The algebraic molecular model for ${ }^{12} \mathrm{C}$ and its application to the $\alpha+{ }^{12} C$ scattering: from densities and transition densities to optical potentials, nuclear form factors and cross sections

## Andrea Vitturi

Dipartimento di Fisica e Astronomia, and INFN, Padova


Recent advances on proton-neutron pairing, Saclay. September 2019

## Motivations (1)

Evidence of alpha-clustering aspects in light nuclei

$$
\left(e .9 .{ }^{12} \mathrm{C}\right)
$$

Coexistence of cluster and non-cluster states in the same nucleus
Emergence of cluster states from correlated nucleons moving in the nuclear mean field or in ab initio approaches
Two theoretical examples (technically rather complex): AMD and large-scale Monte Carlo shell model

## Antisymmetrized Molecular Dynamics



## Monte Carlo Shell Model (Otsuka and the Tokyo group)

Procedure: calculation of "intrinsic" density from MCSM eigenstate

$0^{+}{ }_{1}$ : mixture of many "shapes"

## Motivations (2)

> Need of combining different probes to study the different facets of a nuclear system
> (Multi-messenger investigation)

In the specific case of ${ }^{12} \mathrm{C}$ in addition to information based on electromagnetic probes a special role is played by NUCLEAR inelastic excitation, as for example ( $\alpha, \alpha^{\prime}$ ) scattering

Cf. Makoto Ito, Phys. Rev. C 97, 044608, 2018
Yoshiko Kanada-En'yo and Kazuyuki Ogata, Phys. Rev. C 99, 064601,2019

An example of the success of multi-messenger analysis: the case of the Pygmy Dipole States

${ }^{140} \mathrm{Ce}$
D.Savran, A. Vitturi etal, Physics Letters B 786 (2018) 16-20

# Our approach: the algebraic cluster molecular model 

Wheeler J A, 1937
Iachello F. Bijker R. and collaborators, 2000

Three alpha-particles at the vertices of a equilateral triangle

Intrinsic states are generated by the ( $\mathrm{D}_{3 \mathrm{~h}}$ discrete symmetry)


Geometry of a three-body system. normal modes of vibration of the triangle


Each intrinsic state generates a rotational band, whose elements have allowed quantum numbers (angular momentum and parity) according to the rules of the point-group D3h


## Spectrum of an equilateral triangle configuration

Notice the 'apparently strange' quantum numbers. They have a perfectly clear interpretation in the theory of point-groups! They come from the reduction of spherical states to discrete symmetry states $S O(3) \supset D_{3 h}$ and $S O(2) \supset D_{3 h}$ Not all L are compatible with this operation.

Evidence for triangular $D_{3 h}$ symmetry in ${ }^{12} \mathrm{C}$ [Marín-Lambarri PRL 113 (2014) 012502]


Further support to the basic triangular shape comes from our calculations based on the quantal solution of the problem of three interaction alpha's (via the two-body Ali-Bodmer plus a three-body potential) within the Hyperspherical Harmonics approach (HH), using for the continuum part pseudo-states given by Transformed Harmonic Oscillator (THO).

Results from the HH formulation support the description of the ground and $2^{+}{ }_{1}$ state of ${ }^{12} \mathrm{C}$ as
three particles with the symmetry of an equilateral triangle. On the other hand the wave function for the Hoyle state seems to present a more complicated structure.
$\left|\Psi^{N} f\right| 2^{f \text { istributed around a mean triangular configuration }}$


Casal, Fortunato, Vitturi, 2019

The computed $r_{x}, r_{y}$ r.m.s. values (yellow dots) are found to satisfy the equilateral ratio $r_{y}=r_{x} \sqrt{3} / 2$ (dashed)

## Densities and transition densities within the algebraic approach

Gaussian density for an $\alpha$ :

$$
\rho_{\alpha}(\vec{r})=\left(\frac{d}{\pi}\right)^{3 / 2} e^{-d r^{2}}
$$

$d=0.56(2)$ to fit $\alpha$ radius
$\Rightarrow$ "static" ${ }^{12} \mathrm{C}$ g.s. density:

$$
\rho_{A_{0}}\left(\vec{r},\left\{\vec{r}_{k}\right\}\right)=\sum_{k=1}^{3} \rho_{\alpha}\left(\vec{r}-\vec{r}_{k}\right)
$$


