Symmetry restoration in the mean-field description of proton-neutron pairing

Antonio Márquez Romero
September 3, 2019

Recent advances on proton-neutron pairing, ESNT 2-6 September 2019

Table of contents

1. Introduction
2. Mean-field description and beyond
3. Results
4. $A=4$ and $A=6$ cases
5. Separable pairing
6. Conclusions

Introduction

Motivation

- Proton-neutron (pn) pairing correlations have been largely neglected in most of the calculations in nuclear structure.

[^0]
Motivation

- Proton-neutron (pn) pairing correlations have been largely neglected in most of the calculations in nuclear structure.
- Coexistence between proton-neutron (isoscalar) and like-particle (isovector) condensates is expected to appear in $N=Z$ nuclei 1.

[^1]
Motivation

- Proton-neutron (pn) pairing correlations have been largely neglected in most of the calculations in nuclear structure.
- Coexistence between proton-neutron (isoscalar) and like-particle (isovector) condensates is expected to appear in $N=Z$ nuclei 1.

- The aforementioned coexistence is elusive ${ }^{2}$ and "no symmetry-unrestricted mean-field calculations of pn pairing with an isospin conserving formalism have been carried out"3.
${ }^{1}$ Frauendorf, S., Macchiavelli, A. O. (2014). Overview of np pairing. PPNP, 78
${ }^{2}$ Rrapaj, Ermal, Macchiavelli A.O., and Gezerlis A. Symmetry restoration in mixed-spin paired heavy nuclei. PRC 99.1 (2019)
${ }^{3}$ Perliska, E., et al. "Local density approximation for pn pairing correlations:

$S O(8)$ solvable model

Pairing Hamiltonian:

$S O(8)$ solvable model

Pairing Hamiltonian:

$$
\begin{gather*}
\hat{H}=\overbrace{-g(1-x) \sum_{\nu} \hat{P}_{\nu}^{\dagger} \hat{P}_{\nu}}^{\text {Isovector contribution }} \underbrace{-g(1+x) \sum_{\mu} \hat{D}_{\mu}^{\dagger} \hat{D}_{\mu}}_{\text {Isoscalar contribution }} \\
\hat{P}_{\nu}^{\dagger}=\sqrt{\frac{2 l+1}{2}}\left(a_{l \frac{1}{2} \frac{1}{2}}^{\dagger} a_{l \frac{1}{2} \frac{1}{2}}^{\dagger}\right)_{M=0, S_{z}=0, T_{z}=\nu}^{L=0, S=0, T=1} \tag{1}\\
\hat{D}_{\mu}^{\dagger}=\sqrt{\frac{2 l+1}{2}}\left(a_{l \frac{1}{2} \frac{1}{2}}^{\dagger} a_{l \frac{1}{2} \frac{1}{2}}^{\dagger}\right)_{M=0, S z=\mu, T_{z}=0}^{L=0, S=1, T=0} \tag{2}
\end{gather*}
$$

x : mixing parameter, g : strength of the interaction.

Mean-field description and beyond

Hartree-Fock-Bogoliubov (HFB) formalism

Starting point: HFB calculation, by means of a transformation from the single-particle basis ($\hat{a}, \hat{a}^{\dagger}$) to the quasiparticle basis $\left(\hat{\beta}, \hat{\beta}^{\dagger}\right)$

$$
\hat{\beta}_{i}^{\dagger}=\sum_{k} u_{i k} \hat{a}_{i}^{\dagger}+v_{i k} \hat{a}_{i} \longrightarrow \hat{\beta}|\Psi\rangle=0
$$

including spin and isospin mixing. By means of the Thouless theorem, we include the contribution from each correlated pair in the wavefunction

$$
\begin{equation*}
|\Psi\rangle=\mathcal{N} \exp \left(\hat{Z}^{+}\right)|0\rangle \tag{3}
\end{equation*}
$$

with

$$
\begin{equation*}
\hat{Z}^{+}=\sum_{\nu= \pm 1,0} p_{\nu} \hat{P}_{\nu}^{+}+\sum_{\mu= \pm 1,0} d_{\mu} \hat{D}_{\mu}^{+} \tag{4}
\end{equation*}
$$

