(Ab initio) Theoretical description of nuclear observables accessible via laser spectroscopy

ESNT workshop, CEA/Saclay, France, October 7th - 11th 2019

Contents

Introduction of the nuclear Ab initio nuclear quantum many-body problem

- \circ Definition and recent progress
- Examples of recent applications
- \circ Some challenges and on-going developments

• Ab initio nuclear many-body problem and observables accessible via laser spectroscopy

- Direct observables and indirect observables
- Operators in chiral effective field theory
- Applications in s and p shell nuclei
- Applications in sd-pf shell nuclei

Occursion

Contents

• Introduction of the nuclear Ab initio nuclear quantum many-body problem

- \circ Definition and recent progress
- Examples of recent applications
- \circ Some challenges and on-going developments

• Ab initio nuclear many-body problem and observables accessible via laser spectroscopy

- Direct observables and indirect observables
- Operators in chiral effective field theory
- Applications in s and p shell nuclei
- Applications in sd-pf shell nuclei

Occursion

Huge diversity of nuclear phenomena

Most basic quantum nuclear structure feature: magic numbers

Ab initio (i.e. In medias res) quantum many-body problem

Ab initio ("from scratch") scheme = A-body Schrödinger Equation (SE)

$$H|\Psi_k^{\rm A}\rangle = E_k^{\rm A}|\Psi_k^{\rm A}\rangle$$

A-body Hamiltonian

 $H = T + V^{2N} + V^{3N} + V^{4N} + \dots + V^{AN}$

A-body wave-function

5 variables x A nucleons

Definition

- A structure-less nucleons as d.o.f
- All nucleons active in complete Hilbert space
- Elementary interactions between them
- Solve A-body Schroedinger equation (SE)
- Thorough estimate of error

Hamiltonian&operators

Do we know the form of V^{2N}, V^{3N} etc **Do we know how to derive them from QCD?** Why would there be forces beyond pairwise? **Is there a consistent form of other operators?**

More effective approaches needed?

First ab initio calculations

Schiavilla,...] □ 1990's: Green function Monte Carlo approach [Carlson, Pieper, Wiringa, Schiavilla,...]

- MC techniques to sample many-body wave function in coordinate, isospin and spin space
- Section Section Section Section 2000's: No-core shell model approach [Vary, Barrett, Navratil, Ormand...]
 - Diagonalisation of the Hamiltonian in a finite-dimensional space (but with no core!)

Nuclei simulated from "scratch"! Closed the gap between elementary inter-nucleon interactions and properties of nuclei

[Pieper & Wiringa 2001]

- Computational effort increases exponentially/factorially with nucleon number
- X Necessity of treating three-nucleon forces makes it more severe
 - Approach limited to light nuclei (~A≤12)

Approximate methods for closed-shells Approximate methods for open-shells ○ Since 2000's • Since 2010's • MBPT, DSCGF, CC, IMSRG • BMBPT, GSCGF, BCC, MR-IMSRG, MCPT Polynomial scaling Polynomial scaling $H|\Psi_n^A\rangle = \mathbf{E}_n^A|\Psi_n^A\rangle$ 50 40 30 N 20• "Exact" methods • Since 1980's 2013 10 • Monte Carlo, CI, ... • Exponential scaling 30 80 10 20 40 50 7090 60

Contents

• Introduction of the nuclear Ab initio nuclear quantum many-body problem

- Definition and recent progress
- Examples of recent applications
- \circ Some challenges and on-going developments

• Ab initio nuclear many-body problem and observables accessible via laser spectroscopy

- Direct observables and indirect observables
- Operators in chiral effective field theory
- Applications in s and p shell nuclei
- Applications in sd-pf shell nuclei

Occursion

Chiral EFT hamiltonians

● N3LO (~2010)

[Entern & Machleidt 2003, Navrátil 2007, Roth et al. 2012]

- First generation of ChEFT interactions (N³LO 2 6 C). LO 3N)
- Follows traditional ab initio strategy (fit be been sector on X-body data)
- Successful in light nuclei, but strong overbinding and too small radii for heavier systems