$A_{0}$ : fully symmetric representation of $D_{3 h}$ with 0 quanta of excitation $\vec{r}_{1}=(\beta, \pi / 2,0), \vec{r}_{2}=(\beta, \pi / 2,2 \pi / 3), \vec{r}_{3}=(\beta, \pi / 2,4 \pi / 3)$ Radial parameter $\beta$ to reproduce some ${ }^{12} \mathrm{C}$ g.s. properties

Density expanded in spherical harmonics (ground-state band $A_{0}$ )

$$
\rho_{A_{0}}(\vec{r})=\sum_{\lambda \mu} \rho_{A_{0}}^{\lambda \mu}(r) Y_{\lambda \mu}(\theta, \varphi)
$$

Only multipoles allowed by $D_{3 h}$ : $\{00,20,33, \ldots\}$

Radial transition densities
$\rho_{A_{0}}^{00}(r)$ intrinsic $0_{1}^{+}$g.s. density
$\rho_{A_{0}}^{20}(r)$ associated to $2_{1}^{+}$

$\beta=1.82 \mathrm{fm} \Rightarrow$ reproduce the g.s. radius and the $B(E 2)$ value to the $2_{1}^{+}$

$$
\sqrt{\left\langle r^{2}\right\rangle_{0_{1}^{+}}}=\frac{\sqrt{4 \pi}}{3} \int r^{4} \rho_{A_{0}}^{00}(r) d r, \quad M\left(E \lambda ; \lambda \rightarrow 0_{1}^{+}\right)=Z \int r^{2+\lambda} \rho_{A_{0}}^{\lambda}(r) d r
$$


ground band

TABLE I: Calculated observables within the g.s. band.

| $\left\langle r^{2}\right\rangle_{0_{1}^{+}}^{1 / 2}$ | $2.45(\mathrm{fm})$ |
| :--- | :--- |
| $B\left(E 2 ; 2_{1}^{+} \rightarrow 0_{1}^{+}\right)$ | $7.86\left(\mathrm{e}^{2} \mathrm{fm}^{4}\right)$ |
| $B\left(E 3 ; 3_{1}^{-} \rightarrow 0_{1}^{+}\right)$ | $65.07\left(\mathrm{e}^{2} \mathrm{fm}^{6}\right)$ |
| $B\left(E 4 ; 4_{1}^{+} \rightarrow 0_{1}^{+}\right)$ | $96.99\left(\mathrm{e}^{2} \mathrm{fm}^{8}\right)$ |


| $\exp$ |  | AMD |  | AMD + | GCM | RGM |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $B(E \lambda)$ | (error) | $B(E \lambda)$ | $f_{\text {tr }}$ | $B(E \lambda)$ | $f_{\text {tr }}$ | $B(E \lambda)$ | $f_{\text {tr }}$ |
| $E 2: 2_{1}^{+} \rightarrow 0_{1}^{+} 7.59$ | (0.42) | 8.53 | 0.94 | 9.09 | 0.91 | 9.31 | 0.90 |
| $E 0: 0_{2}^{+} \rightarrow 0_{1}^{+} 29.2$ | (0.2) | 43.5 | 0.82 | 43.3 | 0.82 | 43.8 | 0.82 |
| E2: $0_{2}^{+} \rightarrow 2_{1}^{+} 13.5$ | (1.4) | 25.1 | 0.73 | 24.1 | 0.75 | 5.6 | 1.56 |
| $E 2: 2_{2}^{+} \rightarrow 0_{1}^{+} 1.57^{a}$ | (0.13) | 0.39 | 1.99 | 0.49 | 1.93 | 2.48 | 0.80 |
| $E 2: 3_{1}^{-} \rightarrow 1_{1}^{-}$ |  | 40.7 | 1 | 79.0 | 1 |  |  |
| E0: $0_{3}^{+} \rightarrow 0_{1}^{+}$ |  | 5.2 | 1 | 10.0 | 1 |  |  |
| IS1: $1_{1}^{-} \rightarrow 0_{1}^{+}$ |  | 2.6 | $1.57{ }^{\text {b }}$ | 2.4 | $1.93{ }^{\text {b }}$ | 5.7 | 1 |
| IS1 : $1_{2}^{-} \rightarrow 0_{1}^{+}$ |  |  |  | 1.5 | 1 |  |  |
| E3: $3_{1}^{-} \rightarrow 0_{1}^{+} 103$ | (17) | 71 | 1.20 | 71 | 1.20 | 125 | 0.91 |
| $E 4: 4_{1}^{+} \rightarrow 0_{1}^{+} \longrightarrow$ |  | 733 | 1 | 995 | 1 | 655 | 1 |
| E3: $3_{1}^{-} \rightarrow 0_{2}^{+}$ |  | 428 | 1 | 1210 | 1 | 228 | 1 |
| E2 : $2_{2}^{+} \rightarrow 0_{2}^{+}$ |  | 102 | 1 | 182 | 1 | 212 | 1 |
| E2: $2_{2}^{+} \rightarrow 0_{3}^{+}$ |  | 309 | 1 | 223 | 1 |  |  |

$A$-type vibration with $n=1$ (Hoyle-state band, $A_{1}$ )
Symmetric displacements $\Delta \beta^{A}$; "breathing mode"
$\Delta \beta^{A}=1.2 \mathrm{fm} \Rightarrow \sim \mathbf{1} \mathbf{~ f m}$ increase in radius
(consistent with e.g. Ito [PRC 97 (2018) 044608] and others)




Hoyle band
ground
band
band

Transition densities connecting the g.s. and Hoyle bands $\left(A_{0} \rightarrow A_{1}\right)$
Expansion in small displacements $\Delta \beta$, kept at leading order:

$$
\delta \rho_{A_{0} \rightarrow A_{1}}(\vec{r}) \simeq \chi_{1} \frac{d}{d \beta} \rho_{A_{0}}(\vec{r}, \beta)=\sum_{\lambda \mu} \delta \rho_{A_{0} \rightarrow A_{1}}^{\lambda \mu}(r) Y_{\lambda \mu}(\theta, \varphi)
$$

$\chi_{1}$ adjusted to reproduce $E 0$ strength
Interband radial transition densities
$\delta \rho^{00}(r)$ monopole transition $\mathrm{O}_{1}^{+}$g.s. $\rightarrow \mathrm{O}_{2}^{+}$Hoyle
$\delta \rho^{20}(r)$ quadrupole transition $\mathrm{O}_{1}^{+}$g.s. $\rightarrow 2_{2}^{+}$




TABLE II: Quantities calculated in the present work for the Hoyle band, using the values of $\beta, \chi_{1}$ given in the text.

| $\left\langle r^{2}\right\rangle_{0_{2}^{+}}^{1 / 2}$ | $3.44(\mathrm{fm})$ |
| :--- | :--- |
| $B\left(E 2 ; 2_{2}^{+} \rightarrow 0_{1}^{+}\right)$ | $0.58\left(\mathrm{e}^{2} \mathrm{fm}^{4}\right)$ |
| $B\left(E 2 ; 0_{2}^{+} \rightarrow 2_{1}^{+}\right)$ | $2.90\left(\mathrm{e}^{2} \mathrm{fm}^{4}\right)$ |
| $B\left(E 3 ; 3_{2}^{-} \rightarrow 0_{1}^{+}\right)$ | $70.42\left(\mathrm{e}^{2} \mathrm{fm}^{6}\right)$ |
| $M\left(E 0 ; 0_{2}^{+} \rightarrow 0_{1}^{+}\right)$ | $5.4\left(\mathrm{e} \mathrm{fm}^{2}\right)$ |


