$\hbar = c = 1$

The antinucleon-nucleon interaction

Rob G. E. Timmermans

Workshop on "Nuclear physics with antiprotons: A theory endeavor"

ESNT, November 15, 2021

faculty of science and engineering van swinderen institute for particle physics and gravity

Game plan

- $\checkmark~$ The antinucleon-nucleon interaction 101
 - Phenomenology, modeling
 - The existing database from LEAR (and pre-LEAR)
- ✓ Partial-wave analysis (PWA, a.k.a. PSA)
 - Why? How?
 - "Spin physics"
- ✓ PWA as a "tool"
 - What did we learn?
 - What is needed?
- ✓ Conclusion
- ✓ Throughout: Comparison to the NN system

RGET, Rijken, de Swart: PRL '91, PLB '91, PRD '92, PRC '94, '95 Rentmeester, RGET, de Swart: PRL '99, PRC '01, '02, '03 Zhou, RGET: PRC '12, '13

> Data! Data! Data! I can't make bricks without clay...

15-11-2021

Modeling the antinucleon-nucleon interaction I

- ✓ Black-disk model: $\sigma_{\rm el} = \sigma_{\rm ann} = \sigma_{\rm total}/2 = \pi R^2$, radius *R* varies ≈ 1-2 fm
- ✓ Boundary-condition model (> 1967)
 - Parametrize boundary condition
 - Include long-range interaction V_L for r > b
 - Example: modified black disk: P = -ipb, $V_L = 0$
- ✓ Optical-potential model (> 1968)
 - Pick your favorite NN model, apply charge conjugation (or G parity)
 - Add an optical potential V(r) = (U iW)f(r)
 - U, W constants
 - Pick a form for *f*(*r*), *e.g*. Woods-Saxon, with a range parameter *b*

 $P = b \left(\frac{\mathrm{d}\psi}{\mathrm{d}r} \psi^{-1} \right)_{r=h}$

- Fit U, W, and b qualitatively to some cross section
- Make strong claims about baryonia, etc.

Modeling the antinucleon-nucleon interaction II

- ✓ Paris optical-potential model (*cf*. Loiseau's talk):
 - G-parity transformed Paris NN model
 - Spin- and isospin-dependent optical potential
 - Fit the available data (# parameters = ?)
- ✓ Nijmegen coupled-channels model
 - CC84: P. H. Timmers et al., PRD 29, 1928 (1984), NN OBE model D
 - CC93: RGET, PhD thesis, NN soft-core model

$$V = \left(\begin{array}{cc} V_{\overline{N}N} & V_{A} \\ \tilde{V}_{A} & 0 \end{array}\right)$$

- Effective two-particle annihilation channels
 - $e.g. 2M_1 = 1700 \text{ MeV}, 2M_2 = 420 \text{ MeV}$

$$V_A^{(i,I)}(r) = V(i,I) \frac{1}{1 + \exp(m_a r)}$$

- Fit the available data, # parameters = 14-20

Modeling the antinucleon-nucleon interaction III

- ✓ *NN* and *NN*bar are related by charge conjugation
 - Or, assuming isospin symmetry, G parity
- ✓ One-boson exchange picture:

 $V(pp) = V_{\pi} + V_{\varrho} + V_{\omega} + V_{\varepsilon} + \dots$

- Vector mesons have negative C parity

$$V(\overline{p}p) = V_{\pi} - V_{\varrho} - V_{\omega} + V_{\varepsilon} + \dots$$

- Charge-exchange reaction

$$V(\overline{p}p \to \overline{n}n) = 2(V_{\pi} - V_{\varrho} + \dots)$$

- ✓ In NN: Coherent spin-orbit forces, relatively weak central & tensor forces
- ✓ In NNbar: Strong central attraction, strong coherent tensor force
 - Similar things hold in chiral EFT (LECs c_1 , c_3 , c_4 , ...)

