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Ab initio prediction of the drip lines

tens of keV—well beyond current levels of precision—can
make the difference between an isotope being bound or
unbound. Therefore, an assessment of theoretical uncer-
tainty is mandatory for any meaningful drip line prediction.
Ab initio methods present an appealing framework for
uncertainty quantification: one begins with the most gen-
eral Lagrangian compatible with the applicable sym-
metries, organized by a systematically improvable power
counting, then solves the nuclear many-body problem
within a controlled and systematically improvable approxi-
mation scheme, propagating all uncertainties. Such a
prescription has not yet been achieved in practice, so for
the present we use a comparison with known data to
calibrate a physically motivated model for the error. Recent
work in a similar spirit has applied Bayesian machine
learning algorithms to global mass models [10,41,42]. The
main advantages of our current approach are (i) the
predictions should not be biased towards measured data,
because they were not fit to any data beyond helium and
(ii) the predictions can be benchmarked where the proton
and neutron drip lines are known experimentally (mass
models are typically applied to Z ≳ 8).
In the VS-IMSRG, a valence-space Hamiltonian of

tractable dimension is decoupled from the larger Hilbert
space via an approximate unitary transformation. We begin
in a harmonic-oscillator basis of 15 major shells (i.e.,
e ¼ 2nþ l ≤ emax ¼ 14) with an imposed cut of e1 þ e2 þ
e3 ≤ E 3Max ¼ 16 for 3N matrix elements. The resulting
ground-state energies are converged to better than a few

hundred keV with respect to these truncations, and we
perform extrapolations in emax to obtain infrared conver-
gence [43,44]. Transforming to the Hartree-Fock basis, we
capture effects of 3N interactions between valence nucleons
via the ensemble normal ordering of Ref. [35]. We then use
the Magnus formulation of the IMSRG [29,45], truncating
all operators at the normal-ordered two-body level—the
IMSRG(2) approximation—to generate approximate
unitary transformations that decouple the core energy
and valence-space Hamiltonian for each nucleus to be
calculated.
By default, we employ a so-called 0ℏω valence space,

where valence nucleons occupy the appropriate single
major harmonic-oscillator shell (e.g., for 8 < NðZÞ < 20
the sd shell, 20 < NðZÞ < 40 the pf shell, etc.). At
NðZÞ ¼ 2, 8, 20, 40, we do not decouple a neutron (proton)
valence space, and no explicit neutron (proton) excitations
are allowed in the calculation. We discuss exceptions to this
below. Finally the resulting valence-space Hamiltonians are
diagonalized with the NuShellX@MSU shell-model code [46]
(with the exception of a few of the heaviest Ca, Sc, and Ti
isotopes, which were computed with the m-scheme code
Kshell [47]).
We thus calculate ground (and excited) states of all

nuclei from helium to iron, except those for which the shell-
model diagonalization is beyond our computational limits.
For the input NNþ 3N interaction, we use the potential
labeled 1.8=2.0 (EM) in Refs. [17,48], where the 3N
couplings were fit to the 3H binding energy and the 4He

FIG. 1. Calculated probabilities for given isotopes to be bound with respect to one- or two-neutron (proton) removal. The gray region
indicates nuclei that have been calculated, while the height of the boxes corresponds to the estimated probability that a given nucleus is
bound with respect to one- or two-neutron (proton) removal in the neutron-rich (deficient) region of the chart. The inset shows the
residuals with experimental ground-state energies.

PHYSICAL REVIEW LETTERS 126, 022501 (2021)

022501-2

[Stroberg et al. 2021]

⦿ Systematic survey of light and medium-mass nuclei (method: valence-space IMSRG)

○ Good description (+ prediction) of proton and neutron drip lines

○ Rms deviation on total binding energies = 3.3 MeV (cf. 0.7 MeV in energy density functionals)
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et al. [36] for the 1.8/2.0 (EM) interaction. Considering
the same model-space truncation eMax/E3Max = 14/16 and
harmonic-oscillator frequency h̄! = 16 MeV we find good
agreement within ≈1% for 16O: −127.2 MeV [IM-SRG(2)]
vs −128 MeV ["-CCSD(T)]; for 40Ca: −344.5 MeV vs
−348 MeV; for 48Ca: −416.1 MeV vs −419 MeV; and for
78Ni: −633.6 MeV vs −637 MeV, while there is a difference
of more than 3% for 4He (−29.2 MeV vs −28.2 MeV).

