ANTIPROTONIC ATOM - A TOOL TO STUDY NUCLEI HADRONISATION, ANALYSIS OF OLD EXPERIMENTS

S. Wycech, NCBJ Warsaw

3

2

8

Three different – related measurements

ATOMIC LEVELS via X RAYS

DETECTION OF FINAL COLD NUCLEI

DETECTION OF FINAL PIONS

ADVANTAGES OF X - RAYS

ATOMIC STATE OF ANTIPROTON IS KNOWN

HIGH PRECISION REACHED

PROBLEMS

NUCLEAR INTERACTIONS OF ANTIPROTONS ARE KNOWN CRUDELY

UPPER PART OF X-RAY CASCADE IS UNCERTAIN ANTIPROTON OPTICAL POTENTIAL IS NOT WELL UNDERSTOOD

I ANTIPROTONIC ATOMIC LEVELS

ADVANTAGE

INDICATION OF CAPTURE ORBIT

TEST OF P-N STATES BELOW THRESHOLD

FIG. 3. Mean widths and shifts of all levels with measurable strong interaction effects. The weight of the different calcium iso-

WHY SUBTHRESHOLD STATES

FIG. 1. Quasi-three-body system: (1) antiproton, (2) nucleon, and (3) residual system. Jacobi coordinates: momentum p_3 , k_{12} and space ρ , r.

In atoms N-pbar ENERGY in CM system IS BELOW NN THRESHOLD

E_{CM} = 2 M - Binding - Recoil

PROBLEM : N - N quasi- bound states

P-bar N SUBTHRESHOLD ENERGIES INVOLVED IN ATOMIC STATES SEPARATE REGIONS IN LIGHT NUCLEI ALOW TO TEST T (E) BELOW THRESHOLD

 $T(E,r) = V(r)\psi(r)/\phi(r); \qquad \psi = \phi + G(+) \vee \psi$

¹¹S AMPLITUDE tested in J/ ψ decays

Region of energies involved in atomic states

FIG. 2. Subthreshold amplitudes generating the $4P_{3/2}$ hyperfine structure component in deuterium. With the Paris 09 solution this amplitude is strongly dominated by the resonant $a({}^{33}P_1)$ amplitude.

Quartet f.s. state dominated by 33P1 baryonium state

Absorptive p-bar N scattering lengths a0 and scattering volumes a1

Neutron/proton capture rate is energy (state) dependent

Paris 09, B.Loiseau, J.Carbonell, S.W.

IMPORTANT PARAMETER IN HALO STUDIES

Ratio of annihilation rates

 $R_{n/p} = \sigma(p-bar, n) / \sigma(p-bar, p) =$

= < Im T (P-barn) > / < Im T (P-barn) > spin averaged

CALCULATED with Paris 09 : in He Rn/p \sim 0.48 : in D Rn/p \sim 0.80 consistent with experiments

CALCULATIONS FOR PIONISATION EXPERIMENTS

The $R_{n/p}$ calculated with Paris 09 potential, [?], for the dominant capture states.

	С	Ν	Ti	Ta	Pb
$R_{n/p}$	0.698	0.780	0.774	0.889	0.920
$L_{dominant}$	2	2	4	9	8

Problems for theorists

1) NUCLEAR OPTICAL POTENTIAL V ~ ρ (r) T₀ +3 grad ρ (r) grad T₁

CONFLICT Re To IS REPULSIVE, BUT POTENTIAL FITTED TO ATOMS IS ATTRACTIVE Re T CHANGES SIGN AT QUASI-BOUND STATE

NUCLEAR EFFECTS : PAULI PRINCIPLE , EXTERNAL NUCLEAR FIELD PUSH THE ZERO UPWARD

(usefull Saclay work on KFERMI (r) in surface region , X. Campi)

2) GOOD NUCLEAR CALCULATION of

 $A_p = <L, valence | [a_0(p) + 3\nabla a_1(p)\nabla] | L, valence >$

STUDIES OF COLD FINAL NUCLEI

Antiproton + Nucleus (Z, N) → Nucleus (Z-1, N) → Nucleus (Z, N-1) → 90% rubbish

Radiochemical detection of residual nulei

PROBLEM - what is the capture orbital ?

Studies of final non excited nuclei Munich – Warsaw /CERN PS

FINAL A-1 NUCLEI OF LOW < 8 MeV excitation (Radiochmical limit) RATIO (N-1)/(Z-1) measured

DETERMINATION OF CAPTURE ORBIT via (A-1)/ TOTAL

MEASURED

 R n/p relative rate of absorptions (p-bar n) / (p-bar p)
 P_{emission} probability that residual A-1 nucleus is cold (below neutron emission thteshold, must be calculated)

fHALO local excess of neutrons in the capture region a phenomenological quantity

ESSENTIAL POINT : COLD CAPTURE and HADRONISATION DETERMINE PRODUCT R f

R n/p relative rate of absorptions

```
\sigma(p-bar n) / \sigma (p-bar p)
```

from other experiments0.48 in He : 0.82 in D : 0.63 in C :1 in global optical p-bar nucleus potential

FIG. 5. Correlation between halo factor and absolute production yield for $A_t - 1$ nuclei.

FIG. 3. Neutron halo factor (defined in the text) as a function of the target neutron separation energy B_n .

HADRONISATION (PIONISATION) EXPERIMENTS

P-bar, N \rightarrow π,π,π,π FROM ATOMIC STATES

MENU :

- 1) Old experiments : analysis , difficulties
- 2) Uncertainties of calculations
- 3) Job for theorists in PUMA era

OLD EXPERIMENTS L. Agnew et.al Phys.ReV 118(1960) 1371 W. Bugg et al. Phys.Rev. Lett 31 (1973) 4761 C,Ti,Ta,Pb hydrogen chamber M.Wade, V.G.Lind Phys Rev D (1976) 1182 propane chamber C J. Riedlberger et al Phys Rev C40 (1989) 2717 magnetic spectrometer Ν Not analyzed fully , N-Nbar data was poor

NOW ANALYSIS IS EASIER => LESSONS FOR PUMA

Z= 50 , N = 88 : a fancy nucleus to study

Cold residual nuclei detectable , more peripheral

PIONISATION EXPERIMENTS

Very rich experiment 8 numbers : P(Q) , average meson loss = ω

EXAMPLE Pb experiment (W. Bugg) Results : $f_{HALO} = 2.34(0.50)$, $\omega = 0.221(0.014)$

SIMPLE ANALYSIS

Calculate average charge meson loss ω (L) from π NN – NN , π (+/-)N \rightarrow π (0) N'

Compare
$$\omega(L+1) < \omega < \omega(L)$$

=> capture orbital probability : : 0.5 (upper L=9) + 0.5 (lower L=8)
agreement with cascade X

Take $R_{n/p} = 0.63$ (from Carbon, BUGG)

fhalo, $R_n/p \rightarrow halo radius Rn - Rp = 0.168 (0.045) PERFECT$

BUT Rn/p = 0.63 IS NOT ACCEPABLE by other experiments

A more complete analysis including full information

P(Q) channel probabilities
<n(+/-)> total number of charge mesons
emitted in single capture

Explicit calculations of absorptive and charge exchange pionic final state interactions

Parameters $\lambda \omega$ fhalo $\cdot R n/p$ obtained by best fit to data

Next iteration : corrections for nucleon correlations at surface

N - Riedlberger PR C40 (1989) High statistics , No hydrogen contamination, magnetic spectrometer , ASTERIX

:	Experimental,	[21]	, and	fitted	charge	multi	plicities P	[Q]] in	Nitrogen
	1 //	1 1			0		L			0

Q	\exp	fit
3	1.2(.2)	0.28
+2	3.9(.4)	2.25
+1	14.2(.8)	15.6
0	39.5(1.0)	40.1
-1	31.1(.8)	32.1
-2	8.0(.5)	8.5
-3	2.1(.3)	0.44
$< n^{\pm} >$	2.89(8)	2.91(0.05)
χ^2		7.5

 $R_{n/p} \cdot f^h = 0.77(.04)$

 ω^+ = 0.16 ; ω^- = .17 ; λ^+ = .16 ; λ^- = 0.10

These are values averaged over two pionic charges.

	L = 2	L = 3	best fit
ω	0.218	0.158	0.165
λ	0.147	0.103	.13

CONCLUSIONS from N experiment

the best fit $R_{n/p} \cdot f^h = 0.77(.04)$ and $R_{n/p} = .80$ calculated from Paris potential (Capture happens half from "upper"(L=3) , half from "lower"(L=2) orbitals.

factor $f^h = .96(.05)$ that is a weak preference for an enhanced proton tail

Consistent with separations S(n) = 10.5 MeV and S(p) = 7.5 MeV

NNNN Correlations are indicated in Q = 3, -3

OBSERVATION

$\omega^+ = 0.16$; $\omega^- = .17$; $\lambda^+ = .16$; $\lambda^- = 0.10$

Large difference between $\pi(+)$ and $\pi(-)$ exchange probabilities in a symmetric nucleus. Related to different single nucleon spectra. Possible byproduct for PUMA

NICE SO FAR, BUT NO LONGER SO

DIFFICULTUES WITH ANALYSIS OF OLD HYDROGEN CHAMBER DATA

HYDROGEN BACKGROUND UNCERTAIN

TWO EXPERIMENTS DIFFERING BY HYDROGEN CONTAMINATION (BUUG - hydrogen chamber vs WADE propane chamber) LARGE DIFFERENCE S IN Q = -1,0 channels (proton and/ or hydrogen sectors)