Hartree-Fock-Bogoliubov (HFB) formalism

Starting point: HFB calculation, by means of a transformation from the single-particle basis ($\hat{a}, \hat{a}^{\dagger}$) to the quasiparticle basis $\left(\hat{\beta}, \hat{\beta}^{\dagger}\right)$

$$
\hat{\beta}_{i}^{\dagger}=\sum_{k} u_{i k} \hat{a}_{i}^{\dagger}+v_{i k} \hat{a}_{i} \longrightarrow \hat{\beta}|\Psi\rangle=0
$$

including spin and isospin mixing. By means of the Thouless theorem, we include the contribution from each correlated pair in the wavefunction

$$
\begin{equation*}
|\Psi\rangle=\mathcal{N} \exp \left(\hat{Z}^{+}\right)|0\rangle \tag{3}
\end{equation*}
$$

with

$$
\begin{equation*}
\hat{Z}^{+}=\sum_{\nu= \pm 1,0} p_{\nu} \hat{P}_{\nu}^{+}+\sum_{\mu= \pm 1,0} d_{\mu} \hat{D}_{\mu}^{+} \tag{4}
\end{equation*}
$$

Only axial pairs are needed

$$
\begin{equation*}
p_{0}=\sin (\alpha / 2) e^{-i \varphi}, \quad d_{0}=\cos (\alpha / 2) e^{i \varphi} \tag{5}
\end{equation*}
$$

Hartree-Fock-Bogoliubov (HFB) formalism

Starting point: HFB calculation, by means of a transformation from the single-particle basis $\left(\hat{a}, \hat{a}^{\dagger}\right)$ to the quasiparticle basis ($\hat{\beta}, \hat{\beta}^{\dagger}$)

$$
\hat{\beta}_{i}^{\dagger}=\sum_{k} u_{i k} \hat{a}_{i}^{\dagger}+v_{i k} \hat{a}_{i} \longrightarrow \hat{\beta}|\Psi\rangle=0
$$

including spin and isospin mixing. By means of the Thouless theorem, we include the contribution from each correlated pair in the wavefunction

$$
\begin{equation*}
|\Psi\rangle=\mathcal{N} \exp \left(\hat{Z}^{+}\right)|0\rangle \tag{3}
\end{equation*}
$$

with

$$
\begin{equation*}
\hat{Z}^{+}=\sum_{\nu= \pm 1,0} p_{\nu} \hat{P}_{\nu}^{+}+\sum_{\mu= \pm 1,0} d_{\mu} \hat{D}_{\mu}^{+} \tag{4}
\end{equation*}
$$

Only axial pairs are needed

$$
\begin{equation*}
p_{0}=\sin (\alpha / 2) e^{-i \varphi}, \quad d_{0}=\cos (\alpha / 2) e^{i \varphi} \tag{5}
\end{equation*}
$$

The resulting HFB energy being $E=\langle\Psi| \hat{H}|\Psi\rangle$

HFB results ${ }^{4}$

Figure 1: Energy (arbitrary units) as a function of the tuning parameter x for a model-space with $l=2, A=12$ obtained from the HFB and exact solutions.

HFB results

Figure 2: Normalised "number of pairs" as a function of the tuning parameter x computed using the HFB method.

Beyond mean-field: restoration of broken symmetries

The quasiparticle vacuum $|\Psi\rangle$ is a superposition of states with good particle (A), spin (S) and isospin (T) numbers, $|\Psi\rangle=\sum_{A S T} c_{A S T}|A S T\rangle$, leading to broken symmetries.