Finally, in Figs. 5 and 6 we show ground-state energies
and charge radii, respectively, for selected closed-shell nuclei
from 4He to 78Ni. Except for the neutron-rich oxygen isotopes
22,24O all calculated ground-state energies from the 1.8/2.0
(EM) interaction are in very good agreement with experiment.
Interestingly the other three interactions follow the same
pattern but are shifted by as much as 1.5 MeV/A in the case of
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FIG. 5. Systematics of the energy per nucleon E/A of closed-
shell nuclei from 4He to 78Ni calculated with the IM-SRG for the four
Hamiltonians considered. The results are compared against experi-
mental ground-state energies from the AME 2012 [40] (extrapolated
for 48,78Ni).

the 2.0/2.0 (PWA) interaction. The experimental charge radii
are enclosed by the 2.2/2.0 (EM) and 2.0/2.0 (PWA) results,
but the trend observed for the closed-shell nuclei studied in
detail already above appears to hold at least up to 78Ni. That
is, radii with 1.8–2.2/2.0 are too small, but 2.0/2.0 (PWA)
gives slightly too large radii. As in the case of ground-state
energies, the radius systematics is similar for all Hamiltonians,
with mainly only a constant shift for the different interactions.
This behavior for the ground-state energy and charge radii is
reminiscent of the Coester-like line for the saturation points of
the four Hamiltonians considered [32].

III. OPEN-SHELL ISOTOPIC CHAINS

In this section, we move beyond closed-shell systems to
explore ground- and excited-state systematics throughout a
selection of isotopic chains in the sd and pf shells, namely
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FIG. 1. (Color online) Energy per particle of neutron mat-
ter (top row) and symmetric nuclear matter (bottom row)
based on the Hebeler+ [16] and NNLOsim [6] NN and 3N
interactions (columns). Results are shown for �/⇤3N for the
interactions of Ref. [16] and ⇤NN = ⇤3N for those of Ref. [6].
For symmetric matter, the gray box denotes the saturation re-
gion, n0 = 0.164± 0.007 fm�3 and E/A = �15.86± 0.57MeV.
We also give the calculated range for the symmetry energy
Esym and its slope parameter L at n0 = 0.16 fm�3 (indicated
by the dashed vertical line).

Specifically, in this first application, we consider all con-
tributions from NN interactions up to fourth order in
MBPT (around the Hartree-Fock reference state). Contri-
butions from 3N interactions are included exactly up to
second order, including residual 3N-3N terms, which have
only been evaluated so far for contact interactions [44].
At third order, we neglect all terms that involve at least
one residual 3N contribution, whereas at fourth order we
neglect all 3N contributions. These contributions turn out
to be smaller (see discussion below). This amounts to 4,
20 = 3 ·23�4, and 24 = 39�15 diagrams at second, third,
and fourth order, respectively, with up to 21-dimensional
momentum integrals per diagram. The number of dia-
grams at third (fourth) order can be reduced by 4 (15) at
zero temperature. In comparison, a full calculation would
involve 39 · 24 = 624 fourth-order diagrams. We also eval-
uate the 4N Hartree-Fock energy, but it is generally small,
in agreement with Ref. [18].
We assess the numerical convergence of the integra-

tion by varying the number of sampling points as well as
employing two di↵erent Monte-Carlo algorithms [28], in

FIG. 2. (Color online) Correlation between the calculated
saturation density n0 and saturation energy E/A for the
Hebeler+ [16] and NNLOsim [6] NN and 3N interactions ob-
tained at second, third, and fourth order in MBPT. The values
of �/⇤3N and ⇤NN = ⇤3N, as well as the saturation region are
as in Fig. 1. The diamond refers to the NNLOsat result [1].

addition to the variance as statistical uncertainty. The
framework is remarkably e�cient due to performance opti-
mization and parallelization. Most diagrams up to fourth
order can be evaluated within about 10 minutes to a
precision of . 10 keV. The precise evaluation of a few
specific third-order diagrams involving three 3N interac-
tions requires more time due to the higher dimensionality
of the momentum integrals. However, the strength of the
present Monte-Carlo approach is that the precision can be
controlled in a systematic way using the uncertainty esti-
mates, as short runtimes are important when optimizing
nuclear interactions. For this purpose, one could start con-
straining a fit with lower accuracy around the saturation
point and then successively become more accurate.
Results for nuclear matter.– In Fig. 1 we present re-

sults for the energy per particle in symmetric nuclear
matter and neutron matter based on the Hebeler+ [16]
and NNLOsim [6] NN and 3N interactions up to fourth
order in MBPT. For symmetric matter we show the em-
pirical saturation region by a box with boundaries n0 =
0.164± 0.007 fm�3 and E/A = �15.86± 0.37± 0.2MeV
where the first uncertainties are as in Ref. [22] and we add
an additional 0.2MeV from Ref. [45]. In addition, we give
results for symmetry energy range Esym = E/N � E/A
as well as its slope parameter L = 3n0@nEsym at n0 =
0.16 fm�3. Both are predicted with narrow ranges.
The Hebeler+ interactions were obtained by a simi-

larity renormalization group evolution [46] of the N3LO
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○ Correlation with saturation properties

