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 To explain experimental results and understanding roles 

played by electron correlation effects 

Demands for Accurate Many-body Methods

 Inferring limits on CP violating parameters, finding out 

new bosons from istope shift calculations etc.

 Determining scattering cross-sections and to fathom 

plasma diagnostic processes

 Estimating systemstics for atomic clock experiments

 Probing Lorentz symmetry and Einstein’s equivalence 

principle violations

 Investigating nuclear anapole moment through parity non-

conservation (PNC) studies

 Providing atomic data for astrophysics, testing QED 

effects, inferring nuclear momenta etc. 



Outline

 General procedures to determine atomic wave functions

 Non-relativistic versus relativistic calculations

 RPA, CI and CC theories

 CI+MBPT hybrid method

 Expectation value determination using CC methods

(a) Finite-field approach

(b) Regular expectation value evaluation approach

(c) Normal coupled-cluster theory approach

(d) Analytic response CC theory approach

 Applications to Isotope Shift and EDM studies

 Summary



Hydrogen-like systems

Non-relativistic Hamiltonian:     𝒉 =
𝒑𝟐

𝟐𝒎𝒆
+ 𝑽𝑵(𝒓)

Schroedinger/Dirac equation:     𝒉|𝝍〉 = 𝜺 |𝝍〉

Relativistic Hamiltonian:  𝒉 = 𝒄 𝜶 ⋅ 𝒑 + 𝜷𝒎𝒆𝒄
𝟐 + 𝑽𝑵(𝒓)

Considering infinity nuclear mass:

Consequences:

• Exact analytical solutions are obtained. 

• Atomic states are described by n, J, π etc. quantum numbers.

• Purely spherical symmetric.



Coulomb interaction

• Mediated by photons (massless; long-range)

• Strength scales ~ Z 

• Gives atomic spectra (states n, J and π) 

• Nucleus has electric charge, (Ze)

Non-relativistic Hamiltonian:  

𝑯 =෍

𝒊

𝒑𝒊
𝟐

𝟐𝒎𝒆
+ 𝑽𝑵 𝒓𝒊 +

𝟏

𝟐
෍

𝒊,𝒋

𝟏

|𝒓𝒊 − 𝒓𝒋|

Relativistic Hamiltonian:  

𝑯 =෍

𝒊

𝒄 𝜶𝒊 ⋅ 𝒑𝒊 + 𝜷𝒊𝒎𝒆𝒄
𝟐 + 𝑽𝑵 𝒓𝒊

+
𝟏

𝟐
σ𝒊,𝒋

𝟏

|𝒓𝒊−𝒓𝒋|

Electromagnetic interactions in an atomic system
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Multi-electron atomic systems

Total Hamiltonian:   𝑯 = σ𝒊𝒉𝒊 +
𝟏

𝟐
σ𝒊,𝒋𝒈𝒊𝒋

Ψ =
1

𝑁!

|𝜓1(𝑟1〉 ⋯ |𝜓𝑁(𝑟1)〉
⋮ ⋱ ⋮

|𝜓1 𝑟𝑁 〉 ⋯ |𝜓𝑁 𝑟𝑁 〉
Net wave function:

Schroedinger/Dirac equation for single particle wave function:        

𝑯|𝚿〉 = 𝑬|𝚿〉 such that  𝑬 = σ𝒊 𝜺𝒊

⇒ 𝒉𝒊 𝝍𝒊 +
𝟏

𝟐
෍

𝒋

𝑵

𝝍𝒋 𝒈𝒊𝒋 𝝍𝒋 |𝝍𝒊〉 − 𝝍𝒋 𝒈𝒊𝒋 𝝍𝒊 |𝝍𝒋〉 = 𝜺𝒊 |𝝍𝒊〉

Thus, it cannot be solved exactly. 



Mean-field theory (DHF method)

𝑯 =෍

𝒊

𝒉𝒊 +
𝟏

𝟐
෍

𝒊,𝒋

𝒈𝒊𝒋 =෍

𝒊

𝒉𝒊 + 𝒖𝒊 +
𝟏

𝟐
෍

𝒊,𝒋

𝒈𝒊𝒋 −෍

𝒊

𝒖𝒊

⇒ 𝒉𝒊 𝝓𝒊
𝟎 +෍

𝒋

𝑵

𝝓𝒋
𝟎 𝒈𝒊𝒋 𝝓𝒋

𝟎 |𝝓𝒊
𝟎〉 − 𝝓𝒋

𝟎 𝒈𝒊𝒋 𝝓𝒊
𝟎 |𝝓𝒋

𝟎〉 = 𝜺𝒊
𝟎 |𝝓𝒊

𝟎〉

=෍

𝒊

𝒇𝒊 +
𝟏

𝟐
෍

𝒊,𝒋

𝒈𝒊𝒋 −෍

𝒊

𝒖𝒊 = 𝑯𝟎 + 𝑽𝒓𝒆𝒔

Mean-field theory:

𝑯𝟎|𝚽𝟎〉 = 𝑬𝟎|𝚽𝟎〉 such that  𝑬𝟎 = σ𝒊 𝜺𝒊
𝟎

In the (Dirac) Hartree – Fock approach (variational):  

𝜓𝑖 = 𝜙𝑖
0 + 𝛼|𝜕𝜙𝑖

0〉 and    𝜀𝑖 = 𝜀𝑖
0 + 𝛼 𝜕𝜀𝑖

0

𝚿(𝜶) → 𝚽𝟎 𝜶 = 𝟎 is obtained by  

𝝏𝑬(𝜶)

𝝏𝜶
=

𝝏〈𝚿 𝜶 𝑯 𝚿 𝜶 〉

𝝏𝜶
= 𝟎

⇒ 𝒇𝒊 𝝓𝒊 = 𝜺𝒊
𝟎 |𝝓𝒊〉

This follows:   𝑬𝟎 ≥ 𝑬



Atomic system: Spherical symmetry

Dirac wave function: 𝜙𝐷 𝑟 =
1

𝑟

𝑃𝑛𝜅(𝑟) Χ𝜅,𝑚(𝜃, 𝜙)

𝑖𝑄𝑛𝜅(𝑟) Χ−𝜅,𝑚(𝜃, 𝜙)

Hartree-Fock equation: 𝐹 𝐶 = 𝑆 𝐶 𝜀

Schroedinger wave function: 𝜙𝑠 𝑟 =
𝑅𝑛𝑙 𝑟

𝑟
Y𝑙,𝑚 𝜃, 𝜙 𝜎𝑠

𝑅𝑛𝑙 𝑟 = σ
𝑖=1
𝑁𝑙 𝑐𝑛𝑙

𝑖 𝜁𝑖 ⇒ 𝑁𝑙 × 𝑁𝑙 dimension matrix

𝑃𝑛𝜅 𝑟 = σ𝑖=1
𝑁𝜅 𝑐𝑛𝜅

𝑖,𝐿 𝜁𝑖
𝐿 and    𝑄𝑛𝜅 𝑟 = σ𝑖=1

𝑁𝜅 𝑐𝑛𝜅
𝑖,𝑆 𝜁𝑖

𝑆

⇒
𝐹𝐿𝐿 𝐹𝐿𝑆
𝐹𝑆𝐿 𝐹𝑆𝑆

𝐶𝑛𝜅
𝐿

𝐶𝑛𝜅
𝑆 =

𝑆𝐿𝐿 0
0 𝑆𝑆𝑆

𝐶𝑛𝜅
𝐿

𝐶𝑛𝜅
𝑆 𝜀

⇒ 2𝑁𝜅 × 2𝑁𝜅 dimension matrix



P

Q

Fock space of H0

Bloch’s prescription

According to the Bloch’s prescription, the 

Fock space is divided into model (P) and 

orthogonal (Q) space.  

In perturbation approach: 

𝛀 = 𝛀(𝟎) + 𝝀𝛀(𝟏) + 𝝀𝟐𝛀(𝟐) +⋯ = σ𝒏𝝀
𝒏𝛀 𝐧 with   𝛀(𝟎) = 𝟏

𝑬 = 𝑬(𝟎) + 𝝀𝑬(𝟏) + 𝝀𝟐𝑬(𝟐) +⋯ = σ𝒏𝝀
𝒏𝑬 𝐧

Energy equation:  𝑬(𝒏) = 𝑷𝑽𝒓𝒆𝒔 𝛀
(𝐧−𝟏)𝑷

𝑷 = ۧ|𝚽𝟎 |𝚽𝟎ۦ and    𝑸 = 𝟏 − 𝑷

𝚿 = 𝛀 | 𝚽𝟎〉

Amplitude solving equation:    

𝛀(𝒌), 𝑯𝟎 𝑷 = 𝑸𝑽 𝛀(𝒌−𝟏)𝑷 − σ𝒎=𝟏
(𝒌−𝒎)

𝑷𝑽𝒓𝒆𝒔 𝛀
(𝒌−𝟏) 𝑷

𝑯 = 𝑯𝟎 + 𝝀𝑽𝒓𝒆𝒔



In the presence of external perturbation

Amplitude equation:

𝛀 𝜷,𝜶 , 𝑯𝟎 𝑷 = 𝑸𝑽𝒓𝒆𝒔𝛀
(𝜷−𝟏,𝜹)𝑷+ 𝑸 𝑽𝒊𝒏𝒕𝛀

(𝜷,𝜹−𝟏)𝑷

− σ𝒎=𝟏
𝜷−𝟏 σ𝒍=𝟏

𝜹−𝟏 𝛀(𝜷−𝒎,𝜹−𝟏)𝑷𝑽𝒓𝒆𝒔𝛀
(𝒎−𝟏,𝒍)𝑷 − 𝛀 𝜷−𝒎,𝜹−𝒍 𝑷𝑽𝒊𝒏𝒕𝛀

(𝒎,𝒍−𝟏)𝑷

In this case:     𝑯 = 𝑯𝒂𝒕 + 𝝀𝟐𝑽𝒊𝒏𝒕 = 𝑯𝟎 + 𝝀𝟏𝑽𝒓𝒆𝒔 + 𝝀𝟐𝑽𝒊𝒏𝒕
It can be approximated as