Beyond mean-field: restoration of broken symmetries

The quasiparticle vacuum $|\Psi\rangle$ is a superposition of states with good particle (A), spin (S) and isospin (T) numbers, $|\Psi\rangle=\sum_{A S T} c_{A S T}|A S T\rangle$, leading to broken symmetries. By means of projection methods, these symmetries can be restored,

$$
|A S T\rangle=\hat{P}^{A} \hat{P}^{S} \hat{P}^{T}|\Psi\rangle
$$

with

$$
\begin{gather*}
\hat{P}^{A}|\Psi\rangle=\frac{1}{2 \pi} \int_{0}^{2 \pi} d \varphi e^{i \varphi(\hat{A}-A)}|\Psi\rangle \tag{6}\\
\hat{P}_{S_{z}^{\prime} S_{z}}^{S}|\Psi\rangle=\frac{2 S+1}{8 \pi^{2}} \int d \Omega_{S} D_{S_{z}^{\prime} S_{z}}^{S *}\left(\Omega_{S}\right) \hat{R}\left(\Omega_{S}\right)|\Psi\rangle \tag{7}\\
\hat{P}_{T_{z}^{\prime} T_{z}}^{T}|\Psi\rangle=\frac{2 T+1}{8 \pi^{2}} \int d \Omega_{T} D_{T_{z}^{\prime} T_{z}}^{T *}\left(\Omega_{T}\right) \hat{R}\left(\Omega_{T}\right)|\Psi\rangle \tag{8}
\end{gather*}
$$

Beyond mean-field: restoration of broken symmetries

The quasiparticle vacuum $|\Psi\rangle$ is a superposition of states with good particle (A), spin (S) and isospin (T) numbers, $|\Psi\rangle=\sum_{A S T} c_{A S T}|A S T\rangle$, leading to broken symmetries. By means of projection methods, these symmetries can be restored,

$$
|A S T\rangle=\hat{P}^{A} \hat{P}^{S} \hat{P}^{T}|\Psi\rangle
$$

with

$$
\begin{gather*}
\hat{P}^{A}|\Psi\rangle=\frac{1}{2 \pi} \int_{0}^{2 \pi} d \varphi e^{i \varphi(\hat{A}-A)}|\Psi\rangle \tag{6}\\
\hat{P}_{S_{z}^{\prime} S_{z}}^{S}|\Psi\rangle=\frac{2 S+1}{8 \pi^{2}} \int d \Omega_{S} D_{S_{z}^{\prime} S_{z}}^{S *}\left(\Omega_{S}\right) \hat{R}\left(\Omega_{S}\right)|\Psi\rangle \tag{7}\\
\hat{P}_{T_{z}^{\prime} T_{z}}^{T}|\Psi\rangle=\frac{2 T+1}{8 \pi^{2}} \int d \Omega_{T} D_{T_{z}^{\prime} T_{z}}^{T *}\left(\Omega_{T}\right) \hat{R}\left(\Omega_{T}\right)|\Psi\rangle \tag{8}
\end{gather*}
$$

and the "projected energy" is calculated as

$$
E_{\text {proj }}=\frac{\langle\Psi| \hat{H}|A S T\rangle}{\langle\Psi \mid A S T\rangle}
$$

Choice: variate, then project; or project, then variate?

We find two options to perform beyond mean-field calculations,

- Projection after variation (PAV):

$$
\left.\delta \frac{\langle\Psi| \hat{H}|\Psi\rangle}{\langle\Psi \mid \Psi\rangle}\right|_{\left|\Psi_{\mathrm{PAV}}\right\rangle}=0 \longrightarrow E_{\mathrm{proj}}^{\mathrm{PAV}}=\frac{\left\langle\Psi_{\mathrm{PAV}}\right| \hat{H}|A S T\rangle}{\left\langle\Psi_{\mathrm{PAV}} \mid A S T\right\rangle}
$$

- Variation after projection (VAP):

$$
\left.\delta \frac{\langle\Psi| \hat{H}|A S T\rangle}{\langle\Psi \mid A S T\rangle}\right|_{\left|\Psi_{\mathrm{VAP}}\right\rangle}=0 \longrightarrow E_{\mathrm{proj}}^{\mathrm{VAP}}=\frac{\left\langle\Psi_{\mathrm{VAP}}\right| \hat{H}|A S T\rangle}{\left\langle\Psi_{\mathrm{VAP}} \mid A S T\right\rangle}
$$

Choice: variate, then project; or project, then variate?

We find two options to perform beyond mean-field calculations,

- Projection after variation (PAV):

$$
\left.\delta \frac{\langle\Psi| \hat{H}|\Psi\rangle}{\langle\Psi \mid \Psi\rangle}\right|_{\left|\Psi_{\mathrm{PAV}}\right\rangle}=0 \longrightarrow E_{\mathrm{proj}}^{\mathrm{PAV}}=\frac{\left\langle\Psi_{\mathrm{PAV}}\right| \hat{H}|A S T\rangle}{\left\langle\Psi_{\mathrm{PAV}} \mid A S T\right\rangle}
$$

- Variation after projection (VAP):

$$
\left.\delta \frac{\langle\Psi| \hat{H}|A S T\rangle}{\langle\Psi \mid A S T\rangle}\right|_{\left|\Psi_{\mathrm{VAP}}\right\rangle}=0 \longrightarrow E_{\mathrm{proj}}^{\mathrm{VAP}}=\frac{\left\langle\Psi_{\mathrm{VAP}}\right| \hat{H}|A S T\rangle}{\left\langle\Psi_{\mathrm{VAP}} \mid A S T\right\rangle}
$$

As these methods rely upon the variational principle, the VAP approach should perform better.

Signature of the states

- States of good quantum numbers $|A S T\rangle$ are also eigenstates of the signature operators in spin and isospin space

$$
\begin{equation*}
\hat{R}_{S}(\pi)=e^{-i \pi \hat{S}_{y}} \quad \hat{R}_{T}(\pi)=e^{-i \pi \hat{T}_{y}} \tag{9}
\end{equation*}
$$

Signature of the states

- States of good quantum numbers $|A S T\rangle$ are also eigenstates of the signature operators in spin and isospin space

$$
\begin{equation*}
\hat{R}_{S}(\pi)=e^{-i \pi \hat{S}_{y}} \quad \hat{R}_{T}(\pi)=e^{-i \pi \hat{T}_{y}} \tag{9}
\end{equation*}
$$

- Signature of axial (projection zero) states:

$$
\begin{equation*}
\hat{R}_{S}(\pi) \hat{R}_{T}(\pi)|S T\rangle=(-1)^{S+T}|S T\rangle \tag{10}
\end{equation*}
$$

Signature of the states

- States of good quantum numbers $|A S T\rangle$ are also eigenstates of the signature operators in spin and isospin space

$$
\begin{equation*}
\hat{R}_{S}(\pi)=e^{-i \pi \hat{S}_{y}} \quad \hat{R}_{T}(\pi)=e^{-i \pi \hat{T}_{y}} \tag{9}
\end{equation*}
$$

- Signature of axial (projection zero) states:

$$
\begin{equation*}
\hat{R}_{S}(\pi) \hat{R}_{T}(\pi)|S T\rangle=(-1)^{S+T}|S T\rangle \tag{10}
\end{equation*}
$$

- Signature of particle-number projected states:

$$
\begin{equation*}
\hat{R}_{S}(\pi) \hat{R}_{T}(\pi)|A\rangle=\hat{R}_{S}(\pi) \hat{R}_{T}(\pi) \frac{\left(\hat{Z}^{+}\right)^{A / 2}}{(A / 2)!}|0\rangle=(-1)^{A / 2}|A\rangle \tag{11}
\end{equation*}
$$

Signature of the states

- States of good quantum numbers $|A S T\rangle$ are also eigenstates of the signature operators in spin and isospin space

$$
\begin{equation*}
\hat{R}_{S}(\pi)=e^{-i \pi \hat{S}_{y}} \quad \hat{R}_{T}(\pi)=e^{-i \pi \hat{T}_{y}} \tag{9}
\end{equation*}
$$

- Signature of axial (projection zero) states:

$$
\begin{equation*}
\hat{R}_{S}(\pi) \hat{R}_{T}(\pi)|S T\rangle=(-1)^{S+T}|S T\rangle \tag{10}
\end{equation*}
$$

- Signature of particle-number projected states:

$$
\begin{equation*}
\hat{R}_{S}(\pi) \hat{R}_{T}(\pi)|A\rangle=\hat{R}_{S}(\pi) \hat{R}_{T}(\pi) \frac{\left(\hat{Z}^{+}\right)^{A / 2}}{(A / 2)!}|0\rangle=(-1)^{A / 2}|A\rangle \tag{11}
\end{equation*}
$$

- Therefore

$$
\begin{align*}
\hat{R}_{S}(\pi) \hat{R}_{T}(\pi)|A S T\rangle & =(-1)^{A / 2}|A S T\rangle \\
& =(-1)^{S+T}|A S T\rangle \tag{12}
\end{align*}
$$

Signature of the states

- States of good quantum numbers $|A S T\rangle$ are also eigenstates of the signature operators in spin and isospin space

$$
\begin{equation*}
\hat{R}_{S}(\pi)=e^{-i \pi \hat{S}_{y}} \quad \hat{R}_{T}(\pi)=e^{-i \pi \hat{T}_{y}} \tag{9}
\end{equation*}
$$

- Signature of axial (projection zero) states:

$$
\begin{equation*}
\hat{R}_{S}(\pi) \hat{R}_{T}(\pi)|S T\rangle=(-1)^{S+T}|S T\rangle \tag{10}
\end{equation*}
$$

- Signature of particle-number projected states:

$$
\begin{equation*}
\hat{R}_{S}(\pi) \hat{R}_{T}(\pi)|A\rangle=\hat{R}_{S}(\pi) \hat{R}_{T}(\pi) \frac{\left(\hat{Z}^{+}\right)^{A / 2}}{(A / 2)!}|0\rangle=(-1)^{A / 2}|A\rangle \tag{11}
\end{equation*}
$$

- Therefore

$$
\begin{align*}
\hat{R}_{S}(\pi) \hat{R}_{T}(\pi)|A S T\rangle & =(-1)^{A / 2}|A S T\rangle \\
& =(-1)^{S+T}|A S T\rangle \tag{12}
\end{align*}
$$

- Selection rule for the projected states:
- If $S+T=$ even $\longrightarrow A / 2=$ even
- If $S+T=$ odd $\longrightarrow A / 2=$ odd

Results

Results

Figure 3: HFB (top) and VAP (bottom) energy (arbitrary units) surface as a function of the parameters α and φ for different values x of the interaction, for $S=T=0$ and for a model-space with $\Omega=\sum_{l}(2 l+1)=12, A=24$. Steps of $\Delta E=20,15,13,17$ and 20 , respectively.

Energy

Figure 4: Energy (arbitrary units) as a function of the tuning parameter x for a model space with spatial degeneracy $\Omega=12$ and $A=24, S=T=0$, obtained for HFB, PAV and VAP methods and comparing them to the exact solutions.

Energy: exact and VAP comparison

$$
\begin{aligned}
& \text { - } T=0 \bullet \quad \mathrm{~T}=3 \Delta \quad \Delta T=6 \\
& \square \quad \square T=1 \bullet T=4 \Delta \quad \Delta T=7 \\
& \text { - } \bullet T=2 \triangleleft \rightarrow T=5 \vee \rightharpoonup T=8
\end{aligned}
$$

20

Differences

$$
\begin{array}{|lll}
\square & \square T=0 \bullet & \circ T=3 \Delta \\
\Delta T=6 \\
\square & \square T=1 & \bullet T=4 \Delta \\
\bullet T=7 \\
\bullet & \bullet T=2 \triangleleft & \Delta T=5 \vee \\
\hline
\end{array}
$$

$$
\begin{aligned}
& \square A=4 \odot \quad A=10 \triangle \triangle A=16 \\
& \square \quad \square A=6 \vee A=12 \Delta \triangle A=18 \\
& \bullet A=8 \longmapsto A=14 \longmapsto A=20 \\
& \nabla \quad \nabla A=22
\end{aligned}
$$

Pairing coexistence seen by the VAP approach!

Figure 5: Norm of isoscalar pairs (contribution to the total wavefunction of the nucleus) as a function of the tuning parameter x obtained from VAP and PAV (HFB) methods.

Pairing coexistence for different A, S, T

$$
\begin{aligned}
& \text { - } T=0 \circ \circ T=3 \Delta \quad \Delta T=6 \\
& \square \quad \square T=1 \diamond T=4 \Delta \quad \Delta T=7 \\
& \bullet \bullet T=2 \diamond \rightarrow T=5 \vee \rightharpoonup T=8
\end{aligned}
$$

$$
\begin{aligned}
& \text { 凹 } A=4 ๑ \bullet A=10 \triangleleft \triangle A=16 \\
& \square \quad \square A=6 \longmapsto A=12 \Delta \quad \triangle A=18 \\
& \bullet A=8 \longmapsto A=14 \longmapsto A=20 \\
& \nabla \quad \nabla A=22
\end{aligned}
$$

Deuteron transfer, the link between theory and experiment

$$
\begin{aligned}
& \text { - } T=0 \bullet \multimap T=3 \Delta \triangle T=6 \\
& \square \quad \square T=1 \diamond T=4 \Delta \quad \Delta T=7 \\
& \bullet \bullet T=2 \diamond \diamond T=5 \vee \nabla T=8
\end{aligned}
$$

$$
\begin{aligned}
& \square A=4 \ominus-\square A=10 \triangle \triangle A=16 \\
& \square \quad \square A=6 \boxtimes A=12 \Delta \triangle A=18 \\
& \bullet A=8 \longmapsto A=14 \longmapsto A=20 \\
& \nabla \quad \nabla A=22
\end{aligned}
$$

$$
A=4 \text { and } A=6 \text { cases }
$$

Differences

$$
\begin{array}{|lll}
\square & \square T=0 \bullet & \circ T=3 \Delta \\
\Delta T=6 \\
\square & \square T=1 & \bullet T=4 \Delta \\
\bullet T=7 \\
\bullet & \bullet T=2 \triangleleft & \Delta T=5 \vee \\
\hline
\end{array}
$$

$$
\begin{aligned}
& \square A=4 \odot \quad A=10 \triangle \triangle A=16 \\
& \square \quad \square A=6 \vee A=12 \Delta \triangle A=18 \\
& \bullet A=8 \longmapsto A=14 \longmapsto A=20 \\
& \nabla \quad \nabla A=22
\end{aligned}
$$

Projection gives exact states!

For $A=4, S=T=0$, there are only two possible configurations:

Projection gives exact states!

For $A=4, S=T=0$, there are only two possible configurations:

$$
\begin{equation*}
|A=4, S=T=0\rangle=\left[\alpha\left(\hat{P}^{+} \hat{P}^{+}\right)^{S=0, T=0}+\beta\left(\hat{D}^{+} \hat{D}^{+}\right)^{S=0, T=0}\right]|0\rangle \tag{13}
\end{equation*}
$$

Projection gives exact states!

For $A=4, S=T=0$, there are only two possible configurations:

$$
\begin{equation*}
|A=4, S=T=0\rangle=\left[\alpha\left(\hat{P}^{+} \hat{P}^{+}\right)^{S=0, T=0}+\beta\left(\hat{D}^{+} \hat{D}^{+}\right)^{S=0, T=0}\right]|0\rangle \tag{13}
\end{equation*}
$$

For $A=6$,

$$
\begin{equation*}
|A=6, S=1, T=0\rangle=\hat{D}_{0}^{+}|A=4, S=T=0\rangle \tag{14}
\end{equation*}
$$

Projection gives exact states!

For $A=4, S=T=0$, there are only two possible configurations:

$$
\begin{equation*}
|A=4, S=T=0\rangle=\left[\alpha\left(\hat{P}^{+} \hat{P}^{+}\right)^{S=0, T=0}+\beta\left(\hat{D}^{+} \hat{D}^{+}\right)^{S=0, T=0}\right]|0\rangle \tag{13}
\end{equation*}
$$

For $A=6$,

$$
\begin{equation*}
|A=6, S=1, T=0\rangle=\hat{D}_{0}^{+}|A=4, S=T=0\rangle \tag{14}
\end{equation*}
$$

No longer true for $A>6$. It is not possible to describe those states entirely with our isoscalar and isovector pairs.

Importance of the separate symmetry restorations

Figure 6: HFB (first row), particle-number restored (second row), spin plus isospin restored (third row) and particle number, spin and isospin restored (fourth row) energy surfaces.

Separable pairing

Realistic separable interaction in the pairing channel

$$
\begin{align*}
V\left(\boldsymbol{r}_{\mathbf{1}}, \boldsymbol{r}_{\mathbf{2}} ; \boldsymbol{r}_{\mathbf{1}}^{\prime}, \boldsymbol{r}_{\mathbf{2}}^{\prime}\right) & =-\delta\left(X-X^{\prime}\right) \delta\left(Y-Y^{\prime}\right) \delta\left(Z-Z^{\prime}\right) \\
& \times P(x) P(y) P(z) P\left(x^{\prime}\right) P\left(y^{\prime}\right) P\left(z^{\prime}\right) \tag{15}\\
& \times\left[W+B P^{\sigma}-H P^{\tau}-M P^{\sigma} P^{\tau}\right]
\end{align*}
$$

where $\boldsymbol{r}_{\boldsymbol{i}}=\left(x_{i}, y_{i}, z_{i}\right), x=x_{1}-x_{2}$ and $X=\frac{1}{2}\left(x_{1}+x_{2}\right)$. The interaction is modelled by a Gaussian

$$
\begin{equation*}
P(x)=\frac{1}{\sqrt{4 \pi} a} e^{-x^{2} /\left(4 a^{2}\right)} \tag{16}
\end{equation*}
$$

Realistic separable interaction in the pairing channel

$$
\begin{align*}
V\left(\boldsymbol{r}_{\mathbf{1}}, \boldsymbol{r}_{\mathbf{2}} ; \boldsymbol{r}_{\mathbf{1}}^{\prime}, \boldsymbol{r}_{\mathbf{2}}^{\prime}\right) & =-\delta\left(X-X^{\prime}\right) \delta\left(Y-Y^{\prime}\right) \delta\left(Z-Z^{\prime}\right) \\
& \times P(x) P(y) P(z) P\left(x^{\prime}\right) P\left(y^{\prime}\right) P\left(z^{\prime}\right) \tag{15}\\
& \times\left[W+B P^{\sigma}-H P^{\tau}-M P^{\sigma} P^{\tau}\right]
\end{align*}
$$

where $\boldsymbol{r}_{\boldsymbol{i}}=\left(x_{i}, y_{i}, z_{i}\right), x=x_{1}-x_{2}$ and $X=\frac{1}{2}\left(x_{1}+x_{2}\right)$. The interaction is modelled by a Gaussian

$$
\begin{equation*}
P(x)=\frac{1}{\sqrt{4 \pi} a} e^{-x^{2} /\left(4 a^{2}\right)} \tag{16}
\end{equation*}
$$

Benchmarked with the spherical code HOSPHE with D1 parametrization

$a(\mathrm{fm})$	$W(\mathrm{MeV})$	$B(\mathrm{MeV})$	$H(\mathrm{MeV})$	$M(\mathrm{MeV})$
0.636	-369	369	0	0

Realistic separable interaction in the pairing channel

$$
\begin{align*}
V\left(\boldsymbol{r}_{\mathbf{1}}, \boldsymbol{r}_{\mathbf{2}} ; \boldsymbol{r}_{\mathbf{1}}^{\prime}, \boldsymbol{r}_{\mathbf{2}}^{\prime}\right) & =-\delta\left(X-X^{\prime}\right) \delta\left(Y-Y^{\prime}\right) \delta\left(Z-Z^{\prime}\right) \\
& \times P(x) P(y) P(z) P\left(x^{\prime}\right) P\left(y^{\prime}\right) P\left(z^{\prime}\right) \tag{15}\\
& \times\left[W+B P^{\sigma}-H P^{\tau}-M P^{\sigma} P^{\tau}\right]
\end{align*}
$$

where $\boldsymbol{r}_{\boldsymbol{i}}=\left(x_{i}, y_{i}, z_{i}\right), x=x_{1}-x_{2}$ and $X=\frac{1}{2}\left(x_{1}+x_{2}\right)$. The interaction is modelled by a Gaussian

$$
\begin{equation*}
P(x)=\frac{1}{\sqrt{4 \pi} a} e^{-x^{2} /\left(4 a^{2}\right)} \tag{16}
\end{equation*}
$$

Benchmarked with the spherical code HOSPHE with D1 parametