh}^{ef}}{\Delta E^{(0)} (a_{n}^{\dagger} a_{m}^{\dagger} a_{p} a_{q})} \langle \mathbf{J} | a_{e}^{\dagger} a_{f}^{\dagger} a_{g} a_{h} a_{l}^{\dagger} a_{k}^{\dagger} a_{j} a_{i} a_{n}^{\dagger} a_{m}^{\dagger} a_{p} a_{q} |\mathbf{I}\rangle$$

Defines effective second quantized operator!

Emmanuel Giner (LCT) 34 / 37

Some examples: the 1h2p excitation class

• Double excitations \hat{T}_{ia}^{rv}

$$\hat{T}_{i\mathbf{a}}^{rv} = a_r^{\dagger} a_v^{\dagger} a_{\mathbf{a}} a_i$$

• 1h2p excitations can be mapped into an effective Fock operator in the active space :

$$ilde{F}_{ab} pprox \sum_{i.t.v} rac{V_{ia}^{tv}V_{ib}^{tv}}{\epsilon_i - \epsilon_v - \epsilon_t + \Delta E(a_a)}$$

$$E_{1h2p}^{(2)} = \sum_{ab} F_{ba} \langle \Psi^{(0)} | a_b^{\dagger} a_a | \Psi^{(0)} \rangle$$

• 2p excitations can be mapped into an effective coulomb operator in the active space :

$$\tilde{W}_{ab}^{cd} \approx \sum_{t,v} \frac{V_{cd}^{tv} V_{ab}^{tv}}{-\epsilon_v - \epsilon_t + \Delta E(a_a a_b)}$$

Working on the computational cost

The effective operator formalism

- "Simple" contraction of integrals and energy denominators
- ullet Avoids any browsing of the $|\mu\rangle$
- No prefactor in $N_{\rm I}$
 - ⇒ Large saving in CPU time! ©
- Reduce to effective many-body operators within the active space
 - \Rightarrow Large saving in Memory!

Current developments and summary

What we briefly saw ...

- Advantages of both worlds
 - Internal contractions : size extensivity + CPU time
 - ightharpoonup Slater determinants : dressing of H
 - \Rightarrow bonus : weak storage!
- Requires flexible formalisms (and codes!!)

Futur: Deal with very large CAS

- ullet Use CIPSI to converge large CAS (typically 30 e in 30 orbitals)
 - ► Treat explicitely a part of dynamical correlation
- Reduce CPU time to its minimum to treat large CAS
 - Express all contributions as effective operators
 - Express all expectation values ($\Delta E(a_a)$, $\Delta E(a_b^{\dagger}a_a)$, ...) as functions of RDMs
- Coupling with range-separated DFT
 - ► Faster convergence with respect to single particle basis

Emmanuel Giner (LCT) 37 / 37