NNLO_{sat} (2015)

[Ekström et al. 2015]

- Development prompted by inability to reproduce radii beyond light nuclei
- Data from not-so-light nuclei (A=14-25) included in fit + Non-local 3NF regulator
- Good BE and radii in mid-mass but two- and few-few-body systems slightly deteriorated

● N3LO_{In1} (2018)

- Back to standard ab initio strategy but with important for a standard ab initio strategy but with important for a strategy but wi
- Correct description of two- and few-body Construction
- BE and radii of mid-mass systems much improved compared to N3LO

[Entem & Machleidt 2003, Navrátil 2018]

Oxygen binding energies

Oxygen chain: importance of three-body forces and benchmark case for ab initio calculations

N3LO (~2010)

- ✓ Neighbouring F & N chains
- ✓ Results are nicely consistent
- ✓ Interactions seem to work very satisfactorily
- ✓ Different methods yield consistent results
- ✓ 3N interaction mandatory
- ✓ Correct trend and drip-line location at N=16

Sources of uncertainty

• Model space truncation typically up to 1%

Many-body truncation typically 2-3%

O Difference with data up to 10-15% in Ca-Ni region with N3LO

Largest uncertainty from input Hamiltonian

Improved Hamiltonians needed

Charge radii in medium-mass nuclei

Newly developed Hamiltonians improves the situation

Charge radii in medium-mass nuclei

Charge radii in medium-mass nuclei

Output Charge radii provide stringent tests of nuclear interactions via ab initio calculations of mid-mass chains

Ab initio emergence of N=20 and N=28 magic numbers

Spectra of Fluorine isotopes

• Excitation spectra of (neutron-rich) ^{19,23,25,26}F from *ab initio* sd shell model

N3LO (~2010)

 \circ Hybrid method = ab initio shell model (core ¹⁶O and valence space H from IMSRG)

✓ Very satisfactory account of experimental data

 $\checkmark\,$ 3N interaction mandatory for correct density of states and ordering

✓ As good as best sd shell empirical USDB interaction (i.e. traditional shell model)

Confrontation with spectroscopic data in sd nuclei can now be based on ab initio scheme!

[Stroberg et al. 2016]

Spectra of K isotopes

Potential bubble nucleus ³⁴Si

• Conjectured central depletion in $\rho_{ch}(r)$: best candidate is ³⁴Si [Todd-Rutel *et al.* 2004, Khan *et al.* 2008, ...]

• Excellent agreement with experimental charge distribution of ³⁶S [Rychel *et al.* 1983]

• Charge density of ³⁴Si is predicted to display a marked depletion in the center

Charge form factor

• Central depletion reflects in larger $|F(\theta)|^2$ for angles 60°< θ <90° and shifted 2nd minimum by 20°

- Visible in future electron scattering experiments if enough luminosity (10²⁹ cm⁻²s⁻¹ for 2nd minimun)
- Correlation between F_{ch} and $\langle r^2 \rangle_{ch}^{1/2} ({}^{36}S) \langle r^2 \rangle_{ch}^{1/2} ({}^{34}Si)$ identified

■Measurement of $\delta < r^2 >_{ch}^{1/2}$ (^ASi) from high-resolution laser spectroscopy@NSCL (R. Garcia-Ruiz)

Addition and removal nucleon spectra

• Conjectured correlation between bubble and splitting between low J spin-orbit partners

Good agreement for one-neutron addition to ³⁵Si and ³⁷Si (1/2⁻ state in ³⁵Si needs continuum)
 Much less good for one-proton removal; ³³Al on the edge of island of inversion: challenging!

• Correct reduction of splitting E_{1/2}⁻ - E_{3/2}⁻ from ³⁷S to ³⁵Si

Such a sudden reduction of 50% is unique Any correlation with the bubble? Yes!