○ Radii ~OK only with strong underbinding

○ “Family” of SRG-evolved interactions

○ More systematic studies needed

“Magic” interaction & proliferation of Hamiltonians
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et al. [36] for the 1.8/2.0 (EM) interaction. Considering
the same model-space truncation eMax/E3Max = 14/16 and
harmonic-oscillator frequency h̄! = 16 MeV we find good
agreement within ≈1% for 16O: −127.2 MeV [IM-SRG(2)]
vs −128 MeV ["-CCSD(T)]; for 40Ca: −344.5 MeV vs
−348 MeV; for 48Ca: −416.1 MeV vs −419 MeV; and for
78Ni: −633.6 MeV vs −637 MeV, while there is a difference
of more than 3% for 4He (−29.2 MeV vs −28.2 MeV).

Finally, in Figs. 5 and 6 we show ground-state energies
and charge radii, respectively, for selected closed-shell nuclei
from 4He to 78Ni. Except for the neutron-rich oxygen isotopes
22,24O all calculated ground-state energies from the 1.8/2.0
(EM) interaction are in very good agreement with experiment.
Interestingly the other three interactions follow the same
pattern but are shifted by as much as 1.5 MeV/A in the case of
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FIG. 5. Systematics of the energy per nucleon E/A of closed-
shell nuclei from 4He to 78Ni calculated with the IM-SRG for the four
Hamiltonians considered. The results are compared against experi-
mental ground-state energies from the AME 2012 [40] (extrapolated
for 48,78Ni).

the 2.0/2.0 (PWA) interaction. The experimental charge radii
are enclosed by the 2.2/2.0 (EM) and 2.0/2.0 (PWA) results,
but the trend observed for the closed-shell nuclei studied in
detail already above appears to hold at least up to 78Ni. That
is, radii with 1.8–2.2/2.0 are too small, but 2.0/2.0 (PWA)
gives slightly too large radii. As in the case of ground-state
energies, the radius systematics is similar for all Hamiltonians,
with mainly only a constant shift for the different interactions.
This behavior for the ground-state energy and charge radii is
reminiscent of the Coester-like line for the saturation points of
the four Hamiltonians considered [32].

III. OPEN-SHELL ISOTOPIC CHAINS

In this section, we move beyond closed-shell systems to
explore ground- and excited-state systematics throughout a
selection of isotopic chains in the sd and pf shells, namely
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et al. [36] for the 1.8/2.0 (EM) interaction. Considering
the same model-space truncation eMax/E3Max = 14/16 and
harmonic-oscillator frequency h̄! = 16 MeV we find good
agreement within ≈1% for 16O: −127.2 MeV [IM-SRG(2)]
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are enclosed by the 2.2/2.0 (EM) and 2.0/2.0 (PWA) results,
but the trend observed for the closed-shell nuclei studied in
detail already above appears to hold at least up to 78Ni. That
is, radii with 1.8–2.2/2.0 are too small, but 2.0/2.0 (PWA)
gives slightly too large radii. As in the case of ground-state
energies, the radius systematics is similar for all Hamiltonians,
with mainly only a constant shift for the different interactions.
This behavior for the ground-state energy and charge radii is
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FIG. 1. (Color online) Energy per particle of neutron mat-
ter (top row) and symmetric nuclear matter (bottom row)
based on the Hebeler+ [16] and NNLOsim [6] NN and 3N
interactions (columns). Results are shown for �/⇤3N for the
interactions of Ref. [16] and ⇤NN = ⇤3N for those of Ref. [6].
For symmetric matter, the gray box denotes the saturation re-
gion, n0 = 0.164± 0.007 fm�3 and E/A = �15.86± 0.57MeV.
We also give the calculated range for the symmetry energy
Esym and its slope parameter L at n0 = 0.16 fm�3 (indicated
by the dashed vertical line).

Specifically, in this first application, we consider all con-
tributions from NN interactions up to fourth order in
MBPT (around the Hartree-Fock reference state). Contri-
butions from 3N interactions are included exactly up to
second order, including residual 3N-3N terms, which have
only been evaluated so far for contact interactions [44].
At third order, we neglect all terms that involve at least
one residual 3N contribution, whereas at fourth order we
neglect all 3N contributions. These contributions turn out
to be smaller (see discussion below). This amounts to 4,
20 = 3 ·23�4, and 24 = 39�15 diagrams at second, third,
and fourth order, respectively, with up to 21-dimensional
momentum integrals per diagram. The number of dia-
grams at third (fourth) order can be reduced by 4 (15) at
zero temperature. In comparison, a full calculation would
involve 39 · 24 = 624 fourth-order diagrams. We also eval-
uate the 4N Hartree-Fock energy, but it is generally small,
in agreement with Ref. [18].
We assess the numerical convergence of the integra-

tion by varying the number of sampling points as well as
employing two di↵erent Monte-Carlo algorithms [28], in

FIG. 2. (Color online) Correlation between the calculated
saturation density n0 and saturation energy E/A for the
Hebeler+ [16] and NNLOsim [6] NN and 3N interactions ob-
tained at second, third, and fourth order in MBPT. The values
of �/⇤3N and ⇤NN = ⇤3N, as well as the saturation region are
as in Fig. 1. The diamond refers to the NNLOsat result [1].

addition to the variance as statistical uncertainty. The
framework is remarkably e�cient due to performance opti-
mization and parallelization. Most diagrams up to fourth
order can be evaluated within about 10 minutes to a
precision of . 10 keV. The precise evaluation of a few
specific third-order diagrams involving three 3N interac-
tions requires more time due to the higher dimensionality
of the momentum integrals. However, the strength of the
present Monte-Carlo approach is that the precision can be
controlled in a systematic way using the uncertainty esti-
mates, as short runtimes are important when optimizing
nuclear interactions. For this purpose, one could start con-
straining a fit with lower accuracy around the saturation
point and then successively become more accurate.
Results for nuclear matter.– In Fig. 1 we present re-

sults for the energy per particle in symmetric nuclear
matter and neutron matter based on the Hebeler+ [16]
and NNLOsim [6] NN and 3N interactions up to fourth
order in MBPT. For symmetric matter we show the em-
pirical saturation region by a box with boundaries n0 =
0.164± 0.007 fm�3 and E/A = �15.86± 0.37± 0.2MeV
where the first uncertainties are as in Ref. [22] and we add
an additional 0.2MeV from Ref. [45]. In addition, we give
results for symmetry energy range Esym = E/N � E/A
as well as its slope parameter L = 3n0@nEsym at n0 =
0.16 fm�3. Both are predicted with narrow ranges.
The Hebeler+ interactions were obtained by a simi-

larity renormalization group evolution [46] of the N3LO
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○ Radii ~OK only with strong underbinding
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Nuclear sizes: charge radii
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FIG. 2. Nuclear charge radii Rc and differentials �
⌦
r2c
↵

of
Ni isotopes. Experimental data is compared to the results
of various theoretical models and interactions. See text for
details.

tive, but cancel in �
⌦
r2c
↵
.

For SV-min based DFT as well as for all ab initio calcu-
lations based on NNLOsat the overall agreement to ex-
periment is remarkable. For both, Rc and �

⌦
r2c
↵
, the

experimental value is within or very close to the theoret-
ical error band, which is in the order of ⇡ 1 %. The same
holds for the differential radii �

⌦
r2c
↵

when considering ab
initio results for the other employed nuclear interactions.
However, as shown in Fig. 2c, these deviate notably from
experiment in the absolute charge radii Rc, in line with
the expectation from previous work.
The disagreement in Rc of calculations with NNLOsat

to estimates with 1.8/2.0(EM) and NN+3N(lnl) within
the same nuclear many-body method, respectively, illus-
trates the sensitivity of the observable on the accurate
encoding of the relevant physics into the nuclear interac-
tion.
On the other hand, a comprehensive assessment of un-
certainties due to a certain many-body method itself re-
mains a challenge. Employing the same nuclear poten-
tials in combinations with different many-body methods
is consequently one way to evaluate many-body uncer-
tainties. As shown in Fig. 2a and 2b, the results of

