Recent Progresses and Challenges in Atomic Coupled-cluster Theory

B. K. Sahoo

Atomic, Molecular and Molecular Physics Division Physical Research Laboratory, Ahmedabad 380009, India

LASER Spectroscopy as a tool for nuclear theories (07-11 October, 2019)

Demands for Accurate Many-body Methods

- To explain experimental results and understanding roles played by electron correlation effects
- Determining scattering cross-sections and to fathom plasma diagnostic processes
- Providing atomic data for astrophysics, testing QED effects, inferring nuclear momenta etc.
- Estimating systemstics for atomic clock experiments
- Investigating nuclear anapole moment through parity nonconservation (PNC) studies
- Probing Lorentz symmetry and Einstein's equivalence principle violations
- Inferring limits on CP violating parameters, finding out new bosons from istope shift calculations etc.

Outline

- General procedures to determine atomic wave functions

Non-relativistic versus relativistic calculations
RPA, CI and CC theories
CI+MBPT hybrid method
Expectation value determination using CC methods
(a) Finite-field approach
(b) Regular expectation value evaluation approach
(c) Normal coupled-cluster theory approach
(d) Analytic response CC theory approach

Applications to Isotope Shift and EDM studies

- Summary

Considering infinity nuclear mass:

Schroedinger/Dirac equation: $\quad \boldsymbol{h}|\psi\rangle=\boldsymbol{\varepsilon}|\psi\rangle$

Non-relativistic Hamiltonian: $\quad \boldsymbol{h}=\frac{\boldsymbol{p}^{2}}{2 m_{e}}+V_{N}(\boldsymbol{r})$

Relativistic Hamiltonian: $h=c \vec{a} \cdot \vec{p}+\beta m_{e} c^{2}+V_{N}(r)$

Consequences:

- Exact analytical solutions are obtained.
- Atomic states are described by n, J, Π etc. quantum numbers.
- Purely spherical symmetric.

Electromagnetic interactions in an atomic system

Coulomb interaction

- Mediated by photons (massless; long-range)
- Strength scales ~ Z
- Gives atomic spectra (states n, J and π)
- Nucleus has electric charge, (Ze)

Non-relativistic Hamiltonian:

$$
H=\sum_{i}\left[\frac{p_{i}^{2}}{2 m_{e}}+V_{N}\left(r_{i}\right)\right]+\frac{1}{2} \sum_{i, j} \frac{1}{\left|\vec{r}_{i}-\vec{r}_{j}\right|}
$$

Relativistic Hamiltonian:

$$
\begin{aligned}
& H=\sum_{i}\left[c \vec{\alpha}_{i} \cdot \vec{p}_{i}+\beta_{i} m_{e} c^{2}+V_{N}\left(r_{i}\right)\right] \\
&+\frac{1}{2} \sum_{i, j} \frac{1}{\left|\vec{r}_{i}-\vec{r}_{j}\right|}
\end{aligned}
$$

Multi-electron atomic systems

Total Hamiltonian: $\boldsymbol{H}=\sum_{i} h_{i}+\frac{1}{2} \sum_{i, j} g_{i j}$

Net wave function: $|\Psi\rangle=\frac{1}{\sqrt{N!}}\left[\begin{array}{ccc}\mid \psi_{1}\left(r_{1}\right\rangle & \cdots & \left|\psi_{N}\left(r_{1}\right)\right\rangle \\ \vdots & \ddots & \vdots \\ \left|\psi_{1}\left(r_{N}\right)\right\rangle & \cdots & \left|\psi_{N}\left(r_{N}\right)\right\rangle\end{array}\right]$
Schroedinger/Dirac equation for single particle wave function:

$$
H|\Psi\rangle=E|\Psi\rangle \quad \text { such that } E=\sum_{i} \varepsilon_{i}
$$

$\Rightarrow \quad h_{i}\left|\psi_{i}\right\rangle+\frac{1}{2} \sum_{j}^{N}\left[\left\langle\psi_{j}\right| g_{i j}\left|\psi_{j}\right\rangle\left|\psi_{i}\right\rangle-\left\langle\psi_{j}\right| g_{i j}\left|\psi_{i}\right\rangle\left|\psi_{j}\right\rangle\right]=\varepsilon_{i}\left|\psi_{i}\right\rangle$
Thus, it cannot be solved exactly.

Mean-field theory (DHF method)

$$
\begin{aligned}
H & =\sum_{i} h_{i}+\frac{1}{2} \sum_{i, j} g_{i j}=\sum_{i}\left[h_{i}+u_{i}\right]+\left[\frac{1}{2} \sum_{i, j} g_{i j}-\sum_{i} u_{i}\right] \\
& =\sum_{i} f_{i}+\left[\frac{1}{2} \sum_{i, j} g_{i j}-\sum_{i} u_{i}\right]=H_{0}+V_{\text {res }}
\end{aligned}
$$

Mean-field theory:
$H_{0}\left|\Phi_{0}\right\rangle=E_{0}\left|\Phi_{0}\right\rangle \Rightarrow f_{i}\left|\phi_{i}\right\rangle=\varepsilon_{i}^{0}\left|\phi_{i}\right\rangle$ such that $E_{0}=\sum_{i} \varepsilon_{i}^{0}$
In the (Dirac) Hartree - Fock approach (variational):

$$
\left|\psi_{i}\right\rangle=\left|\phi_{i}^{0}\right\rangle+\alpha\left|\partial \phi_{i}^{0}\right\rangle \text { and } \varepsilon_{i}=\varepsilon_{i}^{0}+\alpha \partial \varepsilon_{i}^{0}
$$

$|\Psi(\alpha)\rangle \rightarrow\left|\Phi_{0}(\alpha=0)\right\rangle$ is obtained by

$$
\frac{\partial E(\alpha)}{\partial \alpha}=\frac{\partial\langle\Psi(\alpha)| H|\Psi(\alpha)\rangle}{\partial \alpha}=0 \quad \text { This follows: } E_{0} \geq E
$$

$\Rightarrow h_{i}\left|\phi_{i}^{0}\right\rangle+\sum_{j}^{N}\left[\left\langle\phi_{j}^{0}\right| g_{i j}\left|\phi_{j}^{0}\right\rangle\left|\phi_{i}^{0}\right\rangle-\left\langle\phi_{j}^{0}\right| g_{i j}\left|\phi_{i}^{0}\right\rangle\left|\phi_{j}^{0}\right\rangle\right]=\varepsilon_{i}^{0}\left|\phi_{i}^{0}\right\rangle$

Atomic system: Spherical symmetry

Schroedinger wave function: $\left|\phi_{s}(r)\right\rangle=\frac{R_{n l}(r)}{r} \mathrm{Y}_{l, m}(\theta, \phi) \sigma_{s}$
Hartree-Fock equation: $F C=S C \varepsilon$

$$
R_{n l}(r)=\sum_{i=1}^{N_{l}} c_{n l}^{i}\left|\zeta_{i}\right\rangle \quad \Rightarrow N_{l} \times N_{l} \text { dimension matrix }
$$

Dirac wave function: $\left|\phi_{D}(r)\right\rangle=\frac{1}{r}\left(\begin{array}{cc}P_{n \kappa}(r) & \mathrm{X}_{\kappa, m}(\theta, \phi) \\ i Q_{n \kappa}(r) & \mathrm{X}_{-\kappa, m}(\theta, \phi)\end{array}\right)$

$$
\begin{aligned}
& P_{n \kappa}(r)=\sum_{i=1}^{N_{\kappa}} c_{n \kappa}^{i, L}\left|\zeta_{i}^{L}\right\rangle \quad \text { and } \quad Q_{n \kappa}(r)=\sum_{i=1}^{N_{\kappa}} c_{n \kappa}^{i, S}\left|\zeta_{i}^{S}\right\rangle \\
& \Rightarrow\left(\begin{array}{ll}
F_{L L} & F_{L S} \\
F_{S L} & F_{S S}
\end{array}\right)\binom{C_{n \kappa}^{L}}{C_{n \kappa}^{S}}=\left(\begin{array}{cc}
S_{L L} & 0 \\
0 & S_{S S}
\end{array}\right)\binom{C_{n \kappa}^{L}}{C_{n \kappa}^{S}} \varepsilon \\
& \Rightarrow 2 N_{\kappa} \times 2 N_{\kappa} \text { dimension matrix }
\end{aligned}
$$

Bloch's prescription

According to the Bloch's prescription, the Fock space is divided into model (P) and orthogonal (Q) space.

$$
\begin{gathered}
H=H_{0}+\lambda V_{\text {res }} \quad|\Psi\rangle=\Omega\left|\Phi_{0}\right\rangle \\
P=\left|\Phi_{0}\right\rangle\left\langle\Phi_{0}\right| \quad \text { and } \quad Q=1-P
\end{gathered}
$$

In perturbation approach:

$$
\begin{aligned}
& \Omega=\Omega^{(0)}+\lambda \Omega^{(1)}+\lambda^{2} \Omega^{(2)}+\cdots=\sum_{n} \lambda^{n} \Omega^{(\mathrm{n})} \quad \text { with } \quad \Omega^{(0)}=1 \\
& E=E^{(0)}+\lambda E^{(1)}+\lambda^{2} E^{(2)}+\cdots=\sum_{n} \lambda^{n} E^{(\mathrm{n})}
\end{aligned}
$$

Amplitude solving equation:

$$
\left[\Omega^{(k)}, H_{0}\right] P=Q V \Omega^{(k-1)} P-\sum_{m=1}^{(k-m)} P V_{r e s} \Omega^{(k-1)} P
$$

Energy equation: $E^{(n)}=P V_{\text {res }} \Omega^{(\mathrm{n}-1)} P$

In the presence of external perturbation

In this case: $\quad H=H_{a t}+\lambda_{2} V_{i n t}=H_{0}+\lambda_{1} V_{\text {res }}+\lambda_{2} V_{\text {int }}$

It can be approximated as

$$
\begin{aligned}
|\Psi\rangle & =\left|\Psi^{(0)}\right\rangle+\lambda_{2}\left|\Psi^{(1)}\right\rangle+\lambda_{2}^{2}\left|\Psi^{(2)}\right\rangle+\cdots \\
& =\left|\Phi_{0}^{(0,0)}\right\rangle+\lambda_{1}\left|\Phi_{0}^{(1,0)}\right\rangle+\lambda_{2}\left|\Phi_{0}^{(0,1)}\right\rangle+\lambda_{1} \lambda_{2}\left|\Phi_{0}^{(1,1)}\right\rangle+\cdots \\
E & =E^{(0)}+\lambda_{2} E^{(1)}+\lambda_{2}^{2} E^{(2)}+\cdots \\
& =E_{0}^{(0,0)}+\lambda_{1} E_{0}^{(1,0)}+\lambda_{2} E_{0}^{(0,1)}+\lambda_{1} \lambda_{2} E_{0}^{(1,1)}+\cdots
\end{aligned}
$$

In perturbation:

$$
\begin{aligned}
& \Omega=\Omega^{(0,0)}+\lambda_{1} \Omega^{(1,0)}+\lambda_{2} \Omega^{(0,1)}+\lambda_{1} \lambda_{2} \Omega^{(1,1)}+\cdots=\sum_{n, m} \Omega^{(\mathrm{n}, \mathrm{~m})} \\
& \text { with } \Omega^{(0,0)}=1, \quad \Omega^{(1,0)}=V_{\text {res }} \quad \text { and } \quad \Omega^{(0,1)}=V_{\text {int }}
\end{aligned}
$$

Amplitude equation:

$$
\begin{aligned}
& {\left[\Omega^{(\beta, \alpha)}, H_{0}\right] P=Q V_{r e s} \Omega^{(\beta-1, \delta)} P+Q V_{i n t} \Omega^{(\beta, \delta-1)} P} \\
& \quad-\sum_{m=1}^{\beta-1} \sum_{l=1}^{\delta-1}\left(\Omega^{(\beta-m, \delta-1)} P V_{r e s} \Omega^{(m-1, l)} P-\Omega^{(\beta-m, \delta-l)} P V_{i n t} \Omega^{(m, l-1)} P\right)
\end{aligned}
$$

All-order in $V_{\text {res }}$; one-order in $V_{\text {int }}$

$$
\text { For: } \quad H=H_{0}+\lambda_{1} V_{r e s}+\lambda_{2} V_{i n t}
$$

Wave functions can be approximated as

$$
\begin{aligned}
& \left|\Psi^{(0)}\right\rangle=\left|\Phi_{0}^{(0,0)}\right\rangle+\lambda_{1}\left|\Phi_{0}^{(1,0)}\right\rangle+\lambda_{1}^{2}\left|\Phi_{0}^{(2,0)}\right\rangle+\cdots+\lambda_{1}^{\infty}\left|\Phi_{0}^{(\infty, 0)}\right\rangle \\
& \left|\Psi^{(1)}\right\rangle=\left|\Phi_{0}^{(0,1)}\right\rangle+\lambda_{1}\left|\Phi_{0}^{(1,1)}\right\rangle+\lambda_{1}^{2}\left|\Phi_{0}^{(2,1)}\right\rangle+\cdots+\lambda_{1}^{\infty}\left|\Phi_{0}^{(\infty, 1)}\right\rangle
\end{aligned}
$$

Energies are obtained by

$$
\begin{aligned}
& \left|E^{(0)}\right\rangle=\left|E_{0}^{(0,0)}\right\rangle+\lambda_{1}\left|E_{0}^{(1,0)}\right\rangle+\lambda_{1}^{2}\left|E_{0}^{(2,0)}\right\rangle+\cdots+\lambda_{1}^{\infty}\left|E_{0}^{(\infty, 0)}\right\rangle \\
& \left|E^{(1)}\right\rangle=\left|E_{0}^{(0,1)}\right\rangle+\lambda_{1}\left|E_{0}^{(1,1)}\right\rangle+\lambda_{1}^{2}\left|E_{0}^{(2,1)}\right\rangle+\cdots+\lambda_{1}^{\infty}\left|E_{0}^{(\infty, 1)}\right\rangle
\end{aligned}
$$

All-order many-body methods

Configuration interaction (CI) method:

$$
\begin{aligned}
& \left|\Psi_{n}^{(0)}\right\rangle=C_{0}^{(\infty)}\left|\Phi_{n}^{(0)}\right\rangle+C_{I}^{(\infty)}\left|\Phi_{I}^{(0)}\right\rangle+C_{I I}^{(\infty)}\left|\Phi_{I I}^{(0)}\right\rangle+\cdots \\
& \left|\Psi_{n}^{(1)}\right\rangle=C_{0}^{(\infty, 1)}\left|\Phi_{n}^{(0)}\right\rangle+C_{I}^{(\infty, 1)}\left|\Phi_{I}^{(0)}\right\rangle+C_{I I}^{(\infty, 1)}\left|\Phi_{I I}^{(0)}\right\rangle+\cdots
\end{aligned}
$$

Coupled-cluster (CC) method:

$$
\begin{aligned}
\left|\Psi_{n}^{(0)}\right\rangle & =\left[1+T_{l}^{(0)}+T_{I I}^{(0)}+\frac{1}{2} T_{I}^{(0)^{2}}+\cdots\right]\left|\Phi_{n}^{(0)}\right\rangle=e^{\left[T_{I}^{(0)}+T_{I I}^{(0)}+\cdots\right]}\left|\Phi_{n}^{(0)}\right\rangle \\
& =e^{T^{(0)}}\left|\Phi_{n}^{(0)}\right\rangle \\
T & \rightarrow T^{(0)}+\lambda T^{(1)} \quad \Rightarrow\left|\Psi_{n}^{(1)}\right\rangle=e^{T^{(0)}}\left(1+T^{(1)}\right)\left|\Phi_{n}^{(0)}\right\rangle
\end{aligned}
$$

Random phase approximation (RPA):

$$
\left|\Psi_{\mathrm{n}}^{(0)}\right\rangle \rightarrow\left|\Phi_{0}^{(0)}\right\rangle \quad \text { and } \quad\left|\Psi_{\mathrm{n}}^{(1)}\right\rangle \rightarrow \Omega_{I, C P}^{(\infty, 1)}\left|\Phi_{n}^{(0)}\right\rangle=\Omega_{R P A}^{(1)}\left|\Phi_{0}\right\rangle
$$

Approximated Cl vs. CC methods

Configuration interaction (CI) method:

$$
\left|\Psi_{n}\right\rangle=C_{0}\left|\Phi_{n}\right\rangle+C_{I}\left|\Phi_{I}\right\rangle+C_{I I}\left|\Phi_{I I}\right\rangle+\cdots+C_{N}\left|\Phi_{N}\right\rangle
$$

Coupled-cluster (CC) method:

$$
\left|\Psi_{n}\right\rangle=e^{T_{I}+T_{I I}+\cdots+T_{N}}\left|\Phi_{n}\right\rangle=e^{T}\left|\Phi_{n}\right\rangle
$$

Comparison between both:

$$
\begin{array}{ll}
C_{0} \rightarrow 1 & C_{2} \rightarrow T_{2}+\frac{1}{2} T_{1}^{2} \\
C_{1} \rightarrow T_{1} & C_{3} \rightarrow T_{3}+T_{1} T_{2}+\frac{1}{3!} T_{1}^{3}
\end{array}
$$

Due to exponential ansatz, CCSD captures more correlation effects than CISD approximation.

Size-extensivity problem with truncated Cl

$$
\Rightarrow \Delta E=E_{0}-E_{0}^{(0)}=\frac{\left.x-c_{0}^{0}\right)}{2} \pm \sqrt{\left(\frac{x-c_{0}^{0}}{2}\right)^{2}+N|y|^{2}} \quad \text { For } N \rightarrow \infty, \Delta E \propto|y|^{2} \sqrt{N}
$$

$$
\begin{aligned}
& \left|\Psi_{0}\right\rangle=C_{0}\left|\Phi_{0}\right\rangle+C_{I}\left|\Phi_{I}\right\rangle+C_{I I}\left|\Phi_{I I}\right\rangle+\cdots \\
& H_{0}\left|\Phi_{0}\right\rangle=E_{0}^{(0)}\left|\Phi_{0}\right\rangle \\
& H_{0}\left|\Phi_{K}\right\rangle=E_{K}^{(0)}\left|\Phi_{K}\right\rangle \\
& \Rightarrow E_{K}^{(0)}=E_{0}^{(0)}+x-\epsilon_{0}^{(0)} \\
& \left\langle\phi_{0}\right| h\left|\phi_{0}\right\rangle=\epsilon_{0}^{(0)} \\
& \left\langle\boldsymbol{\phi}_{0}\right| \boldsymbol{h}\left|\boldsymbol{\phi}_{k}\right\rangle=\boldsymbol{y} \\
& \left\langle\phi_{k}\right| \boldsymbol{h}\left|\phi_{k}\right\rangle=x \\
& \sum_{k}\left\langle\Phi_{K}\right|\left[H\left|\Psi_{0}\right\rangle=E\left|\Psi_{0}\right\rangle\right] \\
& {\left[\begin{array}{cccc}
E_{\mathbf{E}_{0}^{(0)}} & y & \cdots & y \\
y^{*} & E_{0}^{(0)}+x-\epsilon_{0}^{(0)} & \cdots & 0 \\
\vdots & \ddots & \vdots & \vdots
\end{array}\right]\left(\begin{array}{c}
c_{0} \\
c_{I} \\
\vdots
\end{array}\right)=E_{0}\left(\begin{array}{c}
C_{0} \\
C_{I} \\
\vdots
\end{array}\right)}
\end{aligned}
$$

$\mathrm{Cl}+\mathrm{MBPT}$ method

Valency of elements

Examples of electrovalency
Valency of magnesium
Interacts very strongly

Inert configuration

The afomic number of magnesium is $\mathbf{1 2}$. The electronic configuration is $\mathbf{2 , 8 , 2}$.

Energy and wave function in (R)CC theory

$$
\begin{aligned}
& \text { Energy expression: } E_{n}=\langle H\rangle=\frac{\left\langle\Psi_{n}\right| H\left|\Psi_{n}\right\rangle}{\left\langle\Psi_{n} \mid \Psi_{n}\right\rangle} \\
& \begin{aligned}
E_{n} & =\frac{\left\langle\Phi_{n}\right| e^{T_{n}^{+}} H e^{T_{n}}\left|\Phi_{n}\right\rangle}{\left\langle\Phi_{n}\right| e^{T_{n}^{+}} e^{T_{n}}\left|\Phi_{n}\right\rangle}=\frac{\left\langle\Phi_{n}\right| e^{T_{n}^{+}} e^{T_{n}} e^{-T_{n}} H e^{T_{n}}\left|\Phi_{n}\right\rangle}{\left\langle\Phi_{n}\right| e^{T_{n}^{+}} e^{T_{n}}\left|\Phi_{n}\right\rangle} \\
& =\frac{\Sigma_{K}\left|\Phi_{n}\right| e^{T_{n}^{+}} e^{T_{n}}\left|\Phi_{K}\right\rangle\left\langle\Phi_{K}\right| e^{-T_{n}} H e^{T_{n}}\left|\Phi_{n}\right\rangle}{\left\langle\Phi_{n}\right| e^{T_{n}^{+}} e^{T_{n}}\left|\Phi_{n}\right\rangle} \\
& =\left\langle\Phi_{n}\right| e^{-T_{n}} H e^{T_{n}}\left|\Phi_{n}\right\rangle=\left\langle\Phi_{n}\right|\left(H e^{T_{n}}\right)_{c}\left|\Phi_{n}\right\rangle
\end{aligned}
\end{aligned}
$$

Excitation amplitudes: $\quad\left\langle\Phi_{K}\right|\left(H e^{T_{n}}\right)_{c}\left|\Phi_{n}\right\rangle=0$

It gets naturally terminated. Its appears in the form $\mathbf{A} * \mathbf{X}=\mathbf{B}$; Jacobi iterative method is used.

Expectation value evaluation in (R)CC theory

Property: $\langle 0\rangle=\frac{\left\langle\Psi_{n}\right| O\left|\Psi_{n}\right\rangle}{\left\langle\Psi_{n} \mid \Psi_{n}\right\rangle}=\frac{\left\langle\Phi_{n}\right| e^{T_{n}^{+}} 0 e^{T_{n}}\left|\Phi_{n}\right\rangle}{\left\langle\Phi_{n}\right| e^{T_{n}^{+t}} e^{T_{n}}\left|\Phi_{n}\right\rangle}$

- Possesses two non-terminating series.
- Unmanageable with two-body operators like SMS operator.
- It does not satisfy the Hellmann-Feynman theorem.
- But any property can be evaluated.

Hellmann-Feynman Theorem:

$$
\begin{gathered}
\frac{\partial E_{\lambda}}{\partial \lambda}=E_{\lambda} \frac{\partial}{\partial \lambda}\left\langle\Psi_{\lambda} \mid \Psi_{\lambda}\right\rangle+\left\langle\Psi_{\lambda}\right| \frac{\partial H_{\lambda}}{\partial \lambda}\left|\Psi_{\lambda}\right\rangle=\left\langle\Psi_{\lambda}\right| \frac{\partial H_{\lambda}}{\partial \lambda}\left|\Psi_{\lambda}\right\rangle \\
\Rightarrow \frac{\partial}{\partial \lambda}\left\langle\Psi_{\lambda} \mid \Psi_{\lambda}\right\rangle=0 \quad \text { and } \quad\langle 0\rangle \equiv E^{(1)} \leftrightarrow H=H_{a t}+\lambda 0 \\
\Rightarrow \text { Energy and property evaluating diagrams should be same. }
\end{gathered}
$$

Finite-field (FF) approach

New Hamiltonian: $H_{\lambda}=H_{a t}+\lambda 0$

$$
\begin{aligned}
& E_{\lambda}=E_{a t}^{(0)}+\lambda E_{a t}^{(1)}+\lambda^{2} E_{a t}^{(2)}+\cdots \\
& \left.\langle 0\rangle \equiv E_{a t}^{(1)} \approx \frac{\partial E_{\lambda}}{\partial \lambda}\right|_{\lambda \rightarrow 0} \quad\binom{\text { Note: } \lambda^{2} \text { terms }}{\text { may not be small. }}
\end{aligned}
$$

- All the terms get naturally terminated.
- Not much additional computational costs required.
- Satisfies the Hellmann-Feynman theorem.
- Properties described by scalar operators can only be evaluated.
- Neglects $\mathfrak{D}\left(\lambda^{2}\right)$ contributions, which may not be small.
- Choice of λ depends on properties of interest ($F, K^{N M S}$, and $K^{S M S}$ cannot be calculated accurately by considering same λ).

Normal or Extended (R)CC method

In NCC: $\left|\Psi_{n}\right\rangle=e^{T_{n}}\left|\Phi_{n}\right\rangle$ and $\left\langle\widetilde{\Psi}_{n}\right|=\left\langle\Phi_{n}\right|\left(1+\widetilde{T}_{n}\right) e^{-T_{n}}$ In ECC: $\left|\Psi_{n}\right\rangle=e^{T_{n}}\left|\Phi_{n}\right\rangle$ and $\left\langle\widetilde{\Psi}_{n}\right|=\left\langle\Phi_{n}\right| e^{\tilde{T}_{n}} e^{-T_{n}}$ where \widetilde{T}_{n} is a de-excitation operator similar to T_{n}^{+}.

This follows: $\quad\left\langle\widetilde{\Psi}_{n} \mid \Psi_{n}\right\rangle=\left\langle\Phi_{n}\right| e^{\widetilde{T}_{n}} e^{-T_{n}} e^{T_{n}}\left|\Phi_{n}\right\rangle=1$.
It means $\left\langle\widetilde{\Psi}_{n}\right|=\frac{\left\langle\Psi_{n}\right|}{\left\langle\Psi_{n} \mid \Psi_{n}\right\rangle}=\frac{\left\langle\Phi_{n}\right| e^{T_{n}^{+}}}{\left\langle\Phi_{n}\right| e^{T_{n}^{+}} e^{T_{n}}\left|\Phi_{n}\right\rangle}$

$$
\Rightarrow\left\langle\Phi_{n}\right| e^{\tilde{T}_{n}}=\frac{\left\langle\Phi_{n}\right| e^{T_{n}^{+}} e^{T_{n}}}{\left\langle\Phi_{n}\right| e^{T_{n}^{+}} e^{T_{n}}\left|\Phi_{n}\right\rangle}
$$

It implies T_{n} and \widetilde{T}_{n} are dependent, but they are treated as independent (variational) parameters in the (R)NCCM.

Energy and property calculations

Energy: $H\left|\Psi_{n}\right\rangle=E_{n}\left|\Psi_{n}\right\rangle$ and $\left\langle\widetilde{\Psi}_{n}\right| H=\left\langle\Phi_{n}\right| E_{n}$

$$
E_{n}=\left\langle\widetilde{\Psi}_{n}\right| H\left|\Psi_{n}\right\rangle=\left\langle\Phi_{n}\right|\left(H e^{T_{n}}\right)_{c}\left|\Phi_{n}\right\rangle+\left\langle\Phi_{n}\right| e^{\tilde{T}_{n}}\left(H e^{\left.\right|_{n}}\right)_{c}\left|\Phi_{n}\right\rangle
$$

Amplitude: $\left\langle\Phi_{n}\right| e^{\tilde{T}_{n}}\left(H e^{T_{n}}\right)_{c}\left|\Phi_{K}\right\rangle=-\left\langle\Phi_{n}\right| e^{\tilde{T}_{n}}\left(H e^{T_{n}}\right)_{c}\left|\Phi_{K}\right\rangle$
Property:

$$
\langle O\rangle=\left\langle\widetilde{\Psi}_{n}\right| O\left|\Psi_{n}\right\rangle=\left\langle\Phi_{n}\right|\left(O e^{T_{n}}\right)_{c}\left|\Phi_{n}\right\rangle+\left\langle\Phi_{n}\right| e^{\tilde{T}_{n}}\left(O e^{T_{n}}\right)_{c}\left|\Phi_{n}\right\rangle
$$

- All the terms get naturally terminated.
- Satisfies the Hellmann-Feynman theorem.
- Any properties can be evaluated.
- Additional operators are introduced; computationally expensive.

Analytic Response (R)CC method

In the AR RCC method, we express

$$
H_{\lambda}=H_{a t}+\lambda O \quad \text { and } \quad\left|\Psi_{n}\right\rangle \simeq\left|\Psi_{n}^{(0)}\right\rangle+\lambda\left|\Psi_{n}^{(1)}\right\rangle
$$

First-order eqn.: $\left(H_{a t}-E_{n}^{(0)}\right)\left|\Psi_{n}^{(1)}\right\rangle=\left(E_{n}^{(1)}-0\right)\left|\Psi_{n}^{(0)}\right\rangle$

$$
\begin{aligned}
\left|\Psi_{n}\right\rangle & =e^{T}\left|\Phi_{n}\right\rangle=e^{T_{n}^{(0)}+\lambda T_{n}^{(1)}}\left|\Phi_{n}\right\rangle \\
\Rightarrow\left|\Psi_{n}^{(0)}\right\rangle & =e^{T_{n}^{(0)}}\left|\Phi_{n}\right\rangle \\
\text { and }\left|\Psi_{n}^{(1)}\right\rangle & =e^{T_{n}^{(0)}}\left(1+T_{n}^{(1)}\right)\left|\Phi_{n}\right\rangle
\end{aligned}
$$

It yields that:

$$
\langle 0\rangle \equiv E_{n}^{(1)}=\left\langle\Phi_{n}\right|\left(H_{a t} e^{T_{n}^{(0)}} T_{n}^{(1)}\right)_{c}+\left(O e^{T_{n}^{(0)}}\right)_{c}\left|\Phi_{n}\right\rangle
$$

Advantages of AR RCC method

- All the terms are terminated.
- It satisfies the Hellmann-Feynman theorem (as it is derived from energy expression).
- Any properties can be evaluated.
- Free from choice of any perturbative parameter.
- Computational efforts are less than NCC method.

First development in atomic physics!

Equation-of-motion CC method

Ground state:

$$
\left|\Psi_{0}\right\rangle=e^{T}\left|\Phi_{0}\right\rangle
$$

Excited state with definite J and π :

$$
\begin{aligned}
\left|\Psi_{K}(J, \pi)\right\rangle & =R_{K}(J, \pi)\left|\Psi_{0}\right\rangle \\
& =R_{K}(J, \pi) e^{T}\left|\Phi_{0}\right\rangle
\end{aligned}
$$

Here $\boldsymbol{R}_{\boldsymbol{K}}(\boldsymbol{J}, \boldsymbol{\pi})=r_{0}+\boldsymbol{R}_{\mathbf{1}}(J, \boldsymbol{\pi})+\boldsymbol{R}_{\mathbf{2}}(J, \boldsymbol{\pi})+\cdots$
Equation of motion: $\quad H\left|\Psi_{K}(J, \pi)\right\rangle=E_{K}\left|\Psi_{K}(J, \pi)\right\rangle$

$$
\Rightarrow\left(H e^{T}\right)_{c} R_{K}(J, \pi)\left|\Phi_{0}\right\rangle=\left(E_{K}-E_{0}\right) R_{K}(J, \pi)\left|\Phi_{0}\right\rangle
$$

And, $\left\langle\widetilde{\Psi}_{K}(J, \pi)\right|=\left\langle\widetilde{\Psi_{0}}\right| L_{K}(J, \pi)$ with $L_{K}(J, \pi)=l_{0}+L_{1}(J, \pi)+\cdots$
Amplitude solving equations for R_{K} (similar for L_{K}):

$$
\left[\left(\begin{array}{ll}
P\left(H e^{T}\right)_{c} P & P\left(H e^{T}\right)_{c} Q \\
Q\left(H e^{T}\right)_{c} P & Q\left(H e^{T}\right)_{c} Q
\end{array}\right)\binom{r_{0} P}{Q R_{K} P}\right]_{c}=\Delta E_{K}\binom{r_{0} P}{Q R_{K} P} .
$$

Probing Lorentz symmetry violation

Lorentz symmetry: Measurements are independent of frame of references moving with constant velocity (inertial frame). Lorentz invariance and Einstein equivalence principle are the foundations of the general relativity theory.

Modern theories that are attempting to unify gravity with the standard model (SM) assert that Lorentz symmetry is valid only at large length scales and may violate at short length scales due to physics beyond SM.
(a) Lorentz violation: electron sector

> (b) Lorentz violation: photon sector

Experiment in Ca^{+}

Michelson-Morley type experiment in an atomic system with electron-nucleus bonds as interferometer arms and lights (photon clouds) as reference. [Nature 517, 592 (2015)]

By changing the direction of magnetic field with respect to the Sun, interference between the $m_{j}=$ $\pm 1 / 2$ and $m_{j}= \pm 5 / 2$ levels of $3 d_{5 / 2}$ state in Ca^{+}were created. $H_{i n t}^{L n z}=-\frac{p^{2}}{2}\left(C_{0}^{(0)}-\frac{2 U}{3 c^{2}} c_{00}\right)-\frac{1}{6} C_{0}^{(2)} T_{0}^{(2)}$ Here U is the Newtonian gravitational potential, $c_{0}^{(0 / 2)}$ and c_{00} are Lorentz symmetry violating parameters respectively and $T_{0}^{(2)}=p^{2}-3 p_{z}^{2}$.

Roles of atomic calculations

Michelson-Morley analogue for electrons using trapped ions to test Lorentz symmetry

T. Pruttivarasin ${ }^{1,2}$, M. Ramm ${ }^{1}$, S. G. Porsev ${ }^{3,4}$, I. I. Tupitsyn ${ }^{5}$, M. S. Safronova ${ }^{3,6}$, M. A. Hohensee ${ }^{1,7}$ \& H. Häffner ${ }^{1}$ Extended Data Table $1 \mid$ Lowest-order DF, DF +RPA, CI + SD and all-order results for the $\left(3 d^{2} D_{j}\left|p^{2}\right| 3 d^{2} D_{j}\right\rangle$ and $\left\langle 3 d^{2} D_{j}\right|\left|T^{(2)}\right|\left|3 d^{2} D_{j}\right\rangle$ matrix elements in Ca^{+}in atomic units

Matrix element	DF(FC)	DF	RPA	Cl+SD	All-order	VT	Final		
$\left\langle 3 d^{2} \mathrm{D}_{3 / 2}\right\| p^{2}\left\|3 d^{2} \mathrm{D}_{3 / 2}\right\rangle$	3.05	0.67	0.66	0.73	0.83	0.748	$0.75(9)$		
$\left\langle 3 d^{2} \mathrm{D}_{5 / 2}\right\| p^{2}\left\|3 d^{2} \mathrm{D}_{5 / 2}\right\rangle$	3.04	0.66	0.66	0.73	0.83	0.748	$0.75(9)$		
$\left\langle 3 d^{2} \mathrm{D}_{3 / 2}\left\\|T^{(2)}\right\\| \mid d^{2} \mathrm{D}_{3 / 2}\right\rangle$	5.45	6.22	5.72	6.89	7.09		$7.09(12)$		
$\left\langle 3 d^{2} \mathrm{D}_{5 / 2}\right\|\left\|T^{(2)} \\| 3 d^{2} \mathrm{D}_{5 / 2}\right\rangle$	7.12	8.11	7.47	8.98	9.25	$9.25(15)$			

With linear terms from RCC method.

Expectation values using RCC methods

PHYSICAL REVIEW A 99, 050501(R) (2019)

Rapid Communications

High-precision determination of Lorentz-symmetry-violating parameters in $\mathbf{C a}^{+}$

B. K. Sahoo*

Atomic, Molecular and Optical Physics Division, Physical Research Laboratory, Navrangpura, Ahmedabad-380009, India

Method	$\left\langle\left\\|p^{2}\right\\|\right\rangle$		$\left\langle\left\\|T^{(2)}\right\\|\right\rangle$		Reference
	$3 D_{3 / 2}$	$3 D_{5 / 2}$	$3 D_{3 / 2}$	$3 D_{5 / 2}$	
DHF	3.050	3.039	5.454	7.116	This work [12]
	3.05	3.04	5.45	7.12	
RMBPT(2)	1.279	0.794	7.052	9.092	This work
RPA	0.66	0.66	5.72	7.47	[12]
$C I+S D$	0.73	0.73	6.89	8.98	[12]
RLCCSD	-0.037	-0.887	7.551	9.682	This work
All-order	0.83	0.83	7.09	9.25	[12]
RCCSD ${ }^{2}$	0.421	-0.298	7.295	9.375	This work
RCCSD	0.392	-0.311	6.956	8.878	This work
RCCSD(T)	0.389	-0.318	6.975	8.901	This work
RCCSDPT	0.244	-0.412	6.965	8.875	This work
RCCSDTv	0.065	-0.630	6.953	8.867	This work
RCCSDT	0.011	-0.787	6.961	8.879	This work
Relativistic corrections					
+Breit	0.012	-0.786	6.966	8.889	This work
+QED	0.012	-0.786	6.967	8.890	This work
Final	$\begin{aligned} & \text { Unsure } \\ & 0.75(9) \end{aligned}$	Unsure $0.75(9)$	$\begin{aligned} & 6.97(5) \\ & 7.09(12) \end{aligned}$	$\begin{aligned} & 8.89(7) \\ & 9.25(15) \end{aligned}$	This work [12]
VT	0.748	0.748			[22]

FF vs. AR approaches

	FF approach			AG approach	
Method	$3 D_{3 / 2}$	$3 D_{5 / 2}$		$3 D_{3 / 2}$	

$$
\begin{aligned}
& \delta E_{3 D_{3 / 2}}=\left[-2.17(2) \Gamma_{L}+\left(2.13(2)-1.71(1) M_{J}^{2}\right) C_{0}^{(2)}\right], \quad \text { with } \Gamma_{L}=C_{0}^{(0)}-\frac{2 U}{3 c^{2}} c_{00} \\
& \delta E_{3 D_{5 / 2}}=\left[-2.17(2) \Gamma_{L}+\left(2.08(2)-0.713(6) M_{J}^{2}\right) C_{0}^{(2)}\right], \\
& \delta E_{3 D_{5 / 2}}\left(M_{J}=5 / 2\right)-\delta E_{3 D_{5 / 2}}\left(M_{J}=1 / 2\right)
\end{aligned}
$$

$$
=-4.28(4) C_{0}^{(2)} \times 10^{15} \mathrm{~Hz}
$$

Combining with experimental result:

$$
C_{0}^{(2)} \simeq 2.6 \times 10^{-18}
$$

Different components of Isotope Shift

Isotope shift (IS) of a state in an atom:

$$
\delta E_{i}^{A A^{\prime}}=F_{i} \delta\left\langle r_{N}^{2}\right\rangle_{A A^{\prime}}+\left(K_{i}^{N M S}+K_{i}^{S M S}\right) \frac{\left(M_{A^{\prime}}-M_{A^{\prime}}\right)}{\left.M_{A} M_{A}\right)}
$$

F_{i} is the field-shift constant; $\delta\left\langle r_{N}^{2}\right\rangle$ is the change in nuclear radii. $K_{i}^{\text {NMS }}$ and $K_{i}^{S M S}$ are the normal and specific mass-shift constants.

$$
\begin{aligned}
& F_{i}=\left(\frac{\delta V_{n u c}(r)}{\delta\left\langle r_{N}^{2}\right\rangle}\right) \\
& K_{i}^{N M S}=\frac{1}{2}\left\langle p^{2}-\frac{\alpha_{e} Z}{r}\left(\alpha \cdot p+\left(\alpha \cdot c^{1}\right)^{2}\right)\right. \\
& K_{i}^{S M S}=\frac{1}{2}\left(\sum_{k l} p_{k} \cdot p_{l}-\frac{\alpha_{e} Z}{r_{k}}\left(\alpha_{k} \cdot p_{l}+\left(\alpha_{k} \cdot c_{k}^{1}\right)\left(\alpha_{l} \cdot c_{l}^{1}\right)\right)\right.
\end{aligned}
$$

Another approach for Field shift constant

Energy of an atomic state: $E_{n}^{A}\left(R_{N}\right)=\left\langle\Psi_{n}\right| H\left(R_{N}\right)\left|\Psi_{n}\right\rangle$

Hamiltonian: $\boldsymbol{H}\left(\boldsymbol{R}_{N}\right)=\sum_{i}\left[\boldsymbol{K} \cdot \boldsymbol{E} \cdot+\boldsymbol{V}_{N}\left(\boldsymbol{r}_{i}, \boldsymbol{R}_{N}\right)\right]+\frac{1}{2} \sum_{i, j} \frac{1}{\left|\vec{r}_{i}-\vec{r}_{j}\right|}$

$$
R_{N} \equiv f\left(\left\langle\delta r_{N}^{2}\right\rangle\right) \Rightarrow E_{n}^{A^{\prime}}\left(R_{N}+\delta R_{N}\right)-E_{n}^{A}\left(R_{N}\right)=g\left(\left\langle\delta r_{N}^{2}\right\rangle^{A A^{\prime}}\right)
$$

Thus,

$$
E_{n}^{A A^{\prime}}\left(R_{N}+\delta R_{N}\right)=E_{n}^{A A^{\prime}}\left(R_{N}\right)+F_{n}\left\langle\delta r_{N}^{2}\right\rangle^{A A^{\prime}}+\supseteq\left(\left\langle\delta r_{N}^{2}\right\rangle^{A A^{\prime}}\right)^{2}
$$

CCSD results of indium atom

Sahoo et al, under review.

$\boldsymbol{\alpha}_{0}^{d}$ value of Cd atom Sahoo \& Yu, PRA 98, 012513 (2018)

Method

DHF
MBPT(2)
MBPT(3)
MBPT(4)
RPA
PRCC
CCSD
NCCSD
$\operatorname{CCSD}(\mathrm{T})$
NCCSD(T) CCSDT
CCSDTQ

Recommended Experiment

Our work
Finite-Field Perturb.
63.657
37.288
48.073
45.494
44.804
46.289
45.603
45.852
46.015
63.685

Others
Finite-Field
Perturb.
62.78; 63.37
49.647
39.14; 38.52
45.97; 4.5 .86
35.728
45.06; 47.10

48.073		48.43; 48.09	49.24
	45.494		44.63
	44.804		45.898
	46.289	46.80; 46.25	
	45.603		

44.63
45.898
4.6.02(50)
49.65(1.65)

Nuclear EDM due to pion exchange
$H_{\text {int }}(r)=e \vec{r} \cdot\left[\int_{0}^{\infty} d^{3} r^{\prime}\left(\frac{\left\langle\vec{r}^{\prime}\right\rangle}{Z r^{3}}-\frac{\overrightarrow{r^{\prime}}}{r^{3}}+\frac{\overrightarrow{r^{\prime}}}{\vec{r}^{\prime} / 3}\right) \rho_{n}\left(r^{\prime}\right)\right]=\frac{\vec{s} \cdot \vec{r}}{B} \rho_{n}(r)$
$S=g_{\pi N N}\left[a_{0} \bar{g}_{\pi N N}^{(0)}+a_{1} \bar{g}_{\pi N N}^{(1)}+a_{2} \bar{g}_{\pi N N}^{(2)}\right]$

$$
\approx\left[b_{1} d_{n}+b_{2} d_{p}\right]
$$

where parity conserving parameter $g_{\pi N N} \approx 13.5$ and $a_{0}, a_{1}, a_{2}, b_{1}$ and b_{2} are determined using Skyrme interactions.

$$
\begin{aligned}
& \bar{g}_{\pi N N}^{(1)}=2 \times 10^{-12}\left(\tilde{d}_{u}-\tilde{d}_{d}\right) \\
& \bar{g}_{\pi N N}^{(0)} \approx-0.018(7) \bar{\theta} \approx-1.02\left(\tilde{d}_{u}+\tilde{d}_{d}\right)
\end{aligned}
$$

Tensor-pseudotensor (T-PT) interaction in atoms

$$
\begin{aligned}
H_{B D M}^{e-N}(r) & =\frac{i G_{F}}{\sqrt{2}} \sum_{e, N} C_{T}^{e-N}\left[\Psi_{N}\left(r^{\prime}\right) \sigma_{\mu \nu} \Psi_{N}\left(r^{\prime}\right)\right] \mathrm{V}_{\chi}\left(r^{\prime}, r^{\prime}\right)\left[\bar{\Psi}_{e}(r) \gamma^{5} \Psi_{e}(r)\right] \\
= & \sqrt{2} i G_{F} C_{T} \sum_{e} \rho_{N}^{\chi}\left(r_{e}\right) \vec{I}_{N} \cdot \vec{\gamma}_{e}
\end{aligned}
$$

$$
V_{\chi}\left(r, r^{\prime}\right)=\frac{e^{-m_{\chi} c\left|r-r^{\prime}\right|}}{4 \pi\left|r-r^{\prime}\right|}
$$

Results for ${ }^{199} \mathrm{Hg}$ EDM

Method	$R^{\text {T-PT }}$	$\boldsymbol{R}^{\text {NSM }}$	α_{0}^{d}
DHF	-2.39	-1.20	40.95
MBPT(2)	-4.48	-2.30	34.18
MBPT(3)	-3.33	-1.72	22.98
RPA	-5.89	-2.94	44.98
CI+MBPT	-5.1	-2.6	32.99
MCDF	-4.84	-2.22	
PRCC	-4.3	-2.46	33.29
LCCSD	-4.52	-2.34	33.91
CCSD $^{(2)}$	-3.82	-2.00	33.76
CCSD $^{(4)}$	-4.14	-2.05	35.13
CCSD $^{(5)}$	-4.02	-2.00	34.98
CCSD $^{(\infty)}$	-3.17	-1.76	34.51
NCCSD $^{\text {Experiment }}$	-3.30	-1.77	34.22
			$33.91(344)$

Sahoo and Das, Phys. Rev. Letts. 120, 203001 (2018).

Limits on T-violating quantities

$$
\begin{gathered}
D \operatorname{Expt}\left({ }^{199} \mathrm{Hg}\right)=\left(2.20 \pm 2.75_{\text {stat }} \pm 1.48_{\text {syst }}\right) \times 10^{-30} e-\mathrm{cm} \\
\left|D\left({ }^{199} \mathrm{Hg}\right)\right|<7.4 \times 10^{-30} \text { e cm }(95 \% \text { C.L. })
\end{gathered}
$$

B. Graner, Y. Chen, E. G. Lindahl and B. R. Heckel, Phys. Rev. Lett. 116, 161601 (2016).

Nuclear calculations:

$$
\begin{aligned}
& \mathbf{S}=\mathbf{1 3 . 5}\left[\mathbf{0 . 0 1} \bar{g}_{\pi N N}^{(\mathbf{0})} \pm \mathbf{0 . 0 2} \bar{g}_{\pi N N}^{(1)}+\mathbf{0 . 0 2} \bar{g}_{\pi N N}^{(2)}\right]|e| f m^{3} \\
& \mathbf{S}=\left[1.9 d_{n}+\mathbf{0 . 2} d_{p}\right] \quad \text { Prog. Part. Nuc. Phys, 71, } 21 \text { (2013). }
\end{aligned}
$$

Atomic Expt+Theory

$$
\begin{aligned}
& d_{n}<3.0 \times 10^{-27} e-c m \\
& d_{p}<2.1 \times 10^{-26} e-c m \\
& \left|\tilde{d}_{u}-\tilde{d}_{d}\right|<2.7 \times 10^{-27} e-c m \\
& |\theta|<1.1 \times 10^{-10}
\end{aligned}
$$

Standard Model (SM)

$$
\begin{aligned}
& d_{n} \sim 10^{-32} e-c m \\
& d_{p} \sim 10^{-32} e-c m \\
& d_{u}, d_{d} \sim 10^{-34} e-c m \\
& 0 \leq \bar{\theta} \leq 2 \pi
\end{aligned}
$$

Limit on mass of a dark matter candidate

B. K. Sahoo, Phys. Rev. D 95, 013002 (2017).

Conclusion and Outlook

Accurate relativistic many-body methods are necessary for studying fundamental physics.
We have developed FF, EVE, AR and Normal coupled-cluster methods to carry out isotope shift and EDM calculations.
RCC method in the AR approach is developed for Lorentz symmetry violation studies.
Nuclear charge radii of Indium isotopes are estimated, and compared with Sn and Cd isotopes.
Accurate limits on nuclear CP violating parameters are inferred.

- NCC method for open-shell systems.
- Equation-of-motion RCC method for two-valence systems.

Extended RCC method.

Acknowledgement

Collaborators

R. F. Garcia Ruiz Adam Vernon

Computational Facility