|  | exp |  | AMD |  | AMD+ | GCM | RGM |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $B(E \lambda)$ | (error) | $B(E \lambda)$ | $f_{\text {tr }}$ | $B(E \lambda)$ | $f_{\text {tr }}$ | $B(E \lambda)$ | $f_{\text {tr }}$ |
| E2 : $2_{1}^{+} \rightarrow 0_{1}^{+}$ | 7.59 | (0.42) | 8.53 | 0.94 | 9.09 | 0.91 | 9.31 | 0.90 |
| E0: $0_{2}^{+} \rightarrow 0_{1}^{+}$ | 29.2 | (0.2) | 43.5 | 0.82 | 43.3 | 0.82 | 43.8 | 0.82 |
| E2: $0_{2}^{+} \rightarrow 2_{1}^{+}$ | 13.5 | (1.4) | 25.1 | 0.73 | 24.1 | 0.75 | 5.6 | 1.56 |
| E2 : $2_{2}^{+} \rightarrow 0_{1}^{+}$ | $1.57^{a}$ | (0.13) | 0.39 | 1.99 | 0.49 | 1.93 | 2.48 | 0.80 |
| $E 2: 3_{1}^{-} \rightarrow 1_{1}^{-}$ |  |  | 40.7 | 1 | 79.0 | 1 |  |  |
| E0: $0_{3}^{+} \rightarrow 0_{1}^{+}$ |  |  | 5.2 | 1 | 10.0 | 1 |  |  |
| IS1: $1_{1}^{-} \rightarrow 0_{1}^{+}$ |  |  | 2.6 | $1.57{ }^{\text {b }}$ | 2.4 | $1.93{ }^{\text {b }}$ | 5.7 | 1 |
| IS1: $1_{2}^{-} \rightarrow 0_{1}^{+}$ |  |  |  |  | 1.5 | 1 |  |  |
| E3: $3_{1}^{-} \rightarrow 0_{1}^{+}$ | 103 | (17) | 71 | 1.20 | 71 | 1.20 | 125 | 0.91 |
| E4: $4_{1}^{+} \rightarrow 0_{1}^{+}$ |  |  | 733 | 1 | 995 | 1 | 655 | 1 |
| E3: $3_{1}^{-} \rightarrow 0_{2}^{+}$ |  |  | 428 | 1 | 1210 | 1 | 228 | 1 |
| E2 : $2_{2}^{+} \rightarrow 0_{2}^{+}$ |  |  | 102 | 1 | 182 | 1 | 212 | 1 |
| E2 : $2_{2}^{+} \rightarrow 0_{3}^{+}$ |  |  | 309 | 1 | 223 | 1 |  |  |

E-type vibration with $n=1$ (doubly degenerate $E_{1}$ )



$-11-22-31$


Transition densities $A_{0} \rightarrow E_{1}$

$y(f m)$

$-11-22-31$ (mul. by 3)

$-11-22-31$ (mul. by 3 )



## From densities and transition densities to potentials and form factors

alpha+ ${ }^{12} C$ : folding densities and transition densities with the density of the projectile alpha

Double folding procedure
Form factors $F_{i j}(R)$, using:

- Transition densities within the algebraic cluster model

$$
F_{i j}(R)=\iint \rho_{\alpha}\left(\vec{r}_{1}-\vec{R}\right) v_{N N}\left(\left|\vec{r}_{12}\right|\right) \delta \rho^{i \rightarrow j}\left(\vec{r}_{2}\right) d \vec{r}_{1} d \vec{r}_{2}
$$


$\left(v_{N N}:\right.$ Reid-type M3Y)

Diagonal terms: potentials
Potentials are different within the different bands


Formfactors (including nuclear and coulomb contributions)


Nuclear part of the form factors with $\lambda=2$

$$
\alpha+{ }^{12} \mathrm{C}
$$


surface region

## From potentials and form factors to cross sections

Coupled-channels calculations: $\alpha+{ }^{12} \mathrm{C}$ inelastic scattering


$$
\begin{aligned}
& {\left[-\frac{\hbar}{2 m_{r}}\left(\frac{d^{2}}{d R^{2}}-\frac{L(L+1)}{R^{2}}\right)+E_{n j}-E\right] \chi_{c, c}^{J}(R)} \\
& +\sum_{c^{\prime}} i^{L^{\prime}-L} V_{c, c^{\prime}}^{J M}(R) \chi_{c, c^{\prime}}^{J}(R)=0
\end{aligned}
$$

Requires $V_{c, c^{\prime}}^{J M}(R)=\left\langle\Phi_{c}^{J M}\right| \widehat{U}_{p t}\left|\Phi_{c^{\prime}}^{J M}\right\rangle$ coupling potentials;
can be written in terms of form factors $F_{n^{\prime} j^{\prime}, n j}(\boldsymbol{R})$
$\alpha$ inelastic scattering on ${ }^{12} \mathrm{C}$
> Population of cluster states
> Study of isoscalar monopole and dipole excitations


This work: Assess whether the algebraic model describes exp. data Compare results with those from the HH framework
$\alpha$ inelastic scattering on ${ }^{12} \mathrm{C}$
> Population of cluster states
> Study of isoscalar monopole and dipole excitations


First results within the ground band

elastic
inelastic
(to the members of the ground-state band)

To the Hoyle state ..... others in progress ....


Obs: Sensitivity to the imaginary part of optical potentials

Thanks to
Jesus Casal and Lorenzo Fortunato (Padova)
Edoardo Lanza (Catania) Jose' Antonio Lay (Sevilla)