SCGF, VS-IMSRG, and coupled cluster theory, all util-
ising NNLOsat, agree within the theoretical error bands
providing strong evidence for the accuracy of the meth-
ods. Small differences can be seen for 56Ni where uncer-
tainties of SCGF and VS-IMSRG do not overlap. Note
that the error bars in VS-IMSRG account for model-
space uncertainties only. We have confirmed that their
sizes are consistent within the different methods.
With respect to nuclear charge radii, the Fayans func-
tional has been very successful in describing an odd-even
staggering as well as characteristic kinks typically found
at shell closures [9, 10, 12–14]. In contrast, DFT utilis-
ing Skyrme functionals such as SV-min generally fails to
reproduce both. However, charge radii along the mea-
sured Ni isotopic chain do not exhibit these features very
prominently. Interestingly, the SV-min reflects in this
case the experimental trend more closely compared to
Fy(�r, HFB) (see Fig. 2d). At a closer look, analo-
gous conclusions for the mid-shell region also hold for the
charge radii of Cu [12] and Cd isotopes [13]. A potential
deficiency of the present Fayans functional could be its
lack of an isovector component in its pairing part [85].
Hence, future efforts in Fayans-based DFT will concen-
trate to pin down the (presently unused) isovector term
in the pairing functional.

Summary — Collinear laser spectroscopy of short-lived
nickel isotopes 58�68,70Ni was performed. The extracted
nuclear mean-square charge radii Rc benchmark theoret-
ical work applying density functional theory as well as
three ab initio methods. When the same �EFT-based
nuclear potential NNLOsat is utilised in all ab initio cal-
culations, the results show excellent agreement to each
other as well as to experiment. Calculations exploiting
other nuclear potentials do equally well in �

⌦
r2c
↵
, but

struggle in reproducing the absolute radii.
Interestingly, in the absence of prominent features such as
odd-even staggering or kinks in Rc, which have been suc-
cessfully described by Fayans-based functionals, skyrme-
based DFT yields results closer to experiment.
This comparative work of experiment, density functional
theory and nuclear ab initio calculations establishes a
theoretical accuracy of ⇠ 1% in the description of nu-
clear charge radii in the Ni region, provided appropriate
nuclear interactions are employed.
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Fig. 13 Changes in m.s. charge radii for argon, calcium, titanium and
chromium relative to N = 28. Results obtained with the NNLOsat
Hamiltonian (coloured symbols and solid lines) are compared to exist-
ing experimental data [69– 71] (grey symbols and dashed lines). In the
inset, changes in m.s. charge radii relative to N = 34 are shown for
argon isotopes. To guide the eye, the linear trend extrapolated from
N = 28−32 is shown as a dashed line

25) and iron (Z = 26), for which experimental data are
available, also follow this trend. The same behaviour, with a
kink followed by a steep rise essentially independent of Z ,
is found at the N = 50 and N = 82 magic numbers [80].
Remarkably, the theoretical curves capture this basic feature,
yielding radii that increase almost independently of Z beyond
N = 28. As already stressed, however, the slope is less steep
than the experimental one, which represents a challenge for
most of nuclear structure calculations. Let us notice that,
interestingly, a similar universal behaviour is observed for
NN+3N (lnl) Hamiltonian, although with a shallower slope
than for NNLOsat.

Furthermore, a second, less pronounced kink is visible
at N = 34, most strongly for argon (see inset of Fig. 13).
The kink fades away with increasing proton number, and is
basically absent for chromium that displays a straight linear
trend from N = 32 to N = 40. Also in this case, similar
features are observed in the charge radii computed with the
NN+3N (lnl) Hamiltonian. This behaviour suggests that a
(weak) shell closure develops at N = 34 for neutron-rich
nuclei around Z = 20. This observation is consistent with
the evolution of the N = 34 neutron gaps computed with
NN+3N (lnl) and shown in Fig. 6d. On the experimental side,
the recent measurement of a relatively high value of the 2+1
excitation energy in 52Ar [85] and the analysis of quasifree
neutron knockout from 54Ca [86] also support this picture.

To conclude the present section, some examples of charge
density distributions in chromium isotopes are shown in
Fig. 14. Theoretically, the charge distribution is computed
as a sum of three terms [87– 89]

Fig. 14 Charge density distributions of three chromium isotopes.
NNLOsat calculations are compared to density profiles determined via
electron scattering [92]. Curves relative to 50Cr and 54Cr (both experi-
ment and theory) have been rescaled by a factor 0.8 and 1.2 respectively
for better readability

ρch(r) = ρ
p
ch(r)+ ρn

ch(r)+ ρls
ch(r), (8)

where ρ
p
ch (ρn

ch) is determined by folding the point-proton
(point-neutron) density with the finite charge distribution of
the proton (neutron) and ρls

ch is a relativistic spin-orbit cor-
rection. In addition, centre-of-mass and relativistic Darwin-
Foldy corrections are taken into account by employing an
effective position variable following Ref. [90]. Note that
centre-of-mass corrections anyway decrease with increas-
ing mass number. Ref. [91] used exact Monte Carlo tech-
niques to subtract it from SCGF charge densities obtained
with NNLOsat and found that it is already under control for
A = 16. In Fig. 14 distributions of 50,52,54Cr computed with
NNLOsat are compared to charge profiles determined from
electron scattering cross sections [92]. Theoretical distribu-
tions follow closely the experimental curves in the region
around and above rch. In contrast, for all three isotopes the
behaviour differ in the nuclear interior, with the calculations
displaying a dip around 1.5 fm that is not present in the exper-
imental distributions. The oscillations observed in the theo-
retical curves are typically interpreted as strong shell effects
that have not been washed out by correlations, and are not
found in other ADC(2) calculations of spherical nuclei in this
mass region (see e.g. 40Ca in Fig. 15 of Ref. [8]). Therefore
this discrepancy could represent another possible signature
of missing correlations when the present approach is applied
to deformed systems. Notice that this qualitative behaviour
persists for 52Cr, in spite of the fact that its value of rch slightly
departs from experiment.
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FIG. 14. Charge density distribution of 16O computed in ADC(2)
(solid lines) and ADC(3) (dashed lines) with the NN+ 3N (400),
NN+ 3N(lnl) and NNLOsat interactions, together with the experi-
mental distribution [103].

F. Excitation spectra

Spectroscopic properties reflect some of the general fea-
tures of a Hamiltonian (for instance, the ability to reproduce
magic gaps) but at the same time are sensitive to finer de-
tails, e.g., depending on the spin and parity of the excited
state. In Green’s function theory, one-nucleon addition and
removal (i.e., separation) energies are naturally accessed from
the spectral representation of the one-body propagator; see
Refs. [3,68] for details. The generalization to Gorkov Green’s
functions allows for an analogous spectral form that also
contains information on separation energy spectra of odd-
even neighbours [42]. While the ADC(2) approximation does
introduce dynamical correlations that induce a fragmentation

FIG. 15. Same as Fig. 14 but for 40Ca. Experimental data are
taken from Refs. [103,104].

FIG. 16. Same as Fig. 14 but for 58Ni. Experimental data are
taken from Ref. [103].

of the mean-field spectral function, one might ask whether
such correlations are too crude for a quantitative description
of (low-lying) excitation spectra. The ADC(3) truncation
scheme, by coupling the bare two particle–one hole (2p1h)
and 2h1p (or three-quasiparticle in Gorkov theory) configura-
tions introduced in ADC(2), stabilizes dominant quasiparticle
peaks, usually compresses the spectra, and generates further
fragmentation [72,85].

In order to test the two levels of approximation, one-
neutron removal (addition) spectra from (to) 48Ca are studied
in detail in Fig. 17 using NNLOsat and NN + 3N(lnl) Hamilto-
nians. Starting with one-neutron removal, i.e., states in 47Ca,
one first notices that, for both interactions, ADC(2) spectra
are too spread out, with the first excited states at 5–6 MeV to
be compared with about 2 MeV in experiment. Since such
states are associated to the removal of a neutron in the sd
shell, this is a direct consequence of the overestimation of
the N = 20 gap; see Fig. 8(b). Note that the overestimation is
more severe in NN + 3N(lnl) calculations, which is reflected
in higher excitation energies and a larger splitting between
the 1/2+ and 3/2+ states as dictated by its underestimation
of radii. Including ADC(3) correlations helps in compressing
the spectrum, although the effect of an overestimated N = 20
gap remains. Interestingly, in NNLOsat calculations the correct
ordering of 1/2+ and 3/2+ states is re-established. In addition,
negative-parity states 1/2− and 3/2− appear. As opposed to
the positive-parity levels that are obtained as a simple removal
from the sd shell, such states correspond to more complex
configurations involving particle-hole excitations across the
N = 28 gap and are not captured by the simpler ADC(2)
approximation.

The situation is different for one-neutron addition spectra,
displayed in Figs. 17(c) and 17(d). Here low-lying states
computed at the ADC(2) level are already in reasonably good
agreement with experimental values for both interactions.
Again, the quality of the description is correlated with the
(excellent) reproduction of the N = 28 and N = 32 gaps over
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Figure 2. Charge density and point-proton distributions in
34Si and 36S computed at the ADC3 level with the NNLOsat

Hamiltonian. The experimental charge density for 36S is also
shown, taken from Ref. [18].

ground-state of a harmonic oscillator Hamiltonian char-
acterized by the frequency !̃, the inclusion of spurious
center-of-mass and Darwin-Foldy relativistic corrections
can be performed at the price of proceeding to the re-
placement [12, 16]

r2i �! r2i �
b2

A
+

1

2

✓
~
m

◆2

(9)

in Eqs. 7, where m is the nucleon mass, hence ~/m =
0.21 fm, and b2 = (m ~ !̃)�1. Employing Bethe’s for-
mula [16], the latter term can be approximated with
b2 ⇡ A1/3 fm2. We note that, for 16O, such an ap-
proximation is consistent with the value of ~!̃ found in
Ref. [17] and is thus safe to use in present calculations of
34Si and 36S.

In Fig. 1 the three di↵erent contributions to the charge
density distribution appearing in Eq. 5 are separately
shown for the case of 34Si. The term coming from the
proton density dominates by about two orders of magni-
tude. Nevertheless, neutron and spin-orbit contributions
do visibly modify the total distribution. For the spin-
orbit term, the sole contribution of the “valence” neu-
trons (i.e. the neutron d3/2 orbital) is also plotted and is
shown to dominate the total correction, as expected.

Charge density and point-proton distributions for 34Si
and 36S are compared in Fig. 2. Experimental data for
the charge distribution of 36S is also displayed. In Fig. 3
present calculations of the charge density distributions
are compared to the ones published in Ref. [1]. The
largest di↵erences emerge in the central part of the distri-
butions. As far as 34Si is concerned, a more marked de-
pletion is obtained in the present calculation. The charge
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Figure 3. Charge density distributions in 34Si and 36S com-
puted at the ADC3 level with the NNLOsat Hamiltonian.
Present calculations are compared to the ones published in
Ref. [1], labelled with PRC. The experimental charge density
for 36S is also shown, taken from Ref. [18].

34Si ADC(1) ADC(2) ADC(3)

Fch 0.353 0.225 0.218

Fch(⇢
p
chonly) 0.372 0.249 0.242

Table II. Depletion factor in 34Si computed within ADC(1),
ADC(2) and ADC(3) approximations. Calculations were per-
formed with the NNLOsat Hamiltonian.

density of 36S is overall larger than the one of Ref. [1] and
better fits experimental data around 2-3 fm, where the
previous calculations was slightly o↵.
Depletion factor The depletion factor, defined as

F ⌘
⇢max � ⇢c

⇢max
, (10)

where ⇢c ⌘ ⇢(r = 0), summarises the amount of the
central depletion in a density distribution. In Table II
the charge depletion factor for 34Si is shown for di↵erent
ADC(n) approximations. The ADC(3) value Fch = 0.218
is to be compared with the old value of Fch = 0.155 pub-
lished in Ref. [1]. Results including the proton contribu-
tions ⇢pch only (as was done in Ref. [1]) are also reported.
Form factor The electromagnetic charge form fac-

tor can be extracted from the measured electron-nucleus
elastic cross section. The form factor relates to the nu-
clear charge density distribution through

F (q) =

Z
d~r⇢ch(r)e

�i~q·~r , (11)

where ~q is the transferred momentum, itself related to
the incident momentum ~p and the scattering angle ✓ via

[Somà et al. 2020, 2021]
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Figure 2: Charge density distribution for 132Xe obtained from
Gorgov SCGF calculations at ADC(2). The dotted line with
grey band corresponds to the two-point Fermi distribution
with parameter and error bars extracted from Ref. [10].

at the ADC(2) level. As such, we do not discuss di�er-
ences between ADC(2) and ADC(3) results any further
in this Letter. In the following, we will hence represent
our results as a band obtained for frequencies from 10 to
14 MeV at Nmax = 13 and 12 to 14 MeV at Nmax = 11,
for E3max = 16.

From this procedure, the charge radius of 132Xe is
estimated to be 4.824 ± 0.124 fm, which agrees with the
value extracted from the SCRIT experiment recently,
namely Èr2Í1/2 = 4.79+0.11

≠0.08 fm [10]. For comparison,
the calculations have been reproduced using the newly-
proposed NN + 3N(lnl) interaction [34], which is known
to have good convergence properties with respect to the
model space size and to give results similar to the very
succesful 1.8/2.0(EM) interaction [31]. In contrast with
NNLOsat, the charge radius obtained for 132Xe is 4.070 ±
0.045 fm, largely underestimating the experimental value
consistently with studies on lighter nuclei [34]. Despite
this failure at reproducing the experimental value, one
notices that NN + 3N(lnl) yield better-converged values
than NNLOsat as expected.

Additionally to the sole charge radius, another quan-
tity that can be computed from SCGF calculations is
the charge density distribution. In the case of 132Xe,
the SCRIT group extracted the parameters c and t
for a two-parameter Fermi charge distribution fl(r) =
fl0/ {1 + exp[4 ln 3(r ≠ c)/t]}. Fig. 2 displays this two-
point Fermi distribution as a dotted line with a gray
band representing the error bars, while the green band
represents our SCGF calculations. It can be observed
that while the SCGF calculations agree with the 2-point
Fermi distribution at the surface of the nucleus, though
slightly over-predicting the charge radius, we obtain an
oscillating behaviour for the density inside the nucleus
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301 MeV. Experimental points and error bars are taken
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the DREPHA code [52] starting from the nuclear charge
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Figure 4: Charge density distributions for 100Sn, 132Sn, 132Xe,
136Xe, and 138Xe obtained from Gorkov SCGF calculations.
The charge density is shifted upwards by 0.025 fm≠3 between
each two nuclei.

terval of e�ective momentum transfers between 0.8 fm≠1

and 1.1 fm≠1 being slightly o� the error bars. To dis-
card the density oscillations within the nucleus as the
source of the discrepancy, we fitted a two-point Fermi
density to the radius and surface predicted by the theory.
Calculations using this Fermi distribution gave results
within the band obtained from the genuine SCGF den-
sity. This confirms the inability of the experiment to
give insights on the internal structure of the nucleus with-
out going past the second minimum in the cross-section.
As a comparison, the results obtained with the recently
proposed NN + 3N(lnl) interaction [34] are displayed as
well, scaled upwards for clarity. Contrary to NNLOsat, it
fails at reproducing the experimental values, as expected
with an underestimated charge radius. This demonstrates
the unique capacity of NNLOsat to reproduce radii and
density distributions, and sets an important precedent
in the use of SCGF with the NNLOsat interaction for
pre- or post-diction of experimental results from electron
scattering o� exotic nuclei. In particular, this motivates
experimental measurements at higher momentum transfer
to properly gauge the internal structure of nuclei.

Having proved the capacity of SCGF and NNLOsat
to give meaningful insights on the charge radius and
density distributions of 132Xe, charge densities have been
calculated for 100Sn, 132Sn, 136Xe and 138Xe as well and
are displayed in Fig. 4. The behaviour of the charge
distributions is qualitatively similar for all of them, with
oscillations in the density within the nucleus and the
possibility of a light depletion at its center.

The charge radii extracted from our calculations are
displayed for di�erent Sn and Xe isotopes in Tab. I and
compared with experimental results [56]. Our results
show overall a good reproduction of the experimental data

SCGF Exp.
100Sn 4.525 – 4.707
132Sn 4.725 – 4.956 4.7093
132Xe 4.700 – 4.948 4.7859
136Xe 4.715 – 4.928 4.7964
138Xe 4.724 – 4.941 4.8279

Table I: Charge radii in fm obtained from SCGF calculations
and compared with experimental values from Ref. [56].

and are a proof of the capacity of NNLOsat to produce
accurate results in the heavy nuclei regime, even despite
the inability to obtain converged values for the ground-
state energy. In the future, more accurate calculations
with smaller errors may uncover slight di�erences between
NNLOsat and the experimental values. Among the nuclei
studied, 100Sn stands out as a particularly interesting
case. Sitting close to the proton dripline [57], at the end
of super-allowed –-decay chains [58, 59] and with the
largest strength known in allowed — decay[60], and being
expected to be the heaviest doubly-magic nucleus with
N = Z [61], experimental data in its area are scarce [62].
In particular, neither its spectrum nor its radius have
been measured yet. While its spectrum has recently been
predicted from first principles [30], Tab. I displays the
first ab initio prediction of its charge radius.

Conclusion. Our calculations demonstrated the ca-
pacity of SCGF and the NNLOsat interaction to give a
meaningful estimation of the charge radius and charge
density distribution of heavy nuclei up to mass A = 138
which had never been studied before. We computed suc-
cessfully the charge radius and density distribution of
132Sn, 132Xe, 136Xe, and 138Xe, mostly agreeing with
known experimental values, and gave the first ab initio
prediction for the charge radius and density distribution
of 100Sn. In particular, we reproduced the experimental
cross-section of the SCRIT electron scattering experiment
for 132Xe, demonstrating the capacity of ab initio methods
with well-designed chiral interactions to be used for the
internal structure study of heavy exotic nuclei, alongside
new experimental facilities. Our errors bars, though con-
servative, are small enough to shed light on discrepancies
with experimental values, informing theory and putting
constraints on experiments. In particular, our results
are a motivation for measurements at higher momentum
transfer to probe the internal structure of the nuclei.
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