Proposal of a size-extensive uncontracted MR-PT2

Emmanuel Giner,
Yan Garniron, Celestino Angeli, Athony Scemama, Jean-Paul Malrieu

Laboratoire de Chimie Théorique
Sorbonne Université

Single reference systems

Weakly correlated systems

- Qualitatively :

$$
|\Psi\rangle \approx|\mathbf{H F}\rangle
$$

Closed-shell grd. states
Large HOMO-LUMO gap

- Dynamical correlation

Short-range (\approx cusp)
Long-range ($\approx \mathrm{VdW}$)

- $e-e$ correlation is weak :

Perturbation
Coupled Cluster

- Size extensivity

Closed-shell systems
Large system

Single reference systems

Weakly correlated systems

- Qualitatively :
$|\Psi\rangle \approx|\mathrm{HF}\rangle$
Closed-shell grd. states
Large HOMO-LUMO gap
- Dynamical correlation

Short-range (\approx cusp)
Long-range ($\approx \mathrm{VdW}$)

- $e-e$ correlation is weak:

Perturbation
Coupled Cluster

- Size extensivity

Closed-shell systems
Large system

Single-reference (SR) methods

- Perturbative expansion :

Rayleigh-Schroedinger
$\left|\Psi^{(0)}\right\rangle=|\mathbf{H F}\rangle(\mathrm{MP} n)$
Useful guide! !

- Important applications :

Linked-Cluster Thm.
Size-extensivity
Coupled-Cluster CCSD(T)

- Nowadays developments :

Bigger system
(locality of e-e corr.)
Basis-set error (f_{12}, DFT-WFT)

Qualitative description of MR systems

- Relatively few strongly correlated electrons
- Bond breakings
- Magnetic systems
- But rapidly large expansion for $\left|\Psi^{(0)}\right\rangle$!

$$
\left|\Psi^{(0)}\right\rangle=\sum_{\mathrm{I}=1}^{10^{3}-10^{6}} c_{\mathrm{I}}|\mathrm{I}\rangle
$$

- The ratios $\frac{c_{1}}{c_{\mathrm{J}}}$ drive most of the physical properties
- Between the $|\mathrm{I}\rangle$ and $|\mathrm{J}\rangle$
- Large interactions
- Energetic degeneracies
- $\frac{\langle\mathrm{J}| H|\Gamma\rangle}{\Delta E_{\mathrm{IJ}}} \gg 1$
- Non perturbative

Quantitative description: the physics beyond $\left|\Psi^{(0)}\right\rangle$

$$
|\Psi\rangle=\left|\Psi^{(0)}\right\rangle+\sum_{\mu} c_{\mu}|\mu\rangle
$$

- In general $\left|c_{\mu}\right| \ll 1 \Leftrightarrow$ Perturbative
- Standard dynamical correlation ($r_{12} \ll 1$, dispersion forces)
- Week differential correlation effects
- Differential correlation effects
- The $|\mathrm{I}\rangle$ are different
- Correlation effects depend on $|\mathrm{I}\rangle$
- Change $\left|\Psi^{(0)}\right\rangle$
- Affects the $\langle\mathrm{J}| H|\mathrm{I}\rangle$ and ΔE_{IJ}
- Renormalization of H
- Size consistency
- Able to break bonds
- Correct scaling of the energy with N

$$
|\Psi\rangle=\left|\Psi^{(0)}\right\rangle+\sum_{\mu} c_{\mu}|\mu\rangle
$$

- How do we compute the energy?
- What choice for $\left|\Psi^{(0)}\right\rangle$?
- What choice for the $|\mu\rangle$?
- How do we determine the c_{μ} ?

Requirements for a good MR method

- "Truly MR"
- Same status for all $|\mathrm{I}\rangle$ in $\left|\Psi^{(0)}\right\rangle$
- Correct treatment of dynamic correlation
- No divergences
- Accurate
- Treat the coupling static / dynamical correlation
- Building an effective Hamiltonian \tilde{H} within $\{|\mathrm{I}\rangle\}$ $\tilde{H}=\sum_{\mathrm{I}, \mathrm{J}}\left(H_{\mathrm{IJ}}+\tilde{O}_{\mathrm{IJ}}\right)|\mathrm{I}\rangle\langle\mathrm{J}|$
- Diagonalize \tilde{H} can change $\left|\Psi^{(0)}\right\rangle$
- Size-consistent
- $E(A \cdots B)=E(A)+E(B)$
- Correct even for open-shell sub-systems A and B
- Lowest computational cost ..

How to compute the energy ...?