Q	C [4]	fit (*)	C [9],	fit(**)
3	0.09(.1)	0.09	0.2(1)	0.22
+2	1.80(.2)	1.34	2.1(2)	2.2
+1	12.5(.4)	13.2	17.5(5)	16.6
0	43.0(.8)	43.8	38.3(8)	40.4
-1	34.5(.7)	33.7	33.7(7)	31.7
-2	6.5(.5)	7.5	7.8(3)	8.6
-3	1.0(.1)	0.24	0.6(1)	0.50
$< n^{\pm} >$	2.72(3)	2.73	2.79(4)	2.79

Rn - Rp = 1.01(0.03) FREON CHAMBER = 1.10(0.03) HYDROGEN CHAMBER

Δ R - 10 % PROBLEM IN ALL BUGG'S EXPERIMENTS BUT STATE OF CAPTURE IS STABLE

AN ALTERNATIVE for ALL HYDROGEN CHAMBER C, Ti, Ta, Pb analysis

With hydrogen contamination as given $\sim 10\%$ (NO ERRORS GIVEN)

- 1) Either Rn/p larger by 10 20 % than calculated by PARIS 09
- 2) Or hydrogen contamination reduced to about 5 %

Hydrogen chamber data

CAPTURE STATES AS EXPECTED ~ 50% "upper" L , ~ 50 "lower" L

BUT WHAT IS THE NEUTRON HALO IN LEAD NUCLEUS ?

STRANGE CORRELATION OF EXPERIMENTAL NEUTRON RADII IN Pb

Rn-Rp [fm] ~ 28 parity violation

22 pionisation
20 proton scattering
16 -18 antiproton levels, cold capture

These follow increasing peripherality of interaction region

? Possibly due to differences in assumed nuclear profiles

STATUS REPORT

PIONISATION EXPERIMENTS YIELD REASONABLE ESTIMATES OF HALO THICKNESS.

CAPTURE STATES ARE WELL EXTRACTED FROM CHANNEL P(Q) SPECTRA

THERE IS A LARGE UNCERTAINTY DUE TO HYDROGEN BACKGROUND IN OLD HYDROGEN CHAMBER EXPERIMENTS

SOME CHALLENGING PROBLEMS FOR THEORISTS

- 1) Understanding P-bar N interactions below threshold, bound states there
- Pauli blocking in pion charge exchange scattering on nuclei
 Controll of exclusion principle in the nuclear surface region
 This question is of significance for antiproton nucleus potential.
- 3) Good calculation of Rn/p ratio at nuclear surface
- 4) Analysis of future data in terms of neutron density distributions
- 5) Inclusion of nuclear correlations into analysis of PUMA data

Symmetric nuclei nonsymmetric effect : Pauli bloking

Pion is fast ~ 400 Me V /c But Nucleon is heavy and slow

 $\lambda(+) > \lambda(-)$ in light nuclei N

 $\begin{array}{rrrr} \pi(0) & n \rightarrow \pi(-) & p \\ \lambda(-) & < & \lambda(+) \end{array}$

π NN – NN absorption cross sections known, poor accuracy Ashery, P R C 23(1881) calculations W Gibbs PR C 66 (2002) Johnson Satchler optical potential Ann Phys 238 (1996) consistent in predicting ω to 10 %

 π (+/-) $\rightarrow \pi(0)$ and inverse based on π p charge exchange Gibbs , Kaufman found Pauli blocking significant ** ARE THERE STRONG CORRELATIONS ON NUCLEAR SURFACES

ALPHA PARTICLE TYPE ?

Seen in nuclear α decays

May be covenient energetically

Carbon nucleus $\approx \alpha \alpha \alpha$? Traces in Nitrogen (3 α + valence n,p) pionisation experiment

Studied (inconclusively) with Kaonic atoms (D. Wilkinson 1968)

THANK YOU

APPENDIX

R.Schmidt PRC58 CASCADE IN A DEFORMED NUCLEUS

FIG. 9. Energy shifts of the transitions and widths for the levels intiprotonic ¹⁷²Yb which are sizably influenced by the strong

FERMI MOMENTUM AT NUCLEAR SURFACE ?

WHY STUDY NUCLEAR SURFACE ? * Symmetry energy

 $\beta \; = \; (N-Z)/A,$

 $\frac{E}{A}(\rho,\beta) = \frac{E}{A}(\rho,0) + S_N(\rho)\beta^2 + \dots \text{ n,p Fermi Gas } S_N = \frac{1}{3}E_F$

 ρ = density

Droplet Model

 $E_{\text{(binding)}} / A = a_v - S_N \beta^2 + \dots$ attractive repulsive due to Pauli

WHICH WAY THESE CANCEL AT NUCLEAR SURFACE WITH THE INCREASING NEUTRON/ PROTON RATIO ? NUCLEAR MODEL DEPENDENT

** ARE THERE STRONG (nnpp) CORRELATIONS ON DISTANT SURFACE.

THE ORIGIN OF SYMMETRY ENERGY

