May 12, 2021

For discussion with the ETIC group

Toshimi Suda ELPH, Tohoku Univ. Sendai, JAPAN

- 1) general remarks
- 2) new researches a) photonuclear res
 - a) photonuclear response
 - b) neutron

Elastic scattering : Accessible q-range for L and Z

T.S. and Haik Simon. Prog. Part. Nucl. Phys. 96 (2017) 1-31.

For discussion with the ETIC group

Toshimi Suda ELPH, Tohoku Univ. Sendai, JAPAN

- 1) general remarks
- 2) new researchesa) photonuclear responseb) neutron

additional research opportunity at e-RI facility

Total Photoabsorption Cross Section

photonuclear reaction for exotic nuclei

so far

 $\gamma \sim 1$

only way : Coulomb excitation in heavy ion reaction

Total Photoabsorption Cross Section

3. detecting all final states

few nucleon system, heavy nucleis (γ,xn)

$$\sigma_{tot}(E_{\gamma}) = \sigma^A_{tot}(E_{\gamma}) + \sigma^B_{tot}(E_{\gamma}) + \sigma^c_{tot}(E_{\gamma}) + \dots$$

Expected reaction rate for $L = 10^{27} / \text{cm}^2 / \text{s}^2$

Comp. Phys. Comm. 32 (1984) 291

For discussion with the ETIC group

Toshimi Suda ELPH, Tohoku Univ. Sendai, JAPAN

- 1) general remarks
- 2) new researches
 - a) photonuclear response
 - b) neutron

A novel way to access neutrons by "traditional" electron scattering

"The n-th order moment of the nuclear charge density and contribution from the neutrons"

> H. Kurasawa and T. Suzuki Prog. Theor. Exp. Pays. (2019) 113D01.

"The mean square radius of the neutron distribution and the skin thickness derived from electron scattering"

> H. Kurasawa, T. Suda and T. Suzuki Prog. Theor. Exp. Pays. (2021) 013D02.

> > and more to come ...

n-th moments of the charge density

$$\langle r_c^n \rangle = \int r^n \rho_c(r) \,\mathrm{d}^3 r$$

$$\rho_c^n(r) = \left[\rho_n(r) \rho_{n(point)}(r - r') \right] d^3r'$$

structure theory

Courtesy : H. Kurasawa and T. Suzuki

⁴⁸Ca Charge density distribution

4-th moment

n-:

skin I	Full rel. calculation (NL3) H. Kurasawa and T. Suzuki (arXiv : 1907.09071)						
$R_{n(noint)}$		Exp	<r4<sub>c></r4<sub>	n-cont.	Rp(point)	Rn(point)	n-skin
	⁴⁸ Ca	194.7	191.7	6.9%	3.38	3.44	0.23
$R_{p(point)}$	²⁰⁸ Pb	1171.6	1156.8	2.9%	5.46	5.74	0.28

Charge Form Factor of 40,48Ca

new beam line + double spectrometers for proton charge radius

40, 48Ca(e,e') using Ee = 20 - 60 MeV

absolute cross section

Spec A : luminosity monitor at a fixed scattering angle

Spec B : "accurate" q-dependence of Xsection by varying angle

Sendai ULQ2 (Ultra-Low Q2) for proton radius

A new low-energy electron beam line + spectrometers

Ee = 20 - 60 MeV $\theta = 30 - 150 MeV$