$E_{1/2^{-}} - E_{3/2^{-}}$	^{37}S	35 Si	$^{37}S \rightarrow ^{35}Si$
SCGF	2.18	1.16	-1.02 (-47%)
(d,p)	1.99	0.91	-1.08 (-54%)

Electromagnetic response

Photodisintegration cross section of ⁴⁰Ca

25

30

 \mathbf{E}_X [MeV]

35

20

10

15

DysADC3 RPA

 40 Ca

NNLO_{sat}

50 55

45

40

••• Ahrens (1975)

 N_{max} =13, $\hbar\omega$ =20 MeV

[Raimoni and Barbieri 2019]

110

100

90

80

70

60

50

40

30

20

10

0

5

 $\sigma(\mathbf{E}_X)$ [mb]

SCGF

Dipole response function

$$R(E) \equiv \sum_k |\langle \Psi_k | Q_{1m}^{T=1} | \Psi_0 \rangle | \delta(E_k - E_0 - E)$$

Electric dipole operator

$$Q_{1m}^{T=1} \equiv \frac{N}{N+Z} \sum_{p=1}^{Z} r_p Y_{1m}(\theta_p, \phi_p) - \frac{Z}{N+Z} \sum_{n=1}^{N} r_n Y_{1m}(\theta_n, \phi_n)$$

Giant and pygmy resonances accessible up to ^ANi Many-body correlations crucial for quantitative description

• Correlation between
$$\sqrt{\langle r_p^2 \rangle}$$
, $\sqrt{\langle r_n^2 \rangle}$ and α_D
Electric dipole polarizability
 $\alpha_D \equiv 2\alpha \int dE \frac{R(E)}{E}$
 $\sqrt{\langle r_{ch}^2 \rangle \Longrightarrow \alpha_D}$
 $\alpha_D \equiv \alpha_D$
 $\alpha_D \equiv 2\alpha \int dE \frac{R(E)}{E}$
 $\alpha_D \equiv \alpha_D$
 $\alpha_D \equiv \alpha_D$
 $\alpha_D \equiv \alpha_D$
 $\alpha_D \equiv \alpha_D$
 $\alpha_D \equiv \alpha_D$

Contents

• Introduction of the nuclear Ab initio nuclear quantum many-body problem

- \circ Definition and recent progress
- Examples of recent applications
- Some challenges and on-going developments

• Ab initio nuclear many-body problem and observables accessible via laser spectroscopy

- Direct observables and indirect observables
- Operators in chiral effective field theory
- Applications in s and p shell nuclei
- Applications in sd-pf shell nuclei

Occursion

Nuclear structure features addressed ab initio

Some challenges for ab initio theory

Enlarged portefolio of observables More accurate descriptions • Next order in expansion, e.g. full T3, pert. T4 Low-lying E* in open-shell beyond sd • Next order in H, e.g. full 3NF and approx 4NF Moments in open-shell beyond sd Giant resonances Improved Hamiltonians $H|\Psi_n^A\rangle = \mathbf{E}_n^A|\Psi_n^A\rangle$ • Higher order, different fits \circ Different PW, Δ -full EFT 40 Our Content of Cont 30 Statistical and systematic from H • Systematic from basis size, truncation order 20• Larger set of nuclei 10 Doubly open-shell beyond sd shell Beyond A~100 Novel/generalized many-body formalisms Improved nuclear Hamiltonians Data processing methods from applied mathematics

Contents

• Introduction of the nuclear Ab initio nuclear quantum many-body problem

- \circ Definition and recent progress
- Examples of recent applications
- \circ Some challenges and on-going developments

• Ab initio nuclear many-body problem and observables accessible via laser spectroscopy

- Direct observables and indirect observables
- Operators in chiral effective field theory
- Applications in s and p shell nuclei
- Applications in sd-pf shell nuclei
- Occursion

So what about observables from laser spectrocopy?

• Charge radii via isotopic shifts

- Tremendously useful to tune bulk properties of nuclear interactions
- Now systematically computed for even-even closed and (singly) open-shell nuclei
- \circ Entertain interesting correlations with other observables, e.g. α_D , F_{ch} ...

• Nuclear spins via atomic hyperfine structure

- Basic check of nuclear structure evolution
- Require the computation of odd-even or odd-odd ground-states/isomeric states
- Systematic comparison with available data could be useful

• Ground-state electromagnetic moments via atomic hyperfine structure

- Detailed probe of nuclear structure evolution (« shell structure » and « shell occupancies »)
- Require the computation of odd-even or odd-odd ground-states
- Require the computation of non-trivial operators

Contents

• Introduction of the nuclear Ab initio nuclear quantum many-body problem

- \circ Definition and recent progress
- Examples of recent applications
- \circ Some challenges and on-going developments

• Ab initio nuclear many-body problem and observables accessible via laser spectroscopy

- Direct observables and indirect observables
- Operators in chiral effective field theory
- Applications in s and p shell nuclei
- Applications in sd-pf shell nuclei
- Occursion

Effective field theory

Hamiltonian in chiral effective field theory

• Goal of **many**-body methods: apply to AN systems with **A>>3** (and propagate the theoretical error!)

Consistent operators in chiral effective field theory

✓ Nuclear electromagnetic charge/current operators (= time/vector part of four-vector current j^µ)

$$\rho(\vec{q}) = \sum_{i} \rho_{i}(\vec{q}) + \sum_{i < j} \rho_{ij}(\vec{q}) + \sum_{i < j < k} \rho_{ijk}(\vec{q}) + \dots \quad \text{(o) One-body (i.e. standard) operator}$$

$$\vec{j}(\vec{q}) = \sum_{i} \vec{j}_{i}(\vec{q}) + \sum_{i < j} \vec{j}_{ij}(\vec{q}) + \sum_{i < j < k} \vec{j}_{ijk}(\vec{q}) + \dots \quad \text{(o) Two-body meson-exchange currents (MECs)}$$

$$\vec{j}(\vec{q}) = \sum_{i} \vec{j}_{i}(\vec{q}) + \sum_{i < j < k} \vec{j}_{ijk}(\vec{q}) + \dots \quad \text{(o) Three-body meson-exchange currents}$$

$$\vec{q} = \text{momentum of external photon field}$$

• Operators are built from EFT expansion by coupling nuclear current to external e.m. fields

Consistent nuclear e.m. operators and nuclear forces

- Satisfy the continuity equation $\vec{q} \cdot \vec{j}(\vec{q}) = [H, \rho(\vec{q})]$ following from gauge invariance
- Derived via two different version of time-ordered perturbation theory
 - Standard time-ordered perturbation theory / Jlab-Pisa group [Pastore et al. 2008, 2009, 2011, 2013]
 - Method of unitary transformation / Bochum-Bonn group [Kolling et al. 2009, 2011]

Proper renormalization achieved in this case

Electromagnetic current operator

Electromagnetic charge operator

Relation to observables from laser spectroscopy

Longitudinal and transverse form factors for elastic and inelastic scattering

$$\begin{split} F_{L}^{2}(q) &= \frac{1}{2J_{i}+1} \sum_{J=0}^{\infty} |\langle \Psi_{f}^{J_{f}} \overline{T_{J}^{C}(q)} \Psi_{i}^{J_{i}} \rangle|^{2} \\ F_{T}^{2}(q) &= \frac{1}{2J_{i}+1} \sum_{J=0}^{\infty} |\langle \Psi_{f}^{J_{f}} \overline{T_{J}^{M}(q)} | \Psi_{i}^{J_{i}} \rangle|^{2} + |\langle \Psi_{f}^{J_{f}} \overline{T_{J}^{E}(q)} \Psi_{i}^{J_{i}} \rangle|^{2} \\ \end{split}$$

$$\begin{aligned} \mathsf{T}^{\mathsf{L}}_{\mathsf{J}} &= \frac{1}{2J_{i}+1} \sum_{J=0}^{\infty} |\langle \Psi_{f}^{J_{f}} \overline{T_{J}^{M}(q)} | \Psi_{i}^{J_{i}} \rangle|^{2} + |\langle \Psi_{f}^{J_{f}} \overline{T_{J}^{E}(q)} \Psi_{i}^{J_{i}} \rangle|^{2} \\ \end{aligned}$$

- Connection to static moments
- Form of standard one-body, i.e. LO(IA), operators
 - \circ Static electric quadrupole operator

$$Q^{\text{IA}} = e \sum_{i} e_{i}(0) r_{i}^{2} Y_{20}(\theta_{i}, \phi_{i})$$

 \circ Static magnetic dipole operator

$$\mu^{\text{IA}} = \sum_{i} e_i(0) \vec{L}_i + \mu_i(0) \vec{\sigma}_i$$

Contents

Introduction of the nuclear Ab initio nuclear quantum many-body problem

- \circ Definition and recent progress
- Examples of recent applications
- \circ Some challenges and on-going developments

• Ab initio nuclear many-body problem and observables accessible via laser spectroscopy

- Direct observables and indirect observables
- Operators in chiral effective field theory
- Applications in s and p shell nuclei
- Applications in sd-pf shell nuclei
- Occursion

Magnetic dipole moment in s and p shell nuclei

- Decomposition of one-body IA
 - Proton's convection small vs spin magnetization
 - \circ Driven by valence nucleon in odd-even
 - Driven by n-p or 3He-p cluster in odd-odd

Elastic form factors in s and p shell nuclei

● Elastic charge (longitudinal) and magnetic (transverse) form factors from ²H to ¹²C

- Ex: Quadrupole electric form factor in ²H
 Hybrid and (semi-consistent) χ-EFT calculations
 Charge operator at LO (IA) and N³LO
 - \circ Band from 500 MeV < Λ < 600 MeV

Results

- \circ G_Q(0) = M²_d Q_d (here in fit of NN)
- \circ LO(IA) sufficient up to q~3 fm-1
- \circ Nucleonic form factors mandatory beyond 1.5 $fm^{\text{-1}}$
- \circ Excellent result up to q ~ 4 fm⁻¹ in all cases
- \circ $\chi\text{-EFT}$ with N³LO MEC excellent up to q ~ 8 fm^-1

Contents

Introduction of the nuclear Ab initio nuclear quantum many-body problem

- \circ Definition and recent progress
- Examples of recent applications
- \circ Some challenges and on-going developments

• Ab initio nuclear many-body problem and observables accessible via laser spectroscopy

- Direct observables and indirect observables
- Operators in chiral effective field theory
- Applications in s and p shell nuclei
- Applications in sd-pf shell nuclei
- Occursion

Moments in Ca isotopes

• Empirical/ab initio (IMSRG) shell-model calculations of magnetic dipole/electric quadrupole moments

- ^{47,49,51}Ca via high-resolution collinear laser spectroscopy COLLAPS @ ISOLDE [Garcia Ruiz et al. 2015]
- ³⁷Ca via collinear laser spectroscopy BECOLA @ NSCL [Klose et al. 2019]

Operators

- \circ Pure one-body \leftrightarrow No explicit MEC
- Bare spin and orbital g factors for magnetic moment
- \circ Effective charges: $e_n = 0.5e$ and $e_p = 1.5e$

Magnetic moment

- ⁴⁰Ca core broken in ^{41,43,45}Ca
- Good reproduction from ab initio in ^{47,49,51}Ca ★★★
- Significant breaking of N=32 magic number

Quadrupole moment

- Excellent agreement for ab initio in all isotopes
- \circ No apparent need of orbital-dependent e_n and/or e_p

Next: MEC and consistently-transformed operators to valence space

Contents

Introduction of the nuclear Ab initio nuclear quantum many-body problem

- \circ Definition and recent progress
- Examples of recent applications
- \circ Some challenges and on-going developments

• Ab initio nuclear many-body problem and observables accessible via laser spectroscopy

- Direct observables and indirect observables
- Operators in chiral effective field theory
- Applications in s and p shell nuclei
- Applications in sd-pf shell nuclei

Occursion

Conclusions

• Enormous progress of ab initio calculations in the last 10 years

- Much larger phenomenology can be put in connection with elementary nuclear forces
- Nuclear forces themselves are explicitly rooted in QCD
- \circ Comparison to basic experimental observables can be made to day up to A \approx 80

Much further progress to be made

- Observables: electromagnatic moments and transitions, electroweak operators
- Nuclear interactions put to the test in mid-mass nuclei = current main bottleneck for progress
- Formal & numerical challenges to go to heavier nuclei/better accuracy/doubly open-shell nuclei
- Compute features of reactions (already some) and develop ab initio dynamics
- Evaluation and propagation of systematic errors of H

Collaborators on ab initio many-body calculations

J.-P. Ebran M. Frosini F. Raimondi J. Ripoche V. Somà A. Tichai

D. Lacroix

P. Navratil

P. Arthuis C. Barbieri M. Drissi

R. Roth

G. Hagen T. Papenbrock

P. Demol

Back up slides

Hamiltonian

Nuclear Hamiltonian

Particle number

$$H = \frac{1}{(1!)^2} \sum_{pq} t_{pq} c_p^{\dagger} c_q$$

+ $\frac{1}{(2!)^2} \sum_{pqrs} \overline{v}_{pqrs} c_p^{\dagger} c_q^{\dagger} c_s c_r$
+ $\frac{1}{(3!)^2} \sum_{pqrstu} \overline{w}_{pqrstu} c_p^{\dagger} c_q^{\dagger} c_r^{\dagger} c_u c_t c_s$

$$A \equiv \sum_{p} c_{p}^{\dagger} c_{p}$$

Genuine 3N interaction / six-legs vertex

Controls the average particle number in the system

Problematic to handle 3N interactions in mid-mass nuclei

Single-reference expansion many-body methods

Nuclear Hamiltonian

 $H = T + V^{2N} + W^{3N}$

Symmetry group U(1) dealt with today [H, S] = 0 where $S \equiv A, J^2, J_z \dots$

Mean-field reference state

 $[H_0, S] = 0$ $H = H_0 + H_1$ such that $[H_1, S] = 0$ $H_0 |\Phi_0^S\rangle = \mathcal{E}_0^S |\Phi_0^S\rangle$ Exactly solvable. **Open-shell Closed-shell** Non-degenerate No**Dedregnemate**te In proper statiting oppoint Good starting point

A-body eigenvalue problem

 $H|\Psi_0^{\rm S}\rangle = E_0^{\rm S}|\Psi_0^{\rm S}\rangle \quad \ {\rm N^A\ cost\ where\ N} = \dim\ {\cal H}_1$

Many-body expansion

Wave operator Reference state

Accounts for « weak/dynamical » correlations
 Expand as a series (MBPT, CC...) + truncate = N^p cost

 $[H'_{0}, S] \neq 0$ $[H'_{1}, S] \neq 0$ $H = H'_{0} + H'_{1}$ $|\Psi^{S}_{0}\rangle = U(\infty)|\Phi_{0}\rangle$ More general reference state Accounts for "strong/non-dynamical" correlations $Expand (BMBPT, BCC...) + truncate = N^{p} cost$

- 1) Truncated series breaks symmetry
- 2) Exact symmetry must eventually be restored

Slater determinant reference state and normal ordering

Six-index tensor

NO2B approximation Too expensive to handle 1-3% error in closed shell [R. Roth et al., PRL 109 (2012) 052501] **Effective 2-body operators** Captures essential of 3-body Many-body method with 2-body

Bogoliubov reference state and normal ordering

Bogoliubov reference state

Breaks U(1) symmetry

$$\beta_{k} = \sum_{p} U_{pk}^{*} c_{p} + V_{pk}^{*} c_{p}^{\dagger} \qquad |\Phi\rangle \equiv C \prod_{k} \beta_{k} |0\rangle \qquad A |\Phi\rangle \neq A |\Phi\rangle$$
$$\beta_{k}^{\dagger} = \sum_{p} U_{pk} c_{p}^{\dagger} + V_{pk} c_{p} \qquad \beta_{k} |\Phi\rangle = 0 \quad \forall k \qquad \text{Vacuum state} \\ \text{Reduces to SD in } \mathcal{H}_{A} \text{ for closed-shell}$$