15-11-2021

Experiments @ LEAR

Group	Reaction	Observable	p_{lab} (MeV/c)
PS172	p+p→p+p	$\sigma_{ m tot}$, d σ /d Ω , A $_{ m y}$, D $_{ m yy}$	200-1500
PS173	p+p→p+p	σ_{ann} , d $\sigma/d\Omega$	180-600
	p+p→n+n	$\sigma_{ m cex}$, d $\sigma/{ m d}\Omega$	180-600
PS185	<mark>p</mark> +p→ Y +Y	d σ /d Ω , P _y , C _{ij} , D _{nn} , K _{nn}	1435-1900
PS198	p+p→p+p	d σ /d Ω , A $_{ m y}$, D $_{ m yy}$	440-700
PS199	p+p→n+n	d σ /d Ω , A $_{ m y}$	600-1300
PS206	p+p→n+n	d σ /d Ω	693

Total and annihilation cross section

✓ Annihilation: Complex boundary condition at radius b = 1.25 fm

15-11-2021

15-11-2021

15-11-2021

The database of the NN PWA below $T_{lab} = 350 \text{ MeV}$

Proton-proton			
Туре	# data		
σ_{tot} , $\Delta\sigma_L$, $\Delta\sigma_T$	_		
d σ /d Ω	947		
Ay	816		
A _{ii} , C _{nn}	876		
D, D _t	114		
R , R' , A , A'	237		
Rest	36		
All	3026		

Neutron-proton

Туре	# data
$σ_{tot}$, Δ $σ_L$, Δ $σ_T$	275
d σ /d Ω	1475
Ay	1213
A _{yy} , A _{zz}	327
D _t	122
R_t , R_t ', A_t , A_t '	162
Rest	78
All	3652

High quality (~15% rejected) Reasonable quality (~25% rejected)

 \checkmark

"Abundance plots" of the NN scattering data

✓ Proton-proton

Neutron-proton

The database of the *NN*bar PWA below *p*_{lab} = 925 MeV/*c*

Elastic

Туре	LEAR	rest	LEAR	rest
$\sigma_{tot}, \sigma_{ann}$	124	_	_	63
d σ /d Ω	281	2507	91	154
A _v	200	29	89	
D _{yy}	5		9	
Total	610	2536	189	217

Charge-exchange

- Reasonable quality ~17% rejected
- PWA has χ^2/N_{data} = 1.085 with 30 parameters
- Only \sim 25% of the data comes from LEAR

 \checkmark

Partial-wave analysis (PWA) as bridge

✓ PWA is *impossible* without theory input

✓ Input into the PWA

- Complete database
- Theory (model independent, e.g. Coulomb, EFT)
- ✓ Output of the PWA
 - Database, correlations (χ^2 -hypersurface)
 - Multichannel S matrix (phase shifts, ...)
 - Physics (coupling constants, resonance parameters, ...)

The *pp* ³*P*_{0,1,2} phase shifts after PWA93

✓ After PWA93, all phase shifts are accurately known!

Amplitude analysis vs. PWA

- ✓ Commonly used (but wrong) reasoning, based on "amplitude analysis":
 - Determine f^2 or $\varepsilon_1 \rightarrow OPE \rightarrow S_{12}$ (tensor force)
 - Best experiments: A_{yy} , $\Delta\sigma_L$, $\Delta\sigma_T$, D_{nn}
- ✓ In a single energy amplitude analysis, one must determine five complex amplitudes $a(\theta)$, $b(\theta)$, $c(\theta)$, $d(\theta)$, $e(\theta)$, for every angle at a fixed energy. Therefore one needs to perform, for each energy, 9 experiments, at all angles! This was never done...
- ✓ In a single-energy phase-shift analysis, one needs for each value of the total angular momentum J:
 - 2.5 parameters (on average) for *pp*; 5 parameters for *np* (2 for *J*=0)
 - 20 parameters for *pp*bar (5 for *J*=0)
- ✓ However, to perform an energy-dependent PWA, one needs much less:
 - 21 parameters for all *pp* scattering data below 350 MeV
 - 30 parameters for all *pp*bar scattering data below 925 MeV/*c*

The ${}^{3}S_{1}$ - ${}^{3}D_{1}$ mixing parameter in *np* scattering

15-11-2021

The ${}^{3}S_{1}$ - ${}^{3}D_{1}$ mixing parameter *after* PWA93

✓ Note: multi-energy (with error!) versus single-energy

Spin physics (the darling of every PAC world-wide...)

