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Motivations (1) 

   Evidence of alpha-clustering aspects in light nuclei 
(e.g. 12C) 

Coexistence of cluster and non-cluster states in the 
same nucleus 

Emergence of cluster states from correlated nucleons 
moving in the nuclear mean field or in ab initio 

approaches  
Two theoretical examples (technically rather complex): 

AMD and large-scale Monte Carlo shell model 
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Fig. 7. Density distributions of intrinsic states for the ground and excited states of 12C and 11B
calculated by AMD-VAP.57), 58)

shown in Fig. 6.
The 3/2�

3

states at the excitation energy E⇤ ⇠8 MeV, 11B(3/2�
3

, 8.65 MeV)
and 11C(3/2�

3

, 8.10 MeV) are experimentally known to have abnormal properties
such as weak GT and M1 transitions compared with normal low-lying states. It is
also interesting that the 3/2�

3

state is missing in shell-model calculations for 11B.
These facts suggest that the 3/2�

3

may not be ordinary shell-model-like state but
may have a developed cluster structure. The AMD calculations for 11B give good
results for the energy levels including the 3/2�

3

state (Fig. 6) and reproduce well the
experimental values of transition strengths. For the 3/2�

3

state, the quenchings of
GT and M1 transitions are understood because of the developed cluster structure
of the 3/2�

3

state which has small overlap with the low-lying shell-model-like states.
Indeed, the 3/2�

3

states of 11C and 11B exhibit the remarkably developed 2↵+3He
and 2↵+t clustering (Fig. 7).

3.2.3. Analogy of cluster aspects of 11B to 12C

Comparing the results for 11B with those for 12C, we found good analogies of
cluster aspects between 11B and 12C. As shown in Fig. 7, the ground state of 11B is
described by the p

3/2

-shell configuration with a mixing of cluster structure as well as

that of 12C. The development of the 2↵+t-cluster core in the 11B(3/2�
2

) shows a good
analogy to that of the 3↵-cluster core in the 12C(2+

1

). The remarkably developed
2↵+t-cluster structures in the 11B(3/2�

3

) and 11B(1/2�
2

) can be associated with the
developed 3↵ cluster in the 12C(0+

2

) and 12C(0+
3

), respectively.
Particular attention is paid to analogy of 11B(3/2�

3

) to 12C(0+
2

). Similarly to the
case of 12C(0+

2

), the 11B(3/2�
3

) wave function has large overlap with various 2↵+t
configurations indicating that the state has no geometric cluster configuration but
it should be regarded as a weakly interacting 2↵+t-cluster state. The root-mean-
square radius (r.m.s.r.) of the 11B(3/2�

3

) state is 3.1 fm and it is remarkably large
compared with that of the ground state (2.5 fm). Considering amplitudes of the
wave function fragmented on various configurations and the large radius, the 3/2�

3

state may be a 2↵+t-cluster state with a dilute density like a gas, where clusters
are rather freely moving. It should be noted that, for the 11B(3/2�

3

), the energy
position relative to the three-cluster break-up threshold is lower and the nuclear size
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From Y. Kanada-En’yo   
(and collaborators) 



Monte Carlo Shell Model  (Otsuka and the Tokyo group) 

Procedure: calculation of “intrinsic” density from MCSM eigenstate 

0+
1: mixture of many “shapes” 

0+
2: main “shape” 0+

3: main “shape” 



Motivations (2) 

Need of combining different probes to study the 
different facets of a nuclear system  

(Multi-messenger investigation) 

In the specific case of 12C in addition to information 
based on electromagnetic probes a special role is played 
by NUCLEAR inelastic excitation, as for example (α, α	’) 

scattering  

Cf.	Makoto	Ito,	Phys.	Rev.	C	97,	044608,	2018	
Yoshiko	Kanada-En'yo	and	Kazuyuki	Ogata,	Phys.	Rev.	C	99,	064601,2019	



An example of the success of multi-messenger analysis: 
the case of the Pygmy Dipole States 

18 D. Savran et al. / Physics Letters B 786 (2018) 16–20

Fig. 2. The experimental results for the present (p, p′γ ) experiment are shown in 
panel b) together with the results for the previous experiments using the (α, α′γ )

[36] and the NRF reaction [52,53]. The solid lines in panel a) and b) represent the 
sensitivity limit of the experiments. The lowest panel shows the measured averaged 
branching ratio to the first excited state as published in [28]. In the right column, 
the corresponding calculations within the QPM model are shown. For more details 
see text.