𝚿 = 𝚿 𝟎 + 𝝀𝟐 𝚿
𝟏 + 𝝀𝟐

𝟐 𝚿 𝟐 +⋯

= 𝚽𝟎
𝟎,𝟎

+ 𝝀𝟏 𝚽𝟎
𝟏,𝟎

+ 𝝀𝟐 𝚽𝟎
𝟎,𝟏

+ 𝝀𝟏𝝀𝟐 𝚽𝟎
𝟏,𝟏

+⋯

𝑬 = 𝑬(𝟎) + 𝝀𝟐𝑬
(𝟏) + 𝝀𝟐

𝟐𝑬 𝟐 + ⋯

= 𝑬𝟎
(𝟎,𝟎)

+ 𝝀𝟏𝑬𝟎
(𝟏,𝟎)

+ 𝝀𝟐𝑬𝟎
𝟎,𝟏

+ 𝝀𝟏𝝀𝟐𝑬𝟎
𝟏,𝟏

+⋯

In perturbation:    

𝛀 = 𝛀(𝟎,𝟎) + 𝝀𝟏𝛀
(𝟏,𝟎) + 𝝀𝟐 𝛀

(𝟎,𝟏) + 𝝀𝟏𝝀𝟐𝛀
(𝟏,𝟏) +⋯ = σ𝒏,𝒎𝛀

𝐧,𝐦

with  𝛀(𝟎,𝟎) = 𝟏,     𝛀(𝟏,𝟎) = 𝑽𝒓𝒆𝒔 and 𝛀(𝟎,𝟏) = 𝑽𝒊𝒏𝒕



All-order in 𝑉𝑟𝑒𝑠; one-order in 𝑉𝑖𝑛𝑡

For:       𝑯 = 𝑯𝟎 + 𝝀𝟏𝑽𝒓𝒆𝒔 + 𝝀𝟐𝑽𝒊𝒏𝒕

Wave functions can be approximated as

𝚿 𝟎 = 𝚽𝟎
𝟎,𝟎

+ 𝝀𝟏 𝚽𝟎
𝟏,𝟎

+ 𝝀𝟏
𝟐 𝚽𝟎

𝟐,𝟎
+⋯+𝝀𝟏

∞ 𝚽𝟎
∞,𝟎

𝚿 𝟏 = 𝚽𝟎
𝟎,𝟏

+ 𝝀𝟏 𝚽𝟎
𝟏,𝟏

+ 𝝀𝟏
𝟐 𝚽𝟎

𝟐,𝟏
+⋯+𝝀𝟏

∞ 𝚽𝟎
∞,𝟏

Energies are obtained by

𝑬 𝟎 = 𝑬𝟎
𝟎,𝟎

+ 𝝀𝟏 𝑬𝟎
𝟏,𝟎

+ 𝝀𝟏
𝟐 𝑬𝟎

𝟐,𝟎
+⋯+𝝀𝟏

∞ 𝑬𝟎
∞,𝟎

𝑬 𝟏 = 𝑬𝟎
𝟎,𝟏

+ 𝝀𝟏 𝑬𝟎
𝟏,𝟏

+ 𝝀𝟏
𝟐 𝑬𝟎

𝟐,𝟏
+⋯+𝝀𝟏

∞ 𝑬𝟎
∞,𝟏



Ψn
(0)

→ |Φ0
(0)
〉

Random phase approximation (RPA):

and Ψn
(1)

→ Ω𝐼,𝐶𝑃
(∞,1)

Φ𝑛
(0)

= Ω𝑅𝑃𝐴
(1)

|Φ0〉

Configuration interaction (CI) method:

Ψ𝑛
0

= 𝐶0
(∞)

Φ𝑛
(0)

+ 𝐶𝐼
(∞)

Φ𝐼
(0)

+ 𝐶𝐼𝐼
(∞)

Φ𝐼𝐼
(0)

+ ⋯

Coupled-cluster (CC) method:

Ψ𝑛
0

= [1+𝑇𝐼
(0)

+ 𝑇𝐼𝐼
(0)

+
1

2
𝑇𝐼
(0)2

+⋯] Φ𝑛
0

= 𝑒[𝑇𝐼
0
+𝑇𝐼𝐼

0
+⋯ ] Φ𝑛

(0)

= 𝑒𝑇
0
Φ𝑛

0

All-order many-body methods

Ψ𝑛
1

= 𝐶0
(∞,1)

Φ𝑛
(0)

+ 𝐶𝐼
(∞,1)

Φ𝐼
(0)

+ 𝐶𝐼𝐼
(∞,1)

Φ𝐼𝐼
(0)

+ ⋯

𝑇 → 𝑇(0) + 𝜆𝑇(1) ⇒ Ψ𝑛
1

=  𝑒𝑇
0

1 + 𝑇 1 Φ𝑛
(0)



Configuration interaction (CI) method:

Coupled-cluster (CC) method:

Ψ𝑛 = 𝑒𝑇𝐼+𝑇𝐼𝐼+⋯+𝑇𝑁 Φ𝑛 = 𝑒𝑇 Φ𝑛

Approximated CI vs. CC methods

Ψ𝑛 = 𝐶0 Φ𝑛 + 𝐶𝐼 Φ𝐼 + 𝐶𝐼𝐼 Φ𝐼𝐼 + ⋯+ 𝐶𝑁 Φ𝑁

Comparison between both:

𝐶0 → 1

𝐶1 → 𝑇1

𝐶2 → 𝑇2 +
1

2
𝑇1
2

𝐶3 → 𝑇3 + 𝑇1𝑇2 +
1

3!
𝑇1
3

so on …

Due to exponential ansatz, CCSD captures more correlation effects than CISD approximation.



𝚿𝟎 = 𝑪𝟎 𝚽𝟎 + 𝑪𝑰 𝚽𝑰 + 𝑪𝑰𝑰 𝚽𝑰𝑰 + ⋯

Size-extensivity problem with truncated CI

𝑬𝟎
(𝟎)

𝒚 ⋯

𝒚∗ 𝑬𝟎
(𝟎)

+ 𝒙 − 𝝐𝟎
(𝟎)

⋯

⋮ ⋱ ⋮

𝒚
𝟎
⋮

𝑪𝟎
𝑪𝑰
⋮

= 𝑬𝟎

𝑪𝟎
𝑪𝑰
⋮

𝝓𝟎 𝒉 𝝓𝟎 = 𝝐𝟎
(𝟎)

𝝓𝟎 𝒉 𝝓𝒌 = 𝒚
𝝓𝒌 𝒉 𝝓𝒌 = 𝒙

𝐻0 ۧ|Φ𝐾 = 𝐸𝐾
(0)
| ۧΦ𝐾

𝐻0 ۧ|Φ0 = 𝐸0
(0)
| ۧΦ0

⇒ 𝐸𝐾
(0)
= 𝐸0

(0)
+ 𝑥 − 𝜖0

(0)

෍

𝑘

|Φ𝐾ۦ 𝐻 ۧ|Ψ0 = 𝐸 ۧ|Ψ0

⇒ 𝚫𝑬 = 𝑬𝟎 − 𝑬𝟎
𝟎
=

𝒙−𝝐𝟎
𝟎

𝟐
±

𝒙−𝝐𝟎
𝟎

𝟐

𝟐

+𝑵 𝒚 𝟐 For 𝑵 → ∞,𝚫𝑬 ∝ 𝒚 𝟐 𝑵



CI+MBPT method

Interacts very 
strongly

Inert 
configuration

MBPT(n)

C I



Energy and wave function in (R)CC theory

𝐸𝑛 = 〈𝐻〉 =
Ψ𝑛 𝐻 Ψ𝑛

Ψ𝑛 Ψ𝑛
Energy expression:

𝐸𝑛 =
Φ𝑛 𝑒

𝑇𝑛
+
𝐻𝑒𝑇𝑛 Φ𝑛

Φ𝑛 𝑒
𝑇𝑛
+
𝑒𝑇𝑛 Φ𝑛

=
Φ𝑛 𝑒

𝑇𝑛
+
𝑒𝑇𝑛𝑒−𝑇𝑛𝐻𝑒𝑇𝑛 Φ𝑛

Φ𝑛 𝑒
𝑇𝑛
+
𝑒𝑇𝑛 Φ𝑛

=
σ𝐾 Φ𝑛 𝑒

𝑇𝑛
+
𝑒𝑇𝑛 Φ𝐾 〈Φ𝐾|𝑒

−𝑇𝑛𝐻𝑒𝑇𝑛 Φ𝑛

Φ𝑛 𝑒
𝑇𝑛
+
𝑒𝑇𝑛 Φ𝑛

= Φ𝑛 𝑒
−𝑇𝑛𝐻𝑒𝑇𝑛 Φ𝑛 = Φ𝑛 𝐻𝑒𝑇𝑛 𝑐 Φ𝑛

Excitation amplitudes: Φ𝐾 𝐻𝑒𝑇𝑛 𝑐 Φ𝑛 = 0

It gets naturally terminated. Its appears in the form A*X=B; Jacobi iterative method is used. 



Expectation value evaluation in (R)CC theory

𝑂 =
Ψ𝑛 𝑂 Ψ𝑛

Ψ𝑛 Ψ𝑛
=

Φ𝑛 𝑒
𝑇𝑛
+
𝑂𝑒𝑇𝑛 Φ𝑛

Φ𝑛 𝑒
𝑇𝑛
+
𝑒𝑇𝑛 Φ𝑛

Property:

• Possesses two non-terminating series.

• Unmanageable with two-body operators like SMS operator.

• It does not satisfy the Hellmann-Feynman theorem.

• But any property can be evaluated. 

Hellmann-Feynman Theorem:

𝜕𝐸𝜆
𝜕𝜆

= 𝐸𝜆
𝜕

𝜕𝜆
Ψ𝜆 Ψ𝜆 + Ψ𝜆

𝜕𝐻𝜆
𝜕𝜆

Ψ𝜆 = Ψ𝜆
𝜕𝐻𝜆
𝜕𝜆

Ψ𝜆

⇒
𝜕

𝜕𝜆
Ψ𝜆 Ψ𝜆 = 0 𝑂 ≡ 𝐸 1 ↔ 𝐻 = 𝐻𝑎𝑡 + 𝜆𝑂and

⇒ Energy and property evaluating diagrams should be same.



Finite-field (FF) approach

New Hamiltonian: 𝐻𝜆 = 𝐻𝑎𝑡 + 𝜆𝑂

𝐸𝜆 = 𝐸𝑎𝑡
(0)

+ 𝜆𝐸𝑎𝑡
(1)

+ 𝜆2𝐸𝑎𝑡
(2)

+⋯

𝑂 ≡ 𝐸𝑎𝑡
1
≈ ቤ
𝜕𝐸𝜆
𝜕𝜆

𝜆→0

𝑁𝑜𝑡𝑒: 𝜆2 𝑡𝑒𝑟𝑚𝑠
𝑚𝑎𝑦 𝑛𝑜𝑡 𝑏𝑒 𝑠𝑚𝑎𝑙𝑙.

• All the terms get naturally terminated.

• Not much additional computational costs required.

• Satisfies the Hellmann-Feynman theorem.

• Properties described by scalar operators can only be evaluated.

• Neglects 𝕺 𝝀𝟐 contributions, which may not be small.

• Choice of 𝝀 depends on properties of interest (𝑭, 𝑲𝑵𝑴𝑺, and 𝑲𝑺𝑴𝑺

cannot be calculated accurately by considering same 𝝀). 



In NCC: |Ψ𝑛〉 = 𝑒𝑇𝑛 Φ𝑛 〈෩Ψ𝑛| = 〈Φ𝑛|(1 + ෨𝑇𝑛) 𝑒
−𝑇𝑛and

It implies 𝑇𝑛 and ෨𝑇𝑛 are dependent, but they are treated 

as independent (variational) parameters in the (R)NCCM.

where ෨𝑇𝑛 is a de-excitation operator similar to 𝑇𝑛
+.  

෩Ψ𝑛 Ψ𝑛 = 〈Φ𝑛 𝑒
෨𝑇𝑛𝑒−𝑇𝑛𝑒𝑇𝑛 Φ𝑛〉 = 1.This follows:

It means 〈෩Ψ𝑛| =
Ψ𝑛

Ψ𝑛 Ψ𝑛
=

〈Φ𝑛|𝑒
𝑇𝑛
+

Φ𝑛 𝑒
𝑇𝑛
+
𝑒𝑇𝑛 Φ𝑛

⇒ 〈Φ𝑛|𝑒
෨𝑇𝑛 =

〈Φ𝑛|𝑒
𝑇𝑛
+
𝑒𝑇𝑛

Φ𝑛 𝑒
𝑇𝑛
+
𝑒𝑇𝑛 Φ𝑛

In ECC: |Ψ𝑛〉 = 𝑒𝑇𝑛 Φ𝑛 and 〈෩Ψ𝑛| = 〈Φ𝑛|𝑒
෨𝑇𝑛𝑒−𝑇𝑛

Normal or Extended (R)CC method



Φ𝑛 𝑒
෨𝑇𝑛 𝐻𝑒𝑇𝑛 𝑐 Φ𝐾 = − Φ𝑛 𝑒

෨𝑇𝑛 𝐻𝑒𝑇𝑛 𝑐 Φ𝐾

𝐻|Ψ𝑛〉 = 𝐸𝑛 Ψ𝑛Energy: and 〈෩Ψ𝑛|𝐻 = 〈Φ𝑛|𝐸𝑛

𝐸𝑛 = 〈෩Ψ𝑛|𝐻 Ψ𝑛 = 〈Φ𝑛| 𝐻𝑒
𝑇𝑛

𝑐 Φ𝑛 + 〈Φ𝑛|𝑒
෤𝑇𝑛 𝐻𝑒𝑇𝑛 𝑐 Φ𝑛

0

Amplitude:

〈𝑂〉 = 〈෩Ψ𝑛|𝑂 Ψ𝑛 = 〈Φ𝑛| 𝑂𝑒
𝑇𝑛

𝑐 Φ𝑛 + 〈Φ𝑛|𝑒
෤𝑇𝑛 𝑂𝑒𝑇𝑛 𝑐 Φ𝑛

Property:

• All the terms get naturally terminated.

• Satisfies the Hellmann-Feynman theorem.

• Any properties can be evaluated.

• Additional operators are introduced; computationally expensive.

Energy and property calculations



In the AR RCC method, we express

and

Ψ𝑛 = 𝑒𝑇 Φ𝑛 = 𝑒𝑇𝑛
(0)

+𝜆𝑇𝑛
(1)

|Φ𝑛〉

𝐻𝜆 = 𝐻𝑎𝑡 + 𝜆𝑂 Ψ𝑛 ≃ |Ψ𝑛
0
〉 + 𝜆 |Ψ𝑛

1
〉

First-order eqn.:

⇒ Ψ𝑛
0

= 𝑒𝑇𝑛
0
|Φ𝑛〉

Ψ𝑛
1

= 𝑒𝑇𝑛
0

1 + 𝑇𝑛
1

|Φ𝑛〉and

It yields that:

𝑂 ≡ 𝐸𝑛
1
= 〈Φ𝑛 (𝐻𝑎𝑡𝑒

𝑇𝑛
(0)
𝑇𝑛
(1)
)𝑐 + 𝑂𝑒𝑇𝑛

(0)

𝑐
Φ𝑛〉

(𝐻𝑎𝑡 − 𝐸𝑛
0
)|Ψ𝑛

1
〉 = (𝐸𝑛

1
− 𝑂) |Ψ𝑛

(0)
〉

Analytic Response (R)CC method



• All the terms are terminated.

• It satisfies the Hellmann-Feynman theorem (as it 

is derived from energy expression).

• Any properties can be evaluated.

• Free from choice of any perturbative parameter.

• Computational efforts are less than NCC method.

First development in atomic physics!

Advantages of AR RCC method



Ground state:              Excited state with definite 𝑱 and 𝝅: 

|𝚿𝟎〉 = 𝒆𝑻|𝚽𝟎〉 𝚿𝑲 𝑱, 𝝅 = 𝑹𝑲 𝑱, 𝝅 𝚿𝟎

= 𝑹𝑲(𝑱, 𝝅)𝒆
𝑻|𝚽𝟎〉

Here 𝑹𝑲 𝑱, 𝝅 = 𝒓𝟎 + 𝑹𝟏 𝑱, 𝝅 + 𝑹𝟐 𝑱, 𝝅 + ⋯

Equation of motion:    𝑯 𝚿𝑲 𝑱, 𝝅 〉 = 𝑬𝑲 𝚿𝑲(𝑱, 𝝅)〉

⇒ 𝑯𝒆𝑻
𝒄
𝑹𝑲 𝑱, 𝝅 𝚽𝟎 = 𝑬𝑲 − 𝑬𝟎 𝑹𝑲 𝑱, 𝝅 |𝚽𝟎〉

And,   ෪〈Ψ𝐾 𝐽, 𝜋 | = 〈෪Ψ0|𝑳𝑲(𝑱, 𝝅) with 𝑳𝑲 𝑱, 𝝅 = 𝒍𝟎 + 𝑳𝟏 𝑱, 𝝅 + ⋯

Amplitude solving equations for 𝑅𝐾 (similar for 𝐿𝐾):

𝑃 𝐻𝑒𝑇 𝑐𝑃 𝑃 𝐻𝑒𝑇 𝑐𝑄

𝑄 𝐻𝑒𝑇 𝑐𝑃 𝑄 𝐻𝑒𝑇 𝑐𝑄

𝑟0𝑃
𝑄𝑅𝐾𝑃

𝑐

= Δ𝐸𝐾
𝑟0𝑃
𝑄𝑅𝐾𝑃

.

Equation-of-motion CC method



Lorentz symmetry: Measurements are independent of  frame 

of  references moving with constant velocity (inertial frame). 

Lorentz invariance and Einstein equivalence principle

are the foundations of  the general relativity theory.  

Modern theories that are attempting to unify gravity with the standard 

model (SM) assert that Lorentz symmetry is valid only at large length 

scales and may violate at short length scales due to physics beyond SM. 

Probing Lorentz symmetry violation



Michelson–Morley type experiment in an atomic system with 

electron-nucleus bonds as interferometer arms and lights 

(photon clouds) as reference. [Nature 517, 592 (2015)]

By changing the direction of 

magnetic field with respect to the 

Sun, interference between the 𝑚𝑗 =

± 1/2 and 𝑚𝑗 = ±5/2 levels of 

3𝑑5/2 state in Ca+ were created. 

𝐻𝑖𝑛𝑡
𝐿𝑛𝑧 = −

𝑝2

2
𝐶0

0
−

2𝑈

3𝑐2
𝑐00 −

1

6
𝐶0

2
𝑇0

2
Here U is the Newtonian 

gravitational potential, 𝐶0
(0/2)

and 𝑐00 are Lorentz symmetry violating 

parameters  respectively and 𝑇0
(2)

= 𝑝2 − 3𝑝𝑧
2.

Experiment in Ca
+



With linear terms from RCC method.

Roles of atomic calculations 



Expectation values using RCC methods



with

Combining with experimental result:

FF vs. AR approaches



Isotope shift (IS) of a state in an atom:

𝛿𝐸𝑖
𝐴𝐴′ = 𝐹𝑖𝛿 𝑟𝑁

2
𝐴𝐴′ + (𝐾𝑖

𝑁𝑀𝑆 + 𝐾𝑖
𝑆𝑀𝑆)

(𝑀𝐴−𝑀
𝐴′
)

𝑀𝐴𝑀𝐴′

𝐹𝑖 is the field-shift constant; 𝛿〈𝑟𝑁
2〉 is the change in nuclear radii.  

𝐾𝑖
𝑁𝑀𝑆and 𝐾𝑖

𝑆𝑀𝑆 are the normal and specific mass-shift constants.  

𝑭𝒊 =
𝜹𝑽𝒏𝒖𝒄(𝒓)

𝜹〈𝒓𝑵
𝟐 〉

𝑲𝒊
𝑵𝑴𝑺 =

𝟏

𝟐
𝒑𝟐 −

𝜶𝒆𝒁

𝒓
𝜶 ⋅ 𝒑 + 𝜶 ⋅ 𝑪𝟏

𝟐

𝑲𝒊
𝑺𝑴𝑺 =

𝟏

𝟐
෍

𝒌𝒍

𝒑𝒌 ⋅ 𝒑𝒍 −
𝜶𝒆𝒁

𝒓𝒌
𝜶𝒌 ⋅ 𝒑𝒍 + (𝜶𝒌 ⋅ 𝑪𝒌

𝟏)(𝜶𝒍 ⋅ 𝑪𝒍
𝟏

Different components of Isotope Shift



Energy of an atomic state: 𝐸𝑛
𝐴(𝑅𝑁) = Ψ𝑛 𝐻 𝑅𝑁 Ψ𝑛

𝑯 𝑹𝑵 =෍

𝒊

𝑲.𝑬.+𝑽𝑵 𝒓𝒊, 𝑹𝑵 +
𝟏

𝟐
෍

𝒊,𝒋

𝟏

|𝒓𝒊 − 𝒓𝒋|
Hamiltonian:

𝑅𝑁 ≡ 𝑓 𝛿𝑟𝑁
2 ⇒ 𝐸𝑛

𝐴′ 𝑅𝑁 + 𝛿𝑅𝑁 − 𝐸𝑛
𝐴 𝑅𝑁 = 𝑔 𝛿𝑟𝑁

2 𝐴𝐴′

𝐸𝑛
𝐴𝐴′ 𝑅𝑁 + 𝛿𝑅𝑁 = 𝐸𝑛

𝐴𝐴′ 𝑅𝑁 + 𝐹𝑛 𝛿𝑟𝑁
2 𝐴𝐴′

+𝔒 𝛿𝑟𝑁
2 𝐴𝐴′

2
Thus,

Another approach for Field shift constant



CCSD results of indium atom Sahoo et al,  under review.



Sahoo & Yu, PRA 98, 012513 (2018)𝜶𝟎
𝒅

value of Cd atom

DHF                   63.657            49.612         62.78; 63.37       49.647

MBPT(2)      37.288            50.746         39.14; 38.52       

MBPT(3)      37.345        45.97; 45.86        35.728

MBPT(4)                                                      45.06; 47.10      

RPA                                           63.685         

PRCC                                                                                      49.24

CCSD 48.073           45.494         48.43; 48.09 44.63

NCCSD                                    44.804                                    45.898

CCSD(T)                                  46.289         46.80; 46.25

NCCSD(T)                               45.603

CCSDT               45.852

CCSDTQ            46.015

Recommended                       46.02(50)

Experiment                            49.65(1.65)

Method                        Our work                               Others         
Finite-Field      Perturb.       Finite-Field       Perturb.     



Nuclear EDM due to pion exchange 

ҧ𝑔𝜋𝑁𝑁

𝜋

𝑛/𝑝 𝑛/𝑝 𝑛/𝑝

𝛾
𝑔𝜋𝑁𝑁

𝐻𝑖𝑛𝑡 𝑟 = 𝑒Ԧ𝑟 ⋅ න
0

∞

𝑑3𝑟′
Ԧ𝑟′

𝑍𝑟3
−
𝑟′

𝑟3
+
𝑟′

Ԧ𝑟′3
𝜌𝑛 𝑟′ =

𝑆 ⋅ Ԧ𝑟

𝐵
𝜌𝑛(𝑟)

𝑆 = 𝑔𝜋𝑁𝑁 𝑎0 ҧ𝑔𝜋𝑁𝑁
(0)

+ 𝑎1 ҧ𝑔𝜋𝑁𝑁
(1)

+ 𝑎2 ҧ𝑔𝜋𝑁𝑁
(2)

≈ 𝑏1 𝑑𝑛 + 𝑏2𝑑𝑝

where parity conserving parameter 
𝑔𝜋𝑁𝑁 ≈ 13.5 and 𝑎0, 𝑎1, 𝑎2, 𝑏1
and 𝑏2 are determined using

Skyrme interactions.

ҧ𝑔𝜋𝑁𝑁
1

= 2 × 10−12 ሚ𝑑𝑢 − ሚ𝑑𝑑

ഥ𝑔𝜋𝑁𝑁
(0)

≈ −0.018 7 ҧ𝜃 ≈ −1.02 ሚ𝑑𝑢 + ሚ𝑑𝑑



Tensor-pseudotensor (T-PT) interaction in atoms 

𝐻𝐸𝐷𝑀
𝑒−𝑁(𝑟) =

𝑖 𝐺𝐹

2
෍

𝑒,𝑁

𝐶𝑇
𝑒−𝑁 ഥΨ𝑁(𝑟

′)𝜎𝜇𝜈Ψ𝑁(𝑟
′) V𝜒(𝑟, 𝑟

′) ഥΨ𝑒(𝑟)𝛾
5Ψ𝑒(𝑟)

= 2 𝑖 𝐺𝐹𝐶𝑇 σ𝑒 𝜌𝑁
𝜒
𝑟𝑒 Ԧ𝐼𝑁 ⋅ Ԧ𝛾𝑒

𝑉𝜒 𝑟, 𝑟′ =
𝑒−𝑚𝜒𝑐|𝑟−𝑟′|

4𝜋 |𝑟−𝑟′|



Sahoo and Das, Phys. Rev. Letts. 120, 203001 (2018).

Results for 
199

Hg EDM

DHF                        -2.39                    -1.20                 40.95             

MBPT(2)      -4.48                    -2.30                 34.18

MBPT(3)      -3.33                    -1.72                 22.98   

RPA                         -5.89                    -2.94                 44.98

CI+MBPT               -5.1                      -2.6                   32.99

MCDF                     -4.84                    -2.22                 

PRCC                      -4.3                      -2.46                 33.29

LCCSD                   -4.52                    -2.34                  33.91

CCSD(2) -3.82                   -2.00                  33.76

CCSD(4) -4.14                   -2.05                  35.13

CCSD(5) -4.02                   -2.00                  34.98

CCSD(∞) -3.17                   -1.76                  34.51

NCCSD                   -3.30                   -1.77                  34.22

Experiment                                                               33.91(34)

Method           RT-PT RNSM 𝜶𝟎
𝒅



Limits on T-violating quantities

Nuclear calculations:

𝐒 = 𝟏𝟑. 𝟓[𝟎. 𝟎𝟏ഥ𝒈𝝅𝑵𝑵
𝟎

± 𝟎. 𝟎𝟐ഥ𝒈𝝅𝑵𝑵
𝟏

+ 𝟎. 𝟎𝟐ഥ𝒈𝝅𝑵𝑵
𝟐

] 𝒆 𝒇𝒎𝟑

𝐒 = [𝟏. 𝟗 𝒅𝒏 + 𝟎. 𝟐 𝒅𝒑] Prog. Part. Nuc. Phys, 71,  21 (2013).

ഥ|𝜃| < 1.1 × 10−10

ሚ𝑑𝑢 − ሚ𝑑𝑑 < 2.7 × 10−27 𝑒 − 𝑐𝑚

𝑑𝑛 < 3.0 × 10−27 𝑒 − 𝑐𝑚

𝑑𝑝 < 2.1 × 10−26 𝑒 − 𝑐𝑚

Atomic Expt+Theory Standard Model (SM)     

𝑑𝑛 ∼ 10−32 𝑒 − 𝑐𝑚

𝑑𝑝 ∼ 10−32 𝑒 − 𝑐𝑚

𝑑𝑢, 𝑑𝑑~10
−34 𝑒 − 𝑐𝑚

0 ≤ ҧ𝜃 ≤ 2𝜋

Strong CP problem.

DExpt(199Hg)= (2.20±2.75stat±1.48syst)×10−30 e -cm

|D(199Hg)| < 7.4×10−30 e cm (95% C.L.)

B. Graner, Y. Chen, E. G. Lindahl and B. R. Heckel, Phys. Rev. Lett. 116, 161601 (2016).



Limit on mass of a dark matter candidate

B. K. Sahoo, Phys. Rev. D 95,  013002 (2017).



• Accurate relativistic many-body methods are necessary for 

studying fundamental physics.  

• We have developed FF, EVE, AR and Normal coupled-cluster 

methods to carry out isotope shift and EDM calculations.

• RCC method in the AR approach is developed for Lorentz 

symmetry violation studies.

• Nuclear charge radii of Indium isotopes are estimated, and 

compared with Sn and Cd isotopes. 

• Accurate limits on nuclear CP violating parameters are inferred.

• NCC method for open-shell systems.

• Equation-of-motion RCC method for two-valence systems.

• Extended RCC method.

Conclusion and Outlook
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