- ✓ Proton-proton PWA below 350 MeV, # data = 1787

 - $d\sigma/d\Omega, A_{\gamma}: # = 1381$ "spin data" : # = 40 } $\gamma^2_{\rm min}/N_{\rm data} = 1.00$
- \checkmark Now do a PWA of only the 1381 "non-spin" data:
 - $-\chi^2_{min} = 1404$, or $\chi^2_{min}/N_{data} = 1.02$
- ✓ Use this PWA of the "non-spin" data to *predict* the "spin data":
 - for $N_{data} = 1787$ we get $\chi^2 / N_{data} = 1.23$!
- ✓ How many "spin data" are actually *useful* ?
 - 406 "spin data" with $\chi^2 = 800$
 - 64 points (8 sets) have $\chi^2 = 477$; 342 points have $\chi^2 = 321!$

Analyticity of the S-matrix

- ✓ Need good description of the energy dependence of the amplitudes
 - Forces are "left-hand cuts"
 - Rapid energy dependence ← nearby cuts ← long-range interactions
 - − Slow energy dependence ← far-away cuts ← short-range interactions
- ✓ Strategy:
 - Calculate long-range interaction V_L from field theory
 - Treat short-range interaction V_S completely general

PWA: Implementation

- ✓ Do not parametrize $\delta_L(E)$ directly
- ✓ Instead, boundary condition at r = b
 - Jaffe & Low, PRD 19, 2105 (1979)
 - BC = $b[d\psi/dr]\psi^{-1}|_{r=b}$
 - Analytic function of energy
 - $V_{\rm S} = C_0 + C_2 p^2 + C_4 p^4 + \dots$
- ✓ Explicit long-range interaction
 - $V_L(r) = V_{EM}(r) + V_{OPE}(r) + V_{\chi TPE}(r)$
 - $V_{EM} = V_C + V_{2\gamma} + V_{VP} + V_{MM}$
- ✓ Inelasticity $\eta_L(E)$: complex BC

<u># BC parameters in pp PWA:</u>					
¹ <i>S</i> ₀ : 4			³ <i>P</i> ₀ : 3	³ <i>P</i> ₁ : 2	
¹ <i>D</i> ₂ : 2	³ P ₂ : 3	ε ₂ : 2	³ <i>F</i> ₂ : 1	³ <i>F</i> ₃ : 3	
¹ <i>G</i> ₄ : 1	³ <i>F</i> ₄ : 2	<i>E</i> ₄ : -	³ H ₄ : -	³ H ₅ : -	
¹/ ₆ : -	etc.		Total:	#=21	

The ${}^{3}P_{0}$ phase shift in the *pp* PWA

✓ "The details of the short-range interactions do not matter"

```
15-11-2021
```

The short-range interaction in the ${}^{3}P_{0}$ wave

- ✓ Energy dependence of the short-range interaction for ${}^{3}P_{0}$:
- ✓ Radial dependence of the potential for the ${}^{3}P_{0}$ wave:

15-11-2021

Long-range electromagnetic effects

- ✓ Coulomb interaction
- ✓ Magnetic-moment interaction
 - $V_{\rm MM} = -\alpha [\mu_p^2 S_{12} + (6 + 8\kappa_p) L \cdot S] / 4m^2 r^3$
 - Charge & magn. mom. \rightarrow spin-orbit
 - Magn. mom. & magn. mom. \rightarrow tensor
 - In *pp* PWA: $\Delta \chi^2_{min} \approx$ +400, so 20 s.d.
- ✓ Vacuum-polarization interaction
 - $V_{\rm VP} = \alpha' I(r)/r \approx \alpha \alpha' \exp(-2m_e r)/r^{3/2}$
 - Enhances Coulomb force V_C
 - Long-range: $1/2m_e \approx 200 \text{ fm}$
 - Relevant in proton-proton ${}^{1}S_{0}$ wave
 - − In *pp* PWA: $\Delta \chi^2_{min} \approx$ +215, so 15 s.d.

