

Overview of recent and future experiments of transfermium nuclei in the deformed region around N=152

Mikael Sandzelius University of Jyväskylä (JYFL)

16 November 2015

ESNT Workshop, Saclay, 16 – 19 November 2015

The super heavy landscape

SHE – Shell correction and single-particle levels

Self-Consistent Theories

- Calculations based on realistic effective nucleon-nucleon interaction
- Allows results to be traced back to interaction
- Difficult in Macroscopic-Microscopic calculations
- Need experimental data to determine correct ordering
- Will provide better predictions of properties of SHE

M.Bender, W. Nazarewicz, P.-G. Reinhard, PLB 515, 42 (2001)

SHE – Shell correction and single-particle levels

M.Bender, W. Nazarewicz, P.-G. Reinhard, PLB 515, 42 (2001)

Current status of spectroscopic studies for SHN

Especially in the region Z > 100 and N > 153

Single particle orbitals in the region

R.R Chasman et al., Rev. Mod. Phys. 49, 833 (1977)

Experimental approaches

Distortion of a-energy spectrum by coincidence summing effects

It is almost impossible to derive α energies and intensities precisely! At close geometry, and by implantation

High-resolution α fine-structure spectroscopy of odd-mass Lr isotopes

However, γ-ray intensity is very weak in SHN. Internal conversion is dominant

JYFL

If the α -decay populates the ground or isomeric state, there is no γ -rays observed.

High-resolution α fine-structure spectroscopy needed

How do we assign spin-parities and configurations?

 α energy resolution ~ 10 keV

High-resolution α fine-structure spectroscopy

High-resolution a fine-structure spectroscopy

Proton single-particle configurations in Lr isotopes

First definite identification of proton single-particle configurations in $Z \ge 103$ isotopes

M. Asai et al., JAEA, RIKEN

Electromagnetic properties from rotational band structures

Why we need to measure conversion electrons?

$E\gamma$	Transition	Relative
(keV)	assignment	intensity (%)
44 ± 1	$(2^+ \rightarrow 0^+)$	
104 ± 1	$(4^+ \rightarrow 2^+)$	
161 ± 1	$(6^+ \rightarrow 4^+)$	100 ± 30
218 ± 1	$(8^+ \rightarrow 6^+)$	80 ± 20
272 ± 1	$(10^+ \rightarrow 8^+)$	53 ± 12
323 ± 1	$(12^+ \rightarrow 10^+)$	49 ± 11
371 ± 1	$(14^+ \rightarrow 12^+)$	22 ± 8
417 ± 2	$(16^+ \rightarrow 14^+)$	20 ± 7
459 ± 2	$(18^+ \rightarrow 16^+)$	18 ± 7
499 ± 2	$(20^+ \rightarrow 18^+)$	16 ± 7

P. Greenlees et al., Phys. Rev. Lett. 109, 012501 (2012)

$$\alpha \propto \frac{Z^3}{E^*} \qquad \alpha = \frac{N_e}{N_{\gamma}}$$

Internal conversion

- $\alpha_{tot} = N_{\gamma}/N_e = \alpha_k + \alpha_L + \dots$
- α increases strongly with multipolarity
- *α larger for magnetic transitions*

Internal conversion

Electron Gamma

SAGE silicon detector

Consists of 90 active pixels 1 mm thick, 50 mm wide

Prompt conversion electron spectra

JYFL

⁴⁸Ca + ²⁰⁹Bi **→** ²⁵⁵Lr + 2n

A tag necessary for distinguishing any features in the spectrum

Singles electron spectrum

The recoil gated electron spectrum is sufficiently clean

Singles gamma-ray spectrum

Transitions are visible from the favoured signature band built upon the 1/2⁻ ground state, i.e. the ½⁻[521] orbital

Gamma-electron coincidences

With the gamma-electron coincidences the low-lying members of the gs band can be elucidated

Gamma-electron coincidences in ²⁵⁵Lr

Are essential!

Electron-gamma coincidences

Prompt in-beam conversion-electron and gamma-ray spectroscopy is possible down to ~250 nb level!

Possibilities with RIBs

Around N=152/162

90-94Kr + 164Dy → 254-258No* 90-94Kr + 160Gd → 250-254Em* 132Sn + 137Cs → 267Db* 132Sn + 132,134,136Xe → 264,266,268Rf* 132Sn + 138Ba → 270Sg* 132Sn + 139La → 271Bh* 132Sn + 140,142Ce → 272,274Hs* 132Sn + 142-150Nd → 274-282Ds* 90-96Kr + 181Ta → 271-277Mt* 90-96Kr + 186W → 276-282Ds* 90-96Kr + 180Hf → 270-276Hs* 90-96Kr + 175,176Lu → 265-272Bh* 90-96Kr + 176Yb → 266-272Sg*

Towards N=184?

Difficult even with radioactive beams ${}^{90-95}Kr + {}^{208}Pb \rightarrow {}^{298-303}118*$ ${}^{132}Sn + {}^{170}Er \rightarrow {}^{302}118*$ ${}^{132}Sn + {}^{176}Yb \rightarrow {}^{308}120*$

SPIRAL2 predicted intensities

EURISOL predicted intensities

Fig. 13: Predicted EURISOL intensities of several nuclides:

Left:	Be (black open dots), Centre		Zr (filled green triangles),	Right:	Hg (squares)
	Li (blue filled squares),		Nb (open red diamonds),		Fr (triangles)
	Mg (open green triangles),		Mo (magenta filled triangles),		
	Ar (red filled rhomboids),		Tc (black open dots),		
	Ni (magenta open triangles),		Ru (red filled dots)		
C	Ga (black filled dots)		Rh (green open triangles),		
	Kr (open blue squares);		Pd (red filled diamonds)		
			Ag (magenta open triangles)		
			Cd (filled black dots),		
		_	In (open blue squares).		
			Sn (green filled dots);		

- Determination of single-particle orbital energy spacing is crucial for understanding the shell structure of SHN
- Prompt conversion-electron and gamma-ray coincidences are essential in order to unveil low-lying transitions in heavy nuclei
- A cross section of at least several hundreds of nb needed for prompt gamma-electron coincidence spectroscopy
- For spectroscopic studies on the region Z>108 and N=162-184 new technology is needed to obtain sufficient statistics within reasonable beam time

α-γ coincidence decay spectroscopy of ²⁵⁹Rf

α decays of N=155 isotones and levels in N=153 daughters

7/2[613] and 3/2[622] are Inverted !

Ground states of N=155 isotones

- Z = 98,100 --- 7/2⁺[613]
- Z = 102,104 --- 3/2+[622]

M. Asai et al., JAEA, RIKEN

Acknowledgements

SAGE

J. Pakarinen, P. Papadakis, J. Sorri , **R.-D. Herzberg**, **P.T. Greenlees**, P.A. Butler, P.J.Coleman-Smith, D.M. Cox, J.R. Cresswell, P. Jones, R. Julin, J. Konki, I.H. Lazarus, S.C. Letts, A. Mistry, R.D. Page, E. Parr, V.F.E. Pucknell, P. Rahkila, J. Sampson, M. Sandzelius, D.A. Seddon, J. Simpson, J. Thornhill, D. Wells

GAMMAPOOL

MATERIAL

K. Ranttila, J. Tuunanen, R.-D. Herzberg, P. Papadakis, J. Pakarinen, L.I. Pakarinen, S.K. Pakarinen

Conversion Electron Distribution

Central pixels are more exposed than outer ones, typical count rates are 25-35 kHz per pixel/channel