Calculations have been performed with the QPM wave func-
tions from [21]. They have been obtained by diagonalization of 
the model Hamiltonian on the basis of interactive one-, two-, and 
three-phonon configurations. Two- and three-phonon configura-
tions were built up from the phonons with the multipolarities 
from 1± to 9± and were cut above 8.5 MeV. In total we have 1157 
1− states below this energy cut. The 140Ce(p, p′) and 140Ce(α, α′)
cross sections have been calculated for all of them.

The (p, p′) cross sections have been computed within the 
DWBA (distorted-wave Born approximation) employing the
DWBA07 code [54]. The effective N N-interaction of Love–Franey 
[55,56] has been used as input to calculate both the optical po-
tential and transition amplitudes. The cross sections have been 
averaged over the scattering angle θ = 3.3◦–7.9◦ in accordance 
with the acceptance angle of the BBS. They exhibit a smooth de-
pendence on θ and drop by 35% from the smaller to the larger 
angle.

The (α, α′) cross section have been calculated within a semi-
classical coupled-channel model described in [57–59]. The radial 
form factors were calculated by a double folding procedure with 
the transition densities provided by the QPM and using a M3Y 
nucleon–nucleon (N N) interaction [60]. For the real part of the 
optical potential the double-folding procedure has been used with 
the QPM ground-state density for 140Ce and the one given in [61]
for the alpha particle. The imaginary part is taken with the same 
geometry of the real part with half of the strength. The cross 
sections are then obtained by integrating the inelastic probability 
amplitude for each dipole state over the range of impact parame-
ters that lead to the scattered projectile in the measured angular 
range.

The mechanism of the electromagnetic excitation in the photo-
absorption reaction is well known. For the excitation of 1− states 
it is of isovector nature. Protons and α-particles interact with the 
target nuclei by means of the Coulomb- and N N-terms. The for-

Fig. 3. Decomposition of the calculated cross sections for (p, p′) and (α, α′) into 
pure nuclear interaction, pure Coulomb interaction and total cross section including 
nuclear-Coulomb interference.

mer is proportional to the electromagnetic transition. The latter 
is predominantly of isoscalar nature at the present kinematics in 
both (p, p′) and (α, α′) reactions, although some admixture of the 
isovector part is also present.

To investigate the role of the above-mentioned terms for the 
hadronic projectiles, the cross section calculations for both reac-
tions have been repeated for each term separately. Corresponding 
results are presented in the upper two rows of Fig. 3 as “Nuclear” 
and “Coulomb” in comparison to the complete calculation “Total”.

For both, proton as well as α scattering, the nuclear part is 
dominant for the excitation of the low-energy part of the PDR 
and yields large cross sections. This signature is related to tran-
sition densities with a strong neutron contribution on the surface 
whereas in the inner regions protons and neutrons are in phase, a 
structure that is usually associated with the isoscalar nature of the 
PDR. While this combination of transition densities leads to large 
cross sections in the nuclear component, it results in rather small 
B(E1) values and consequently small Coulomb excitation cross sec-
tions.

At higher energies the common structure changes towards more 
isovector components and, thus, larger Coulomb contributions. The 
amplitudes due to the Coulomb- and N N-terms become rather 
close in value and the interference effects between them begin to 
play an important role. It is interesting to note that even though 
the transition densities of individual states partly seem to look 
very different, they share the above-described common underlying 
features, which result in similar cross sections and this common 
energy dependence in the response function.