Charge-independence breaking, pp vs. np

- ✓ Isospin violation is due to EM effects + the up-down quark-mass difference
 - Our long-range interaction (strong + EM) contains the relevant isospin violation predicted by χ PT

- ✓ Study CIB for all low waves
 - pp and $np \, {}^1S_0$ wave
 - Also *e.g.* the ³*P* waves

Pion-photon exchange*

* M.C.M. Rentmeester et al., PRL 80, 4386 (1998).

15-11-2021

One-pion exchange: The glue of nuclei

- ✓ Strong interaction: $V_{nuc}(r) = V_{OPE} + V_{\chi TPE}$
 - One-pion exchange ($x = m_{\pi}r$):
 - $V_{\text{OPE}} = f_{NN\pi^2} m_{\pi} [\sigma_1 \cdot \sigma_2 + \xi(x) S_{12}] \exp(-x)/3x$
 - Charge-dependent:
 - $m_{\pi 0}$ vs. $m_{\pi \pm}$
 - $f_{\rm pp\pi0}$ vs. $f_{\rm nn\pi0}$ vs. $f_{\rm np\pi\pm}$

✓ Best value: $f_{NN\pi}^2$

$$f_{NN\pi}^2 = 0.0750(9)^*$$

✓ Goldberger-Treiman relation: $f_{NN\pi}/m_{\pi} = g_A/F_{\pi}$ − *i.e.* the "discrepancy" is only 1-2%

15-11-2021

^{*} Or $g_{NN\pi}^2/4\pi \approx 13.6$

"Seeing" one-pion exchange

- ✓ The $NN\pi$ coupling constant is determined *at the pion pole* from the longrange OPE
- ✓ We can also *fit* the pion masses
 - From the *pp* and the *np* data

 $m(\pi^0)$ = 135.6(10) MeV $m(\pi^{\pm})$ = 139.6(13) MeV

- ✓ No evidence for isospin violation:
 - − $f(pp\pi^0) \approx f(nn\pi^0) \approx f(np\pi^{\pm})$

How to connect nuclear physics to QCD

✓ Chiral effective field theory * → Chiral two-pion exchange interaction!

* Hammer, König, van Kolck, RMP 92, 025004 (2020).

```
15-11-2021
```

"Seeing" two-pion exchange

- ✓ With long-range OPE+ χ TPE:
 - An excellent χ^2 /data $\simeq 1$ is possible!
 - No need for the "sigma-meson"
- ✓ *NN* $\pi\pi$ coupling constants:
 - $c_3 = -4.78(10)/\text{GeV}$
 - $c_4 = +3.96(22)/\text{GeV}$
- ✓ Pion mass from long-range χ TPE:
 - m_{π} = 128(9) MeV

OPE + (charge-conj.) χ TPE provides an excellent long-range \overline{NN} interaction.

Total and annihilation cross section

Total charge-exchange cross section

Backward elastic differential cross sections

Elastic differential cross section and polarization

15-11-2021

Elastic differential cross section and polarization

15-11-2021

Lies, damned lies, and statistics!