Normal ordering via Wick's theorem in quasi-particle basis

$$H \equiv \sum_{n=0}^{3} \sum_{i+j=2n} \frac{1}{i!j!} \sum_{l_1...l_{i+j}} H_{l_1...l_{i+j}}^{ij} \beta_{k_1}^{\dagger} \dots \beta_{k_i}^{\dagger} \beta_{k_{i+j}} \dots \beta_{k_{i+1}}$$

$$H^{ij} \text{ matrix elements function of}$$

$$t_{pq} \ \overline{v}_{pqrs} \ \overline{w}_{pqrstu} \ U_{pk} \ V_{pk}$$

$$\equiv H^{00} + [H^{20} + H^{11} + H^{02}] + [H^{40} + H^{31} + H^{22} + H^{13} + H^{04}] + \sum_{i+j=6} H^{ij}$$

$$\equiv \sum_{n=0}^{2} H^{[2n]} + H^{[6]} \quad 6\text{-qp operators}$$
Similarly for A and Ω
Six-index tensors
Too expensive to handle
NO2B approximation
1-3% error in closed shell
[Roth *et al.*, PRL 109 (2012) 052501]

H^{ij} matrix elements function of
$$t_{pq} \ \overline{v}_{pqrs} \ \overline{w}_{pqrstu} \ U_{pk} \ V_{pk}$$

Electron scattering off nuclei

- Electrons constitute an optimal probe to study atomic nuclei
 - \circ Point-like \rightarrow excellent spatial resolution
 - \circ EM weak and theoretically well constrained
- Accélérateur Linéaire @ Saclay (ALS)
 - Electron accelerator (1969-1990)
 - \circ Refined data on tens of stable nuclei

Electron scattering off unstable nuclei?

- \circ Challenge for the future
- First physics experiments in 2017 with SCRIT @ RIKEN

Guidance for improved nuclear many-body Hamiltonians

Nuclear lattice calculations of 86 even-even nuclei up to A=48 and pure neutron matter [Lu et al. 2018]

¤ Leading-order pion-less EFT SU(4)-invariant with 2N and 3N interactions

Effective range r_0 averaged over 1S_0 and 3S_1 S-wave scattering length a_0 averaged over 1S_0 and 3S_1 B(3H) + set of mid-mass nuclei

N=Z	В	Exp.	$R_{\rm ch}$	Exp.	Cou.
³ H	8.48(2)	8.48	1.90(1)	1.76	0.0
³ He	7.75(2)	7.72	1.99(1)	1.97	0.73(1)
⁴ He	28.89(1)	28.3	1.72(1)	1.68	0.80(1)
16 O	121.9(1)	127.6	2.74(1)	2.70	13.9(1)
²⁰ Ne	161.6(1)	160.6	2.95(1)	3.01	20.2(1)
^{24}Mg	193.5(2)	198.3	3.13(1)	3.06	28.0(1)
²⁸ Si	235.8(4)	236.5	3.26(1)	3.12	37.1(2)
⁴⁰ Ca	346.8(6)	342.1	3.42(1)	3.48	71.7(4)

Error < 4.5% on BE in ¹⁶O and < 8.0% on R_c in ³H

SU(4)-invariant LO very satisfactory for large A
 Satisfatory pure neutron matter + volume/surface energy coefficients
 Corrections from spin&isospin dependent terms

Coulomb effect beneficial

Novel many-body formalisms

● No real free lunch but still look for best compromise ✓ Versatility (nuclei and/or states/observables)

- ✓ Accuracy
- ✓ CPU cost

[Duguet, Signoracci 2016]

Optimal many-body method for open-shell nuclei: Bogoliubov many-body perturbation theory

→ Code for automated generation of many-body diagrams [Arthuis et al. 2018]

 \rightarrow 2-3% agreement of all methods with exact results (IT-NCSM)

Different truncation schemes yield consistent description of open-shell nuclei

BMBPT optimal to systematically test next generation of Chiral EFT nuclear Hamiltonians