Fig. 2 summarizes the results of all experiments (left column) 
and the QPM calculation (right column) for 140Ce. Besides the total 
cross sections for α, proton and photon scattering mentioned so 
far also the averaged decay branching ratio to the first-excited 2+

1
state is shown in Fig. 2d as presented in [28]. Each row in Fig. 2
represents the comparison of experimental results with the QPM 
calculation with respect to a different observable, each of which 
is sensitive to different aspects of the wave function. The α scat-
tering cross section is sensitive to the isoscalar component of the 
excited states and is enhanced by surface contributions. Therefore, 
the large (α, α′) cross section for the lower lying group of 1−

states can be identified as a signature of oscillating excess neu-
trons at the surface of the nucleus [42]. For protons this selectivity 
is less distinct as inelastic proton scattering is also sensitive to 

140Ce 

D.Savran, A. Vitturi etal, 
Physics Letters B 786 
(2018) 16–20 



Our approach: the algebraic cluster molecular model 

Wheeler J A, 1937  
Iachello F, Bijker R. and collaborators, 2000	

Three alpha-particles at  
the vertices of a equilateral  
triangle  
(D3h discrete symmetry) 

Intrinsic states are generated by the  
normal modes of vibration of the triangle 

A	 E	

Each intrinsic state generates a rotational band, whose elements  have  
allowed quantum numbers (angular momentum and parity) according to 
the rules of the point-group D3h 



Notice the ‘apparently strange’ quantum numbers. They have a perfectly clear 
interpretation in the theory of point-groups !   They come from the reduction 
of spherical states to discrete symmetry states  SO(3)⸧ D3h  and SO(2) ⸧ D3h  
Not all L are compatible with this operation. 

Spectrum of an equilateral triangle configuration 

A 

A2 

AE 

E 

A3 

E2 

A2E 



Introduction HH formalism D3h model FF Summary

Algebraic Cluster Model

3↵ particles at the vertices of an equilateral triangle; D3h symmetry

Started by Iachello, Bijker and collaborators [PRC 61 (2000) 067305]

Evidence for triangular D3h symmetry in

12
C

[Maŕın-Lambarri PRL 113 (2014) 012502]

Success of the roto-vibrational spectrum

J. Casal - Padova, May 2019 Workshop in honor A. Vitturi p. 15



Further support to the basic triangular shape comes from our calculations 
based on the quantal solution of the problem of three interaction alpha’s 

(via the two-body Ali-Bodmer plus a three-body potential) within the 
Hyperspherical Harmonics approach (HH), using for the continuum part 

pseudo-states given by Transformed Harmonic Oscillator (THO). 

Results from the HH formulation support the description of the ground 
and 2+

1 state of  12C as 
three  particles with the symmetry of an equilateral triangle. On the other 

hand the wave function for the Hoyle state seems to present a more 
complicated structure. Introduction HH formalism D3h model FF Summary

w.f. distributed around a mean triangular configuration
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=) This gives a solid foundation to algebraic models:
12C as three ↵ particles in an equilateral triangle (D
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symmetry),
subject to rotations and vibrations

J. Casal - Padova, May 2019 Workshop in honor A. Vitturi p. 13

Introduction HH formalism D3h model FF Summary

✓

y

~x

~y

�

y

P

j

3

(y, ✓
y

) =
y

2 sin ✓
y

2j + 1

X

µ

Z
x

2

d~xd�

y

| jµ(x,y)|2

= · · · ' 1

2
sin ✓

y

Z
dxP

j(x, y)

Plotted as a function of x
3

= r

y

cos ✓
y

and y

3

= r

y

sin ✓
y

:

Symmetric distributions indicate configurations of isosceles triangle

J. Casal - Padova, May 2019 Workshop in honor A. Vitturi p. 12

rx rx 

ry ry 

2+1	 0+2	

Casal, Fortunato,  
Vitturi, 2019 

|Ψ|2





0+ 

2+ 

3- 

>	
ground 
band 



4

FIG. 3: Radial transition densities, ⇢�,µgs in Eq. 2, of g.s. band
with A symmetry.

FIG. 4: Calculated values of B(E2; 2+2 ! 0+2) (upper panel
in e2 fm4) and hr2i2

0+2
(lower panel, in fm) as a function of

��A.

gives a radius of 3.43 fm (about 1 fm more than the g.s.
as in Ref. [36]) and a transition rate of about 59.6 e

2fm4,
that is comparable with the calculations of Ref. [35], we
can compute the density of the Hoyle state, shown in Fig.
5. The expansion of this density in spherical harmonics,
with an expression analogous to Eq. (2), is given in Fig.
6, where one can see the di↵erence of the �µ = 00 term
with respect to the ground-state. The central region is
depleted and clusterization is more evident.

TABLE I: Calculated observables within the g.s. band.

hr2i1/2
0+1

2.45 (fm)

B(E2; 2+1 ! 0+1 ) 7.86 (e2fm4)

B(E3; 3�1 ! 0+1 ) 65.07 (e2fm6)

B(E4; 4+1 ! 0+1 ) 96.99 (e2fm8)

FIG. 5: Density of the Hoyle state, that is the first A-type vi-
bration in this model, with the alpha’s caught at the moment
of maximum elongation.

FIG. 6: Radial transition densities, �⇢�,µgs!A(r) of Eq. 11,
within the excited A-band.

The transition density connecting the ground state
band with the Hoyle band, with A symmetry, can be
obtained as an expansion in the small displacements at
leading order:

�⇢

gs!A

(~r) = �1
d

d�

⇢

gs

(~r,�) . (10)

To calculate the transition rates between the g.s. band
and the first excited A-type band, one must set the intrin-
sic transition matrix element �1, akin to the parameter
used in Ref. [6], Table I. We set �1 = 0.247255 using the
value of the monopole matrix element M(E0) in Table
II fixed at 5.4 e fm2, that is the value measured in Ref.
[39, 40]. There are other values for this matrix element,
namely in [41], the isoscalarB(E1) is given as an isoscalar
energy weighted sum rule strength of 0.08± 0.02(%).
The transition density from the ground-state band to

5

TABLE II: The transition strengths B(E�) of 12C calculated with the AMD, AMD+GCM, and RGM. For the 1�
1

! 0+
1

tran-
sition, a quarter of the isoscalar dipole transition strength B(IS�)/4 is shown. The scaling factors f

tr

=
p

B
exp

(E�)/B
cal

(E�)
determined by the ratio of the experimental strength B

exp

(E�) and the calculated strength B
cal

(E�) are also shown. The
experimental B(E�) are taken from Ref. [59]. aThe updated value of B(E2 : 2+

2

! 0+
1

) from Ref [3] by the reanalysis of the
data in Ref. [62]. bThe f

tr

value for the 1�
1

! 0+
1

transition is determined by adjusting the charge form factor to the electron
scattering data [61]. The units of the transition strengths are e2 fm4 for B(E0), fm6 for B(IS1), and e2 fm2� for other B(E�).

exp AMD AMD+GCM RGM

B(E�) (error) B(E�) f
tr

B(E�) f
tr

B(E�) f
tr

E2 : 2+
1

! 0+
1

7.59 (0.42) 8.53 0.94 9.09 0.91 9.31 0.90

E0 : 0+
2

! 0+
1

29.2 (0.2) 43.5 0.82 43.3 0.82 43.8 0.82

E2 : 0+
2

! 2+
1

13.5 (1.4) 25.1 0.73 24.1 0.75 5.6 1.56

E2 : 2+
2

! 0+
1

1.57a (0.13) 0.39 1.99 0.49 1.93 2.48 0.80

E2 : 3�
1

! 1�
1

40.7 1 79.0 1

E0 : 0+
3

! 0+
1

5.2 1 10.0 1

IS1 : 1�
1

! 0+
1

2.6 1.57b 2.4 1.93b 5.7 1

IS1 : 1�
2

! 0+
1

1.5 1

E3 : 3�
1

! 0+
1

103 (17) 71 1.20 71 1.20 125 0.91

E4 : 4+
1

! 0+
1

733 1 995 1 655 1

E3 : 3�
1

! 0+
2

428 1 1210 1 228 1

E2 : 2+
2

! 0+
2

102 1 182 1 212 1

E2 : 2+
2

! 0+
3

309 1 223 1

E
↵

= 240 MeV. Because the scaled transition density can
reproduce both the electric scattering and ↵ scattering
data, we can estimate the IS dipole transition strength
as B(IS1; 1�

1

! 0+
1

)/4 = 6–9 fm6.

The 2+
2

state is the newly discovered state by ↵ inelas-
tic scattering and �-decay experiments [3, 36, 37]. The
predicted cross sections of the 2+

2

state are much smaller
than the 2+

1

state consistently with the weak E2 transi-
tion from the 0+

1

, a small B(E2; 2+
2

! 0+
1

), because this
state is the cluster state and has the strong E2 transitions
not to the ground state but to the 0+

2

and 0+
3

states. In
Fig. 4, we compare the incoherent sum of the 2+

2

and 0+
3

cross sections at 386 MeV compared with the experimen-
tal sum of the 2+

2

(9.84) MeV and 0+
3

(9.93 MeV) reported
in Ref. [36]. The 2+

2

and 0+
3

cross sections at 240 MeV
are also shown together with the experimental 0+

3

cross
sections. In the calculation, the 0+

3

and 2+
2

cross sections
describe respectively the first and second peaks, and both
contribute to the third peak of the summed cross sec-
tions. This result is similar to the experimental MDA
analysis [36] and the theoretical calculation of Ref. [45],
where the optical potentials have been phenomenologi-
cally tuned to reproduce the experimental cross sections.
In the reproduction of the experimental data, the AMD
result seems to be favored rather than the AMD+GCM,
though quality of the reproduction is not satisfactory to
conclude it.

For the 1�
2

, and 4+
2

states, there are no available data
and the calculated cross sections are theoretical predic-
tions. As discussed in Ref. [40], the predicted 1�

2

is
a toroidal dipole state and contributes to the isoscalar

dipole strengths in the low-energy region below the giant
dipole resonance. In the ↵ scattering experiment at 240
MeV [38], the significant isoscalar dipole strength around
15 MeV has been observed in the MDA, and it is a can-
didate for the predicted toroidal state of the 1�

2

.

TABLE III: References for experimental di↵erential cross
sections of the ↵ scattering on 12C at incident energies of
E

↵

= 130 MeV, 172.5 MeV, 240 MeV, and 386 MeV. aThe ex-
citation energy of the 0+

3

state (the broad resonance around 10
MeV) is 10.3 MeV in Ref. [38] and 9.93 MeV in Ref. [36]. bThe
sum of the cross sections of the 2+

2

(9.84 MeV) and 0+
3

(9.93
MeV).

J⇡

f

(E
x

) 130 MeV 172 MeV 240 MeV 386

0+
1

(0.00) [46] [50],[49] [38] [36]

2+
1

(2.44) [46] [50] [38] [36]

0+
2

(7.65) [46] [50] [38] [36],[46]

0+
3

(10.3a) [38] [36]b

2+
2

(9.84) [36]b

3�
1

(9.64) [46] [50] [38] [36],[46]

1�
1

(10.84) [46] [38]

4+
1

(14.0) [50]
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FIG. 7: Transition density for the first A-type vibration.

FIG. 8: Transition densities for the first A-type vibration and
expansion in the lowest order spherical harmonics.

the first excited A-band takes the form:

�⇢

gs!A

(~r) =
X

�µ

�⇢

�µ

gs!A

(r)Y
�µ

(✓,') (11)

and it is shown in Fig. 7. The radial components of
the expansion in spherical harmonics are shown in Fig.
8, for the allowed values of K = 0, 3, 6, · · · [5, 6]. The
cut in the first picture shows the moment at which the
particles oscillate away from the center in a synchronous
fashion, thus depleting the central region (negative tran-
sitions density) and enhancing the external regions (pos-
itive transition density). We give in Table II the calcu-
lated values for other observables.

Together with the A-type normal mode, there is an-
other doubly-degenerate normal mode with E symmetry.
The two panels of Fig.9 show the densities of the doubly-
degenerate E-type band, whereas the panels of Fig. 11
show the corresponding transition densities. The vec-
tor displacements associated with this mode are shown

TABLE II: Quantities calculated in the present work for the
Hoyle band, using the values of �, �1 given in the text.

hr2i1/2
0+2

3.44 (fm)

B(E2; 2+2 ! 0+1 ) 0.58 (e2fm4)

B(E2; 0+2 ! 2+1 ) 2.90 (e2fm4)

B(E3; 3�2 ! 0+1 ) 70.42 (e2fm6)

M(E0; 0+2 ! 0+1 ) 5.4 (e fm2)

in the insets of Fig. 10. Now one cannot simplify the
notation to the radial variable only as in the preceding
case, because these vectors do not point along the radial
direction, therefore in principle one should take:

E ~r

k

+�~r

E

k

| �~r

E

k

|! ⌘ , (12)

but since the direction of the vectors is fixed, we will
consider only the magnitude of the displacements, that
we call ⌘. In Fig. 9, the amplitude of the vibration has
been arbitrarily set to 0.5 fm for the sake of illustrating
the fact that this vibration correspond to the channel
forming 8Be plus an ↵ particle: in fact, in both plots,
one of the alpha’s retains its density almost intact and
detaches from the rest.
The transition density takes a form similar to Eq. (10),

namely

�⇢

gs!E

(~r) = �2
d

d⌘

⇢

gs

(~r, ⌘) . (13)

where the value of �2 should be set using some experi-
mental observable. This is di�cult to be accomplished
here, as the only information easily accessible is the
model-dependent isoscalar M(E1) value given in Ref.
[35, 41] and extracted in ↵�scattering experiments. In
the present case we adopt �2 = 0.136 and obtain the
value M(E1

iso

; 0+1 ! 1�1 ) ' 0.31efm3.
The transition densities for the E-type vibrations are

expanded in multiples

�⇢

gs!E

(~r) =
X

�µ

�⇢

�µ

gs!E

(r)Y
�µ

(✓,') (14)

and the radial part of the transition densities for the first
few states, having K = 1 or K = 2 (and, more in general,
all values of K that are not divisible by 3) are shown in
Fig. 12. Notice that the curves are the same for the two
degenerate modes. The smaller one, i.e. the {�µ} = {31}
component, has been magnified three times to make it
comparable with the others.

III. FORM FACTORS

The densities and transitions densities described above
in the equilateral triangular cluster model contain all the
structure information to compute form factors for inelas-
tic excitation processes such as the ↵ + 12C scattering,

5

TABLE II: The transition strengths B(E�) of 12C calculated with the AMD, AMD+GCM, and RGM. For the 1�
1

! 0+
1

tran-
sition, a quarter of the isoscalar dipole transition strength B(IS�)/4 is shown. The scaling factors f

tr

=
p

B
exp

(E�)/B
cal

(E�)
determined by the ratio of the experimental strength B

exp

(E�) and the calculated strength B
cal

(E�) are also shown. The
experimental B(E�) are taken from Ref. [59]. aThe updated value of B(E2 : 2+

2

! 0+
1

) from Ref [3] by the reanalysis of the
data in Ref. [62]. bThe f

tr

value for the 1�
1

! 0+
1

transition is determined by adjusting the charge form factor to the electron
scattering data [61]. The units of the transition strengths are e2 fm4 for B(E0), fm6 for B(IS1), and e2 fm2� for other B(E�).

exp AMD AMD+GCM RGM

B(E�) (error) B(E�) f
tr

B(E�) f
tr

B(E�) f
tr

E2 : 2+
1

! 0+
1

7.59 (0.42) 8.53 0.94 9.09 0.91 9.31 0.90

E0 : 0+
2

! 0+
1

29.2 (0.2) 43.5 0.82 43.3 0.82 43.8 0.82

E2 : 0+
2

! 2+
1

13.5 (1.4) 25.1 0.73 24.1 0.75 5.6 1.56

E2 : 2+
2

! 0+
1

1.57a (0.13) 0.39 1.99 0.49 1.93 2.48 0.80

E2 : 3�
1

! 1�
1

40.7 1 79.0 1

E0 : 0+
3

! 0+
1

5.2 1 10.0 1

IS1 : 1�
1

! 0+
1

2.6 1.57b 2.4 1.93b 5.7 1

IS1 : 1�
2

! 0+
1

1.5 1

E3 : 3�
1

! 0+
1

103 (17) 71 1.20 71 1.20 125 0.91

E4 : 4+
1

! 0+
1

733 1 995 1 655 1

E3 : 3�
1

! 0+
2

428 1 1210 1 228 1

E2 : 2+
2

! 0+
2

102 1 182 1 212 1

E2 : 2+
2

! 0+
3

309 1 223 1

E
↵

= 240 MeV. Because the scaled transition density can
reproduce both the electric scattering and ↵ scattering
data, we can estimate the IS dipole transition strength
as B(IS1; 1�

1

! 0+
1

)/4 = 6–9 fm6.

The 2+
2

state is the newly discovered state by ↵ inelas-
tic scattering and �-decay experiments [3, 36, 37]. The
predicted cross sections of the 2+

2

state are much smaller
than the 2+

1

state consistently with the weak E2 transi-
tion from the 0+

1

, a small B(E2; 2+
2

! 0+
1

), because this
state is the cluster state and has the strong E2 transitions
not to the ground state but to the 0+

2

and 0+
3

states. In
Fig. 4, we compare the incoherent sum of the 2+

2

and 0+
3

cross sections at 386 MeV compared with the experimen-
tal sum of the 2+

2

(9.84) MeV and 0+
3

(9.93 MeV) reported
in Ref. [36]. The 2+

2

and 0+
3

cross sections at 240 MeV
are also shown together with the experimental 0+

3

cross
sections. In the calculation, the 0+

3

and 2+
2

cross sections
describe respectively the first and second peaks, and both
contribute to the third peak of the summed cross sec-
tions. This result is similar to the experimental MDA
analysis [36] and the theoretical calculation of Ref. [45],
where the optical potentials have been phenomenologi-
cally tuned to reproduce the experimental cross sections.
In the reproduction of the experimental data, the AMD
result seems to be favored rather than the AMD+GCM,
though quality of the reproduction is not satisfactory to
conclude it.

For the 1�
2

, and 4+
2

states, there are no available data
and the calculated cross sections are theoretical predic-
tions. As discussed in Ref. [40], the predicted 1�

2

is
a toroidal dipole state and contributes to the isoscalar

dipole strengths in the low-energy region below the giant
dipole resonance. In the ↵ scattering experiment at 240
MeV [38], the significant isoscalar dipole strength around
15 MeV has been observed in the MDA, and it is a can-
didate for the predicted toroidal state of the 1�

2

.

TABLE III: References for experimental di↵erential cross
sections of the ↵ scattering on 12C at incident energies of
E

↵

= 130 MeV, 172.5 MeV, 240 MeV, and 386 MeV. aThe ex-
citation energy of the 0+

3

state (the broad resonance around 10
MeV) is 10.3 MeV in Ref. [38] and 9.93 MeV in Ref. [36]. bThe
sum of the cross sections of the 2+

2

(9.84 MeV) and 0+
3

(9.93
MeV).

J⇡

f

(E
x

) 130 MeV 172 MeV 240 MeV 386

0+
1

(0.00) [46] [50],[49] [38] [36]

2+
1

(2.44) [46] [50] [38] [36]

0+
2

(7.65) [46] [50] [38] [36],[46]

0+
3

(10.3a) [38] [36]b

2+
2

(9.84) [36]b

3�
1

(9.64) [46] [50] [38] [36],[46]

1�
1

(10.84) [46] [38]

4+
1

(14.0) [50]
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From densities and transition densities 
to potentials and form factors  

Introduction HH formalism D3h model FF Summary

Form factors Fij(R), using:

Transition densities within the algebraic cluster model

Fij(R) =

Z Z
⇢↵(~r1 � ~

R)vNN (|~r12|)�⇢i!j(~r2)d~r1d~r2

(vNN : Reid-type M3Y)

Wavefunctions from the hyperspherical three-body approach

Fij(R) = h i|
3X

q=1

V↵↵(|~rq � ~

R|)| ji

(with V↵↵ from folding)

So far: Real part only (no absorption)

0+1 , 2
+
1 , 0

+
2 states

J. Casal - Padova, May 2019 Workshop in honor A. Vitturi p. 24

alpha+12C: folding densities and transition 
densities with the density of the projectile alpha   

Diagonal terms: potentials 

Potentials are different  
within the different bands 

7

FIG. 11: The doubly degenerate E-type vibrations have two
transition densities �⇢ corresponding to the two normal modes
of motions shown in the inset of Fig. (11).

In these figures the excitation processes of interest are
those related to the 2+ states in the ground and ”Hoyle”
bands. The comparison between the intra- and inter-
band transitions shows that the form factor for the tran-
sition from 0H to 2+2 has a larger radial extension that
the other two transitions taken into consideration. As a
consequence the angular distribution for this transition
may extend on a reduced angular range compared to the
other ones and therefore might give a hint on the radial
extension of the 2+2 state[31]. The strong inband cou-
pling could give rise instead to a significant interference
between the direct population of the 2+2 state and the
two-step process via the 0H state. This interference, once
plugged into a coupled-channel calculation could give in-
formation on the di↵erent radial size of the ground and
Hoyle bands as a function of scattering angle and bom-
barding energy.

FIG. 12: Radial transition densities �⇢�µgs!E(r) to the E-type
band for the first type of motion (cfr. inset). The correspond-
ing transition densities for the second type of motion can be
obtained upon changing sign for 11 and 31.

0 2 4 6 8
r (fm)

-150

-100

-50

0

V N
 (M

eV
)

VN (g.s.)
VN (0H)

α + 12C

FIG. 13: Double folding nuclear potentials for the system ↵
+12C for the ground (red dot-dashed line) and the ”Hoyle”
(blue dashed line) band states.

IV. CONCLUSIONS

Appendix

The states in the laboratory frame can be written as

| IM, nAnEi =

X

K

s
2I + 1

16⇡2(1 + �K,0)
| {z }

NK

�
D(I)⇤

MK + (�1)KD(I)⇤
M,�K

�
| nAnEi

(16)
where the intrinsic state | nAnEi is labeled by the num-
ber of phonons of each type, such that the ground state

The nuclear form factors are 
given by  The nucleon nucleon interaction 

depends on the isospin  

where	τi	are the isospin of the 
nucleons.	

In the case ρn= N/A ρ; ρp= Z/A ρ,  
F1 is zero when one of the two 
nuclei has N=Z. 

Double folding procedure  
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FIG. 15: Form factors in logarithmic scale for a few inelas-
tic excitation processes of interest. We show the nuclear,
coulomb and total form factors.
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is | 00i,while the bandheads of the A and E type first

vibrations are | 10i and | 01i respectively.
The transition density in the laboratory frame can be

related to that into the intrinsic frame with

hIfMf , nAnE | ⇢̂ | IiMi, nAnEi =

X

�µ

�⇢�µ(r)
X

Ki,Kf

N ⇤
Kf

NKi

X



CY�(✓') (17)

where the summations are taken on non-negative values
of K’s and where

C =
8⇡2

(2If + 1)
hIf�Ii | MfµMii

⇣
hIf�Ii | KfKii+

(�1)Kf hIf�Ii | (�Kf )Kii+(�1)KihIf�Ii | Kf(�Ki)i+

+(�1)Kf+KihIf�Ii | (�Kf )(�Ki)i
⌘

(18)

From this one can calculate reduced matrix elements
and probabilities.
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First results within the ground band 

elastic 

    inelastic 
(to the members of 
the ground-state 
band) 

DWBA    α+12C  240MeV 

10
-2

10
-1

10
0

10
1

10
2

R
u
th

er
fo

rd
 r

at
io

0 5 10 15 20 25 30

θ (deg)

10
-2

10
-1

10
0

10
1

10
2

C
ro

ss
 s

ec
ti

o
n
 (

m
b
/s

r)

10
0

10
1

10
2

10
3

data B. John et al. PRC68(2013)014305
0

+

1

3
-

1

240 MeV

2
+

1



To the Hoyle state …..  others in progress  …. 
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