- Variational calculations
- Projection technique

To be variational or not, that is the question ...

Variational calculations: CI calculations

- Average value of H on $|\Psi\rangle$:

$$
E_{\Psi}^{V \mathrm{ar}}=\frac{\langle\Psi| H|\Psi\rangle}{\langle\Psi \mid \Psi\rangle}=\frac{\sum_{\mathrm{IJ}} c_{\mathrm{J}}\langle\mathrm{~J}| H|\mathrm{I}\rangle c_{\mathrm{I}}}{\langle\Psi \mid \Psi\rangle}
$$

- Upper bound to the FCI energy : ;)
no divergences : can treat strong correlation
$E=\min _{\Psi} E_{\Psi}^{\mathrm{Var}}$
easy to solve (Lanczos, Davidson)
- Space is not closed : ©
always exist some $|\mu\rangle$ such that $\langle\mu| H|\Psi\rangle \neq 0$
- linear parametrization are required
size consistency issues

To be variational or not, that is the question ...

Non-Variational calculations: CC, PT, FCI-QMC

- Suppose that $H|\Psi\rangle=E|\Psi\rangle$ is valid with :

$$
|\Psi\rangle=\left|\Psi^{(0)}\right\rangle+\sum_{\mu \in \mathrm{FOIS}} c_{\mu}|\mu\rangle+|\mathcal{R}\rangle
$$

with FOIS $\Leftrightarrow\left\langle\Psi^{(0)}\right| H|\mu\rangle \neq 0 \quad$ and $\quad\left\langle\Psi^{(0)}\right| H|\mathcal{R}\rangle=0$

- Non variational \Leftrightarrow projection on the reference $\mathbf{W F}\left\langle\Psi^{(0)}\right|$:

$$
\begin{aligned}
E_{\Psi}^{\text {Proj }} & =\left\langle\Psi^{(0)}\right| H|\Psi\rangle \\
& =\underbrace{}_{E_{\Psi^{\mathrm{Var}}(0)}^{\left\langle\Psi^{(0)}\right| H\left|\Psi^{(0)}\right\rangle}+\sum_{\mu \in \mathrm{FOIS}} c_{\mu}\left\langle\Psi^{(0)}\right| H|\mu\rangle}
\end{aligned}
$$

- not necessary an upper bound ${ }^{2}$
- Variational for $\left|\Psi^{(0)}\right\rangle$
\Rightarrow good for the strongly correlated electrons !
- Only needs the coefficient of the FOIS $)$

Much easier to close the space ©
Size consistency ©

The space in which we are going to work

- The zeroth-order wave function : CAS-CI
- All determinants within $n e$ and m orbitals

$$
\left|\Psi^{(0)}\right\rangle=\sum_{\mathrm{I}} c_{\mathrm{I}}|\mathrm{I}\rangle
$$

- Size extensive ©
- If active space is correctly chosen

$$
E^{(0)}(A \cdots B)=E_{A}^{(0)}+E_{B}^{(0)}
$$

- Also works for open-shell systems A and B

How do we determine c_{μ} ?

Rayleigh-Schroedinger Perturbation Theory

- Assume a partitioning of H

$$
H=H^{(0)}+V
$$

- and $H^{(0)}$ being diagonal on the $|\mu\rangle$ and $\left|\Psi^{(0)}\right\rangle$

$$
\begin{aligned}
H^{(0)}\left|\Psi^{(0)}\right\rangle & =E^{(0)}\left|\Psi^{(0)}\right\rangle \\
H^{(0)}|\mu\rangle & =E_{\mu}^{(0)}|\mu\rangle
\end{aligned}
$$

- Then the coefficient c_{μ} at first order is simply :

$$
c_{\mu}^{(1)}=\frac{\left\langle\Psi^{(0)}\right| H|\mu\rangle}{E^{(0)}-E_{\mu}^{(0)}}
$$

Choice of the $|\mu\rangle$

- The $|\mu\rangle$: connected to $\left|\Psi^{(0)}\right\rangle$

$$
|\mu\rangle \text { such that }\langle\mu| H\left|\Psi^{(0)}\right\rangle \neq 0
$$

- Singles and doubles exc. on top of $\left|\Psi^{(0)}\right\rangle$

$$
|\Psi\rangle=\left|\Psi^{(0)}\right\rangle+\underbrace{\sum_{\mu} c_{\mu}|\mu\rangle}_{\text {singles and doubles exc. }}
$$

Choice of the $|\mu\rangle$ in MR method

- Linear combinations (Internally-contracted)

$$
|\mu\rangle=a_{a}^{\dagger} a_{b}^{\dagger} a_{i} a_{j}\left|\Psi^{(0)}\right\rangle=\sum_{\mathrm{I}} c_{\mathrm{I}} a_{a}^{\dagger} a_{b}^{\dagger} a_{i} a_{j}|\mathrm{I}\rangle
$$

- Single determinants (Externally-uncontracted)

$$
|\mu\rangle=a_{a}^{\dagger} a_{b}^{\dagger} a_{k} a_{j}|\mathrm{I}\rangle \quad \forall|\mathrm{I}\rangle
$$

- Key questions :
- Size-extensivity
- Changing $\left|\Psi^{(0)}\right\rangle \Leftrightarrow$ building \tilde{H}
- Computational cost

Computational cost

The number of perturbers $|\mu\rangle$

- Using Linear combinations : number of excitations

$$
\left(N_{e} * n_{v}\right)^{2}
$$

Independent of the size of $N_{\mathrm{I}} \odot$

- Using Single Slater determinants : much more!

$$
N_{\mathrm{I}} *\left(N_{e} * n_{v}\right)^{2}
$$

Be aware that N_{I} scales exponentially with the size of the CAS!

Better to work with Linear contractions regarding the computational cost

The size-extensivity

MRPT2 using Linear combinations

- CASPT2

Quite accurate (but empirical ..)
Empirical parameters (IP-EA shifts, imaginary shifts ...) ©
$H^{(0)}$ is a generalized Fock operator

- One body operator \Leftrightarrow Not size consistent ${ }^{(2)}$
- NEVPT2

Quite accurate
No empirical parameters ©
$H^{(0)}$ is hybrid : the Dyall Hamiltonian

$$
\hat{H}_{D}=\hat{F}_{\text {core }}+\hat{F}_{\text {virtuals }}+\frac{1}{2} \sum_{a, b, c, d}(a b \mid c d) a_{b}^{\dagger} a_{d}^{\dagger} a_{c} a_{a}
$$

Two body operator in the active space + Linear combination \Rightarrow size consistent! ! ©

The size-extensivity

MRPT2 using Linear combinations

- CASPT2

Quite accurate (but empirical ..)
Empirical parameters (IP-EA shifts, imaginary shifts ...) ©
$H^{(0)}$ is a generalized Fock operator
One body operator \Leftrightarrow Not size consistent $\left.{ }^{(}\right)$

- NEVPT2

Quite accurate
No empirical parameters ©
$H^{(0)}$ is hybrid : the Dyall Hamiltonian

$$
\hat{H}_{D}=\hat{F}_{\text {core }}+\hat{F}_{\text {virtuals }}+\frac{1}{2} \sum_{a, b, c, d}(a b \mid c d) a_{b}^{\dagger} a_{d}^{\dagger} a_{c} a_{a}
$$

Two body operator in the active space + Linear combination \Rightarrow size consistent! ! ©

But really hard to build $\tilde{H} \ldots$...

Building of \tilde{H}

MRPT2 using Slater determinants

- The first order coefficient of $|\mu\rangle$:

$$
c_{\mu}^{(1)}=\frac{\langle\mu| H\left|\Psi^{(0)}\right\rangle}{E^{(0)}-E_{\mu}^{(0)}}=\sum_{\mathrm{I}} c_{\mathrm{I}} \frac{\langle\mu| H|\mathrm{I}\rangle}{E^{(0)}-E_{\mu}^{(0)}}
$$

- The contribution of $|\mu\rangle$ to the energy at second order :

$$
e_{i}^{(2)}=c_{\mu}^{(1)}\left\langle\Psi^{(0)}\right| H|\mu\rangle=\frac{\left\langle\Psi^{(0)}\right| H|\mu\rangle^{2}}{E^{(0)}-E_{\mu}^{(0)}}
$$

- The total contribution $E^{(2)}$ is of course the sum over $e_{\mu}^{(2)}$:

$$
E^{(2)}=\sum_{\mu} e_{\mu}^{(2)}
$$

Building of \tilde{H}

MRPT2 using Slater determinants : the Shifted- B_{k}

- $E^{(2)}$ can be reinterpreted as an expectation value of a new operator :

$$
\begin{aligned}
E^{(2)} & =\sum_{\mathrm{IJ}} c_{\mathrm{J}}\left(\sum_{\mu} \frac{\langle\mathrm{J}| H|\mu\rangle\langle\mu| H|\mathrm{I}\rangle}{E^{(0)}-E_{\mu}^{(0)}}\right) c_{\mathrm{I}} \\
& =\left\langle\Psi^{(0)}\right| \tilde{O}\left|\Psi^{(0)}\right\rangle \\
\langle\mathrm{J}| \tilde{O}|\mathrm{I}\rangle & =\sum_{\mu} \frac{\langle\mathrm{J}| H|\mu\rangle\langle\mu| H|\mathrm{I}\rangle}{E^{(0)}-E_{\mu}^{(0)}}
\end{aligned}
$$

- And so the total dressed \tilde{H} is simply :
(Shavitt, 1968 ; Davidson, 1983, Nakano, 1993)

$$
\langle\mathrm{J}| \tilde{H}|\mathrm{I}\rangle=\langle\mathrm{J}| H|\mathrm{I}\rangle+\sum_{\mu} \frac{\langle\mathrm{J}| H|\mu\rangle\langle\mu| H|\mathrm{I}\rangle}{E^{(0)}-E_{\mu}^{(0)}}
$$

A few remarks on \tilde{H}...

- Differential correlation effects in Shifted- B_{k}
- Example : the diagonal terms of the dressed matrix

$$
\tilde{O}_{\mathrm{II}}=\sum_{\mu} \frac{\left(H_{\mathrm{I} \mu}\right)^{2}}{E_{0}^{(0)}-E_{\mu}^{(0)}}<0
$$

- Always stabilize the configurations $|\mathrm{I}\rangle$
- $|\mathrm{I}\rangle=$ neutral $\dot{A}-\dot{A} /|\mathrm{J}\rangle=$ ionic $A^{+}-A^{-}$
- particles are closer in $A^{-} \Leftrightarrow$ correlation effects are much larger
- $\left|\tilde{O}_{\text {II }}\right|$ larger for ionic forms
- changes the energy differences within the $|\mathrm{I}\rangle$ and $|\mathrm{J}\rangle$
- Diagonalization of \tilde{H} will change $\left|\Psi^{(0)}\right\rangle$!
- Shifted- B_{k} got it!)

A few remarks on \tilde{H}...

- Differential correlation effects in Shifted- B_{k}
- Example : the diagonal terms of the dressed matrix

$$
\tilde{O}_{\mathrm{II}}=\sum_{\mu} \frac{\left(H_{\mathrm{I} \mu}\right)^{2}}{E_{0}^{(0)}-E_{\mu}^{(0)}}<0
$$

- Always stabilize the configurations $|\mathrm{I}\rangle$
- $|\mathrm{I}\rangle=$ neutral $\dot{A}-\dot{A} /|\mathrm{J}\rangle=$ ionic $A^{+}-A^{-}$
- particles are closer in $A^{-} \Leftrightarrow$ correlation effects are much larger
- $\left|\tilde{O}_{\text {II }}\right|$ larger for ionic forms
- changes the energy differences within the $|\mathrm{I}\rangle$ and $|\mathrm{J}\rangle$
- Diagonalization of \tilde{H} will change $\left|\Psi^{(0)}\right\rangle$!
- Shifted- B_{k} got it!)
- But ... Size consistency errors ...

Why a size consistency issue

The problem of Slater determinants ...

- The problem comes from the energy denominators

$$
\Delta E_{\mu}^{(0)}=E^{(0)}-E_{\mu}^{(0)}
$$

- Let's assume a Epstein-Nesbet H_{0}

$$
\begin{aligned}
& E^{(0)}=\left\langle\Psi^{(0)}\right| H\left|\Psi^{(0)}\right\rangle \\
& E_{\mu}^{(0)}=\langle\mu| H|\mu\rangle
\end{aligned}
$$

- This comparaison is unfair!!
$E^{(0)}$ contains correlation effects ©

$$
E_{\mu}^{(0)} \text { does not! © }
$$

Unlinked terms in $E^{(0)}-E_{\mu}^{(0)}$

- Leads to non separable correlated energies ...

$$
E(A \cdots B) \neq E(A)+E(B)
$$

Some mumerical test of separability

TABLE - Total energies (a. u.) for the numerical separability check on $\mathrm{F}_{2} \ldots \mathrm{FH}$.

	CASSCF	Shifted- B_{k}
$\mathrm{~F}_{2}$	-198.746157368569	-199.122170300
FH	-100.031754985880	-100.289784498
$\mathrm{~F}_{2}+\mathrm{FH}$	-298.777912354448	-299.411954798
$\mathrm{~F}_{2} \ldots \mathrm{FH}$	-298.777912354443	-299.396752116
Absolute error (a.u.)	5.0×10^{-12}	1.5×10^{-2}
Relative error	1.7×10^{-14}	5.1×10^{-5}

Alternatives

- Proposal by Lindgren (QD-PT, 1974)

$$
\Delta E_{\mu}^{(0)}=E_{\mathrm{I}}^{(0)}-E_{\mu}^{(0)}=\langle\mathrm{I}| H|\mathrm{I}\rangle-\langle\mu| H|\mu\rangle
$$

Intruder state problem $\Leftrightarrow \Delta E_{\mu}^{(0)}$ too small ...
\Rightarrow systematically diverges ! ! ;

- Proposal by Heully et al. ($\left.\mathrm{H}_{\mathrm{int}}, 1996\right)$

$$
\Delta E_{\mathrm{I} \mu}^{(0)}=\langle\mathrm{I}| H|\mathrm{I}\rangle-\langle\mu| H|\mu\rangle+\delta_{\mathrm{I} \mu}
$$

\Rightarrow Numerically instable ©

- Related proposal by Mukherjee et al. (Mk-MRPT2, 1999) \Rightarrow Numerically instable ©
- Pathaket al. (2017) : diagonalize entirely the Dyall $H^{(0)}$ \Rightarrow Numerically stable and accurate $;$
\Rightarrow Computationally expensive ©

Proposal of a solution (Giner et al., 2017) : key concept

- Each $|\mu\rangle$ might have many parents $|\mathrm{I}\rangle$

$$
\langle\mu| H|\mathrm{I}\rangle \neq 0 \quad \Leftrightarrow \quad|\mathrm{I}\rangle \text { is a parent of }|\mu\rangle
$$

- As in Mk-MRPT or HMZ-MRPT, why not a $\mathbf{H}^{(0)}(\mathrm{I})$?

$$
c_{\mu}=\sum_{\mathrm{I}} \frac{\langle\mathrm{I}| H|\mu\rangle}{\Delta E_{\mathrm{I} \mu}^{(0)}}
$$

- $\langle\mu| H|\mathrm{I}\rangle \neq 0 \Leftrightarrow$ there is an excitation process $\hat{T}_{\mathrm{I} \mu}$ linking $|\mathrm{I}\rangle$ and

$$
\langle\mu| H|\mathrm{I}\rangle \neq 0 \quad \Leftrightarrow \quad \exists \quad \hat{T}_{\mathrm{I} \mu}|\mathrm{I}\rangle=|\mu\rangle, \quad \hat{T}_{\mathrm{I} m u}=a_{p}^{\dagger} a_{q}^{\dagger} a_{n} a_{m} \equiv \hat{T}_{m n}^{p q}
$$

- We choose $\Delta E_{\mathrm{I} \mu}^{(0)}=f(m, n, p, q)=\Delta E_{m n}^{p q}$
- Same $\Delta E_{\text {I } \mu}^{(0)}$ for many couples $(|\mathrm{I}\rangle,|\mu\rangle)$
- Definition of a size extensive excitation energy $\Delta E_{m n}^{p q}$?

Proposal of a solution : key concept

- $\left|\Psi^{(1)}\right\rangle$ can be built directly in 2 different ways:
- By browsing the individual determinants $|\mu\rangle$

$$
\left|\Psi^{(1)}\right\rangle=\sum_{\mu} \sum_{\mathrm{I}} c_{\mathrm{I}} \frac{\langle\mathrm{I}| H|\mu\rangle}{\Delta E_{\mathrm{I} \mu}^{(0)}}|\mu\rangle
$$

- By browsing the individual excitations \hat{T}

$$
\begin{aligned}
\left|\Psi^{(1)}\right\rangle & =\sum_{T} \frac{1}{\Delta E_{\hat{T}}^{(0)}} \sum_{\mathrm{I}} c_{\mathrm{I}}\langle\mathrm{I}| H \hat{T}|\mathrm{I}\rangle \hat{T}|\mathrm{I}\rangle \\
& =\sum_{T} \frac{1}{\Delta E_{\hat{T}}^{(0)}}|\Psi(\hat{T})\rangle
\end{aligned}
$$

- A possible definition for $\Delta E^{(0)}(\hat{T})$ could be :

$$
\Delta E^{(0)}(\hat{T})=\left\langle\Psi^{(0)}\right| H\left|\Psi^{(0)}\right\rangle-\frac{\langle\Psi(\hat{T})| H|\Psi(\hat{T})\rangle}{\langle\Psi(\hat{T})||\Psi(\hat{T})\rangle}
$$

Proposal of a solution : actual equations

- $\Delta E^{(0)}(\hat{T})$ is free of unlinked terms:
- $\left\langle\Psi^{(0)}\right| H\left|\Psi^{(0)}\right\rangle$ contains correlation effects
- $\frac{\langle\Psi(\hat{T})| H|\Psi(\hat{T})\rangle}{\langle\Psi(\hat{T})||\Psi(\hat{T})\rangle}$ also !
- Nevertheless ... expensive quantities!
- Solution use the Dyall Hamiltonian! $H \rightarrow H^{D}$

$$
H^{D}=F_{\text {core }}+F_{\text {virt }}+\underbrace{\frac{1}{2} \sum_{a b c d} V_{a b}^{c d} a_{c}^{\dagger} a_{d}^{\dagger} a_{b} a_{a}}_{\text {active space }}
$$

- Still size extensive! correlation effects \leftrightarrow CAS and H^{D} is two-body within the CAS

Proposal of a solution : actual equations

- Decomposition of the $\Delta E^{(0)}(\hat{T})$

$$
\hat{T}=\hat{T}_{\text {act }}+\hat{T}_{\text {core } / v i r t}
$$

$$
\Delta E^{(0)}(\hat{T})=\Delta E^{(0)}\left(\hat{T}_{\text {core } / \text { virt }}\right)+\Delta E^{(0)}\left(\hat{T}_{\text {act }}\right)
$$

- $\Delta E^{(0)}\left(\hat{T}_{\text {core } / v i r t}\right)$ is determined by a generalized Fock operator

$$
\Delta E^{(0)}\left(\hat{T}_{\text {core } / \text { virt }}\right)=\sum_{h \in\{\text { holes }\}} \epsilon_{h}-\sum_{p \in\{\text { particles }\}} \epsilon_{p}
$$

- $\Delta E^{(0)}\left(\hat{T}_{\text {core/virt }}\right)$ is determined by a generalized Fock operator
- $\Delta E^{(0)}\left(\hat{T}_{a c t}\right)$ is an approx. to the energetical cost of the change of N_{e} in the active space

$$
\Delta E^{(0)}\left(\hat{T}_{a c t}\right)=\left\langle\Psi^{(0)}\right| H^{D}\left|\Psi^{(0)}\right\rangle-\frac{\left\langle\Psi\left(\hat{T}_{a c t}\right)\right| H^{D}\left|\Psi\left(\hat{T}_{a c t}\right)\right\rangle}{\left\langle\Psi\left(\hat{T}_{a c t}\right)\right|\left|\Psi\left(\hat{T}_{a c t}\right)\right\rangle}
$$

Some examples : the 1h2p excitation class

- Double excitations $\hat{T}_{i a}^{r v}$

$$
\hat{T}_{i a}^{r v}=a_{r}^{\dagger} a_{v}^{\dagger} a_{a} a_{i}
$$

- Excitation energy $\Delta E_{i a}^{r v}$

$$
\begin{gathered}
\Delta E_{i a}^{r v}=\Delta E^{(0)}\left(a_{r}^{\dagger} a_{v}^{\dagger} a_{i}\right)+\Delta E^{(0)}\left(a_{a}\right) \\
\Delta E^{(0)}\left(a_{r}^{\dagger} a_{v}^{\dagger} a_{i}\right)=\epsilon_{i}-\epsilon_{r}-\epsilon_{v}
\end{gathered}
$$

$$
\Delta E^{(0)}\left(a_{a}\right)=\left\langle\Psi^{(0)}\right| H^{D}\left|\Psi^{(0)}\right\rangle-\frac{\left\langle\Psi^{(0)}\right| a_{a}^{\dagger} H^{D} a_{a}\left|\Psi^{(0)}\right\rangle}{\left\langle\Psi^{(0)}\right| a_{a}^{\dagger} a_{a}\left|\Psi^{(0)}\right\rangle}
$$

i

- $\Delta E^{(0)}\left(a_{a}\right)$ is the IP of the active orbital a

Some other examples

- Electronic affinities

$$
\Delta E^{(0)}\left(a_{a}^{\dagger}\right)=\left\langle\Psi^{(0)}\right| H^{D}\left|\Psi^{(0)}\right\rangle-\frac{\left\langle\Psi^{(0)}\right| a_{a} H^{D} a_{a}^{\dagger}\left|\Psi^{(0)}\right\rangle}{\left\langle\Psi^{(0)}\right| a_{a} a_{a}^{\dagger}\left|\Psi^{(0)}\right\rangle}
$$

- Double electronic affinities

$$
\Delta E^{(0)}\left(a_{b}^{\dagger} a_{a}^{\dagger}\right)=\left\langle\Psi^{(0)}\right| H^{D}\left|\Psi^{(0)}\right\rangle-\frac{\left\langle\Psi^{(0)}\right| a_{b} a_{a} H^{D} a_{b}^{\dagger} a_{a}^{\dagger}\left|\Psi^{(0)}\right\rangle}{\left\langle\Psi^{(0)}\right| a_{b} a_{a} a_{b}^{\dagger} a_{a}^{\dagger}\left|\Psi^{(0)}\right\rangle}
$$

- And so on ...

Important points

- Size extensive provided that active orbitals are localized
- Good definition of the excitation process \Leftrightarrow no intruder state problem
- Exemple in CASPT2 for a singly occupied MO

$$
\epsilon_{a}=-\frac{1}{2}\left(I P_{a}+E A_{a}\right)
$$

- $I P_{a}$ and $E A_{a}$ have opposite signs in general ...
- ϵ_{a} can be close to $0 \ldots$
- No empirical parameters

At the end of the day ...

- The dressing hamiltonian is:

$$
\langle\mathrm{J}| \tilde{O}|\mathrm{I}\rangle=\sum_{\mu} \frac{\langle\mathrm{J}| H|\mu\rangle\langle\mu| H|\mathrm{I}\rangle}{\Delta E^{(0)}\left(\hat{T}_{\mathrm{I} i}\right)}, \quad \hat{T}_{\mathrm{I} \mu}|\mathrm{I}\rangle=|\mu\rangle
$$

- The second order correction to the energy is :

$$
E^{(2)}=\left\langle\Psi^{(0)}\right| \tilde{O}\left|\Psi^{(0)}\right\rangle
$$

- The dressed Hamiltonian \tilde{H} is :

$$
\langle\mathrm{J}| \tilde{H}|\mathrm{I}\rangle=\langle\mathrm{J}| H|\mathrm{I}\rangle+\langle\mathrm{J}| \tilde{O}|\mathrm{I}\rangle
$$

- The corresponding dressed energy and wave function are obtained by :

$$
\tilde{H}|\tilde{\Psi}\rangle=\tilde{\mathcal{E}}|\tilde{\Psi}\rangle
$$

Some mumerical proof of separability

TABLE - Total energies (a. u.) for the numerical separability check on $\mathrm{F}_{2} \ldots \mathrm{FH}$.

	CASSCF	$E^{(2)}$
F_{2}	-198.746157368569	-0.337009510134933
FH	-100.031754985880	-0.230422886638017
$\mathrm{~F}_{2}+\mathrm{FH}$	-298.777912354448	-0.5674323967729
$\mathrm{~F}_{2} \ldots \mathrm{FH}$	-298.777912354443	-0.5674323967730
Absolute error (a.u.)	5.0×10^{-12}	8.6×10^{-14}
Relative error	1.7×10^{-14}	1.5×10^{-13}

Some mumerical proof of separability

TABLE - Total energies (a. u.) for the numerical separability check on $\mathrm{F}_{2} \ldots \mathrm{FH}$.

	CASSCF	$\tilde{\mathcal{E}}$
F_{2}	-198.746157368569	-199.085305155169
FH	-100.031754985880	-100.262424667296
$\mathrm{~F}_{2}+\mathrm{FH}$	-298.777912354448	-299.347729822466
$\mathrm{~F}_{2} \ldots \mathrm{FH}$	-298.777912354443	-299.347729822462
Absolute error (a.u.)	5.0×10^{-12}	4.4×10^{-12}
Relative error	1.7×10^{-14}	1.4×10^{-14}

Some examples of calculations

TABLE - Non parallelism error with respect to FCI (cc-pVDZ)

	$\mathrm{H}_{2} \mathrm{O}$	$\mathrm{C}_{2} \mathrm{H}_{4}$	$\mathrm{~N}_{2}$
CASSCF	40.9	26.2	18.2
SC-NEVPT2	2.4	2.4	2.3
PC-NEVPT2	2.5	3.2	1.3
CASPT2 (IPEA=0.)	5.5	6.0	9.6
CASPT2 (IPEA=0.25)	3.0	4.5	4.4
Shifted Bk	30.8	7.6	5.9
$E^{(2)}$	3.0	3.7	3.4
$\tilde{\mathcal{E}}$	4.8	4.0	4.5

Comparable accuracy with respect to NEVPT2, often better than CASPT2, no empirical parameter

Working on the computational cost ..

Main source of computational cost

- Keep in mind that we are interested in systems where
$10^{3}<N_{\mathrm{I}}<10^{8}$
$30<n_{e}<500$
$100<n_{\text {orb }}<1500$
- CPU time : the browsing of $|\mu\rangle$

The number scales as $N_{\mathrm{I}} \times\left(n_{e} \times n_{\text {orb }}\right)^{2}$
For each $|\mu\rangle$ needs to compute $\left\langle\Psi^{(0)}\right| H|\mu\rangle \Rightarrow$ scales as N_{I}

$$
\approx\left(N_{\mathrm{I}}\right)^{2} \times\left(n_{e} \times n_{\text {orb }}\right)^{2}
$$

- Memory : storing of the \tilde{O}

$$
\approx\left(N_{\mathrm{I}}\right)^{2}
$$

Working on the computational cost ..

- But the $\Delta E_{\mathrm{I} \mu}^{(0)}=f(m, n, p, q)$ do not depend on $|\mathrm{I}\rangle$

$$
\begin{aligned}
E^{(2)} & =\sum_{\mu} \sum_{\mathrm{I}, \mathrm{~J}} c_{\mathrm{I}} c_{\mathrm{J}} \frac{\langle\mathrm{~J}| H|\mu\rangle\langle\mu| H|\mathrm{I}\rangle}{\Delta E_{\mathrm{I} \mu}^{(0)}}, \quad|\mu\rangle=\hat{T}_{\mathrm{I} \mu}|\mathrm{I}\rangle=a_{n}^{\dagger} a_{m}^{\dagger} a_{p} a_{q}|\mathrm{I}\rangle \\
& =\sum_{\mathrm{I}, \mathrm{~J}} c_{\mathrm{I}} c_{\mathrm{J}} \sum_{e, f, g, h, i, j, k, l, m, n, p, q} \\
& \frac{V_{i j}^{l k} V_{g h}^{e f}}{\Delta E^{(0)}\left(a_{n}^{\dagger} a_{m}^{\dagger} a_{p} a_{q}\right)}\langle\mathrm{J}| a_{e}^{\dagger} a_{f}^{\dagger} a_{g} a_{h} a_{l}^{\dagger} a_{k}^{\dagger} a_{j} a_{i} a_{n}^{\dagger} a_{m}^{\dagger} a_{p} a_{q}|\mathrm{I}\rangle
\end{aligned}
$$

- Defines effective second quantized operator!

Some examples : the 1h2p excitation class

- Double excitations $\hat{T}_{i a}^{r v}$

$$
\hat{T}_{i a}^{r v}=a_{r}^{\dagger} a_{v}^{\dagger} a_{a} a_{i}
$$

- 1h2p excitations can be mapped into an effective Fock operator in the active space :

$$
\begin{aligned}
& \tilde{F}_{a b} \approx \sum_{i, t, v} \frac{V_{i a}^{t v} V_{i b}^{t v}}{\epsilon_{i}-\epsilon_{v}-\epsilon_{t}+\Delta E\left(a_{a}\right)} \\
& E_{1 h 2 p}^{(2)}=\sum_{a b} F_{b a}\left\langle\Psi^{(0)}\right| a_{b}^{\dagger} a_{a}\left|\Psi^{(0)}\right\rangle
\end{aligned}
$$

- $2 p$ excitations can be mapped into an effective coulomb operator in the active space :

$$
\tilde{W}_{a b}^{c d} \approx \sum_{t, v} \frac{V_{c d}^{t v} V_{a b}^{t v}}{-\epsilon_{v}-\epsilon_{t}+\Delta E\left(a_{a} a_{b}\right)}
$$

Working on the computational cost

The effective operator formalism

- "Simple" contraction of integrals and energy denominators
- Avoids any browsing of the $|\mu\rangle$
- No prefactor in $N_{\text {I }}$
\Rightarrow Large saving in CPU time! ©
- Reduce to effective many-body operators within the active space \Rightarrow Large saving in Memory! ©

Current developments and summary

What we briefly saw ...

- Advantages of both worlds

Internal contractions : size extensivity + CPU time
Slater determinants : dressing of H
\Rightarrow bonus : weak storage !

- Requires flexible formalisms (and codes!!)

Futur : Deal with very large CAS

- Use CIPSI to converge large CAS (typically $30 e$ in 30 orbitals)

Treat explicitely a part of dynamical correlation

- Reduce CPU time to its minimum to treat large CAS

Express all contributions as effective operators Express all expectation values $\left(\Delta E\left(a_{a}\right), \Delta E\left(a_{b}^{\dagger} a_{a}\right), \ldots\right)$ as functions of RDMs

- Coupling with range-separated DFT

Faster convergence with respect to single particle basis