 We do not determine if experiments are right or wrong, but we do decide whether they are statistically acceptable, yes or no

15-11-2021

Problematic data sets from LEAR

Charge-exchange cross section and analyzing power

15-11-2021

Charge-exchange cross section and analyzing power

15-11-2021

15-11-2021

Anti-PWA @ ESNT

Spin-dependent total cross sections

15-11-2021

Hunting resonances

✓ With a resonance in the ¹¹ D_2 wave, with E_R =1934(3) MeV, Γ =6(4) MeV

15-11-2021

P. H. Timmers et al., PRD **31**, 99 (1985).

PS185 @ LEAR: Strangeness exchange

- ✓ Coupled-channels PWA:
 - Long-range interaction: Charge-conjugated Nijmegen YN model
 - Short-range interaction: Complex boundary condition

	p _{lab} MeV/c	ΔQ	ΔS
рр	0 0 0		0
nn	100	1	0
$\overline{\Lambda}\Lambda$	1435	1	1
$ΛΣ^0, Σ^0Λ$	1653	1	1
$\Sigma^+\Sigma^+$	1853	0	1
$\Sigma^0\Sigma^0$	1871	1	1
$\Sigma^{-}\Sigma^{-}$	1899	2	1
[1] [1] [1]	2582	1	2
	2620	2	2

15-11-2021

```
Initial- and final-state interaction
```


- ✓ Initial-state *pp*bar interaction
 - 2/3 annihilation, black/grey disk scattering
 - Strong spin and isospin dependence
- ✓ Final-state ∧∧bar interaction
 - Not much known, related by flavor-SU(3) symmetry

```
15-11-2021
```

Cross sections & polarizations

Differential cross sections: strongly forward peaked, flat backward angles
 Large polarizations, positive forward, negative backward angles

15-11-2021

Spin physics!

- ✓ Large spin correlations, problematic for models
- ✓ With polarized target @ 1.64 GeV/*c*: depolarization D_{nn} and transfer K_{nn}

15-11-2021

Partial-wave cross sections

-						
p_{lab} (MeV/c) ϵ (MeV)	1435.95 0.24	1436.95 0.59	1445.35 3.5	1476.5 14.5	1507.5 25.5	1546.2 39.1
${}^{3}D_{1} \rightarrow {}^{3}S_{1}$	0.89	1.36	2.9	4.2	4.3	4.0
${}^{3}F_{2} \rightarrow {}^{3}P_{2}$	0.01	0.05	0.7	4.0	6.7	8.9
${}^{3}G_{3} \rightarrow {}^{3}D_{3}$				1.2	4.0	9.6
IS ₀		0.01				
${}^{1}P_{1}$					0.1	0.1
${}^{3}S_{1}$	0.08	0.12	0.3	0.5	0.6	0.7
${}^{3}P_{0}$		0.01	0.1	0.5	0.6	0.7
${}^{3}P_{1}$	0.01	0.04	0.5	2.9	4.5	5.3
${}^{3}P_{2}$	0.01	0.03	0.4	2.1	3.7	5.1
${}^{3}D_{1}$				0.1	0.2	0.5
${}^{3}D_{2}$				0.2	0.6	1.4
${}^{3}D_{3}$				0.4	1.3	3.2
${}^{3}F_{3}$					0.1	0.2
${}^{3}S_{1} \rightarrow {}^{3}D_{1}$				0.1	0.3	0.8
${}^{3}P_{2} \rightarrow {}^{3}F_{2}$						0.1
$J \ge 4$					0.2	0.9
Singlet $s = 0$	0.00	0.01	0.0	0.1	0.1	0.1
Triplet $s = 1$	1.00	1.60	4.9	16.1	27.3	41.3
Total	1.00	1.61	4.9	16.2	27.3	41.4
Experimental	0.84(20)	1.44(32)	4.86(42)	13.8(5)	26.6(7)	44.6(1.5)

✓ Naturally explained by coherent tensor force from *K* and *K*^{*} exchange

15-11-2021

"Seeing" one-kaon exchange

✓ Test of Goldberger-Treiman relation for *SU*(3)×*SU*(3) Goldstone bosons

- Chiral symmetry for $NN\pi$, $\Lambda\Sigma\pi$, $\Sigma\Sigma\pi$, ΛNK , ΣNK coupling constants
- Should be pursued *e.g.* for Ξ , Ω

Conclusion

✓ To make progress:

