

INVESTIGATION OF GROUND STATE BAND AND HIGH K STATES IN TRANSFERMIUM ELEMENTS

ESPACE DE STRUCTURE ET DE RÉACTIONS NUCLÉAIRES THÉORIQUE

NOVEMBER 16^{TH} - 19^{TH} 2015

Barbara Sulignano CEA SACLAY

Outlook

- Motivation
- Few Results: even even nuclei; Isomeric high K states; prompt electron spectroscopy
- Experimental Observables & Comparison with the theory
- Conclusion & perspectives

MOTIVATION: CONSTRAINING THEORY

 Microscopic-Macroscopic models based on a liquid drop model (Z=114)

- Relativistic mean field models (Z=120,126)
- Hartree-Fock-Bogoliubov –Skyrme or Gogny Interaction (Z=120,126 N=184)

Similar differences seen for neutron level structure

MOTIVATION: CONSTRAINING THEORY

 $7/2^{1}$

 $5/2^{-1}$

7/2'

 β_2

WHY IN BEAM TECHNIQUES TO STUDY HEAVY NUCLEI?

TRANSFER REACTIONS G.S BAND N=152 : 246PU

323

275

222

167

²⁴⁶Pu₁₅₂

 10^{+}

 8^{+}

 6^{+}

4 Si ∆E-E telescopes

Transfer reaction @ TOKAI tandem JAEA:

- Light ions beams
- Outgoing projectile-like particles detected by Si ΔE – E detectors.
- γ rays were measured by Ge detectors, in coincidence with outgoing particles.

\bigcirc GOALS OF THE EXPERIMENTS

Observables

- Excitation energies, spins, parities
- Moment of inertia
- Rotational alignment
- Isomeric states

Goals

- Shell effect
- Pairing correlations
- Collective modes
- Quasi particle configuration

SYSTEMATICS OF THE EXPERIMENTAL 2⁺ ENERGY

Ch.Theisen, P.T.Greenlees et al. EPJ(2015)

NOVEMBER 16TH-19TH

Espace de Structure et de réactions Nucléaires Théorique

Pairing correlation are reduced at a deformed shell gap

\rightarrow Larger Moment of Inertia \rightarrow smaller E₂₊

Sobiczewski, Muntian, Patyk. PRC 63, 034306 (2001)

- systematics around N=152 very well
- The Z = 100 gap is present but less pronounced.

There is no minimum at Z = 98

CORRELATION TO MASSES

AME2003: $S_{2n}(Z,N) = B(Z,N) - B(Z,N-2), \delta_{2n}(Z,N) = S_{2n}(Z,N) - S_{2n}(Z,N+2)$

SYSTEMATICS OF ONE QUASIPARTICLE LEVELS IN N=151 ISOTONES - SHELL GAP N=152

Espace de Structure et de réactions Nucléaires Théorique

SYSTEMATICS OF ONE QUASIPARTICLE LEVELS IN N=151 ISOTONES COMPARISON THEORY

NOVEMBER 16TH-19TH

Espace de Structure et de réactions Nucléaires Théorique

WHAT WE CAN LEARN FROM MOMENT OF INERTIA

Moments of inertia are related to (deformed) shell gaps & pairing correlations

- ♦ Alignment faster for N=150 as compared to N=152
- At a shell gap, pairing correlations are weakened, resulting in larger moments of inertia
- \rightarrow Gaps at Z=100 (Fm) and N=152 (²⁵⁴No)

 \rightarrow No gap at Z=104

WHAT HFB MODEL SAYS?

YUE SHI, J. DOBACZEWSKI, AND P. T. GREENLEES

PHYSICAL REVIEW C 89, 034309 (2014)

PHYSICAL REVIEW C 86, 011301(R) (2012)

Understanding the different rotational behaviors of ²⁵²No and ²⁵⁴No

 \diamond

WHAT WE CAN LEARN FROM ALIGNEMENT

0.1

0.15

0.2

Alignment later in N=152 \diamond isotones than N=150

and N=152

 \rightarrow competition π i_{13/2} and ν j_{15/2} orbitals

0.05

Cea ROTATIONAL ALIGNMENT

- \diamond In-beam now feasible down to a cross section of 10nb;
- Relatively few in-beam studies beyond plutonium have been performed;
- ♦ High spin data can been produced using inelastic scattering or transfer reactions → actinide targets are needed

 \rightarrow Limiting factors: lifetime and high gamma ray counting rates

♦ Need to push to Z=108 and N=162 to investigate states from above Z=120, N=184

- The correlation between the 2+ energies and the masses and the effect
 @ Z=98 is no yet understood
- No j_{15/2} neutron alignment has been unequivocally observed in these heavy elements. Calculations always predict neutron crossings before proton crossings, but in reality the i_{13/2} protons align
- ➢ Pairing strengths?? → poor agreement between experiments and theory

NOVEMBER 16TH-19TH

Espace de Structure et de réactions Nucléaires Théorique

ISOMERIC STATES IN EVEN EVEN NUCLEI

Why K isomers occur?

- Deformed nucleus
- Selection rule for electromagnetic transition $\lambda \geq \Delta K$ is not fulfilled
- Breaking of particle pairs at Fermi Surface
- Excitation energy of quasiparticle: $E = \sqrt{(\varepsilon - \lambda)^2 + \Delta^2}$

What we can learn?

- Information about Nilsson level energy gaps
- Influence on stability of super heavy elements
- The pairing interaction

ISOMERIC STATES IN EVEN EVEN NUCLEI

Why K isomers occur?

- Deformed nucleus
- Selection rule for electromagnetic transition $\lambda \geq \Delta K$ is not fulfilled
- Breaking of particle pairs at Fermi Surface
- Excitation energy of quasiparticle: $E = \sqrt{(\varepsilon - \lambda)^2 + \Delta^2}$

What we can learn?

- Information about Nilsson level energy gaps
- Influence on stability of super heavy elements
- The pairing interaction

B. Sulignano et al. Eur. Phys. J. 33 (2007), 327; B. Sulignano et al. Phys. Rev. C 86 (2012), 44138

NEUTRON SINGLE PARTICLE STATES FOR ²⁵²NO

NEUTRON SINGLE PARTICLE STATE IN 250 FM

PROTON SINGLE PARTICLE STATE FOR 254NO

Two-quasi-particle proton states: **???** (1/2⁻[521] 7/2⁻[514]) 3⁺ - 988 keV (9/2⁺[624] 7/2⁻[514]) 8⁻ - 1293 keV

or

two-quasi-neutron state: ???

9/2-[734] \otimes 7/2+[613] 8-

HIGH-K ISOMERS IN ²⁵⁴NO

no agreement concerning an 2qp K isomer at ~1,3 MeV

. (97)

266 ms

Cea

K ISOMERISM IN ²⁵⁶RF

A.P. Robinson *et al.* PRC 83 **(2011)** 064311 FMA@ANL Only one isomer 17(5) µs 4qp ?

Observed decays **BGS**

Chain	No. Events	T _{1/2}
		(Parent-Daughter)
R-F	5400	6.67(9) ms
R-e-F	985 (18%)	25(2) μ s
R-e-e-F	147 (2.7%)	$17(2) \ \mu s$
R-e-e-F	7 (0.13%)	$27(2) \ \mu s$

Observed decays ANL

Chain	No. Events	T _{1/2} (Parent-Daughter)
R-F	1322	6.9(4) ms
К-С-Г	19(1.4%)	17(3) μs

Observed decays JYFL

Chain	No. Events	T _{1/2}
		(Parent-Daughter)
R-F	2210	6.9(2) ms
R-e-F	382 (17%)	23 µs
R-e-e-F	67 (3.0%)	17 µs
R-e-e-F	4 (0.18%)	27 µs

Experimental differences difficult to reconcile \rightarrow An order of magnitude in statistics is required σ =15nb

Including higher order deformation strengthens the N=152 and Z=100 gaps

Spin-spin coupling will push the unfavoured 2 quasineutron state up in energy

CONCLUSION ISOMERS

- 8⁻ isomer in ²⁵²No and in ²⁵⁰Fm are neutron states
- ➢ 3⁺ state in ²⁵⁴No is a proton state
- ➢ 8⁻ isomer in ²⁵⁴No needs more study
- Systematics study are necessary to draw a clear picture of the region
- We see many isomers we do really understand their structure?

Very few theoretical works are devoted to rational bands built on high K isomer

 \rightarrow Only HFB using D1S Gogny Force & CCTRS

- ♦ Large spread in predictions for $K^{\pi} = 8^{-1} \ln 254$ No proton and neutron energies
- No proton deformed shell gap is predicted at Z=100 for HFB+Gogny force and Skyrme Sly4 force
- ♦ Needs calculations of the magnetic moments for the isomeric states

PROMPT ELECTRON SPECTROSCOPY 251 MD

²⁰⁵Tl(⁴⁸Ca,2n)²⁵¹Md σ ~ 760 nb

NOVEMBER 16TH-19TH

Espace de Structure et de réactions Nucléaires Théorique

22 ELECTROMAGNETIC PROPERTIES

- In odd nuclei , the rotational bands are decoupled in two signature partners.
- The intensity ratio strongly depends on the single particle structure
- The decay path is a unique finger print to deduce the s.p. structure via its magnetic moment

GAMMA GAMMA COINCIDENCES

Band 1

No signature partner

Electromagnetic properties HFB \rightarrow Band 1 = [521] $\frac{1}{2}$

GAMMA GAMMA COINCIDENCES

NOVEMBER 16TH-19TH

 E_{\sim} (keV) Espace de Structure et de réactions Nucléaires Théorique

Cea M1 TRANSITIONS

Experimentally M1 not seen in gamma spectroscopy

150

100

50

→ Look what's happen with electrons

Where are the M1 transitions?

Example of simulation including 1/2⁻ and 7/2⁻ bands, M1 and E2 transitions

 \rightarrow Very difficult analysis

NOVEMBER 16TH-19TH

Near Future:

- VAMOS GAS FILLED Mode and AGATA spectrometer.
- RITU coupled with Sage spectrometer allows electron conversion measurements
- \rightarrow e.g. ²⁵⁴No,²⁴⁹Md(April 2016)

Further into the future

Asymmetric hot fusion reactions using actinide targets, ²³⁸U(¹⁸O,4n)²⁵²Fm;
 Deep inelastic reactions e.g. ¹⁸O, ⁸⁶Kr or ¹³⁶Xe beams on a ²⁴⁸Cm target

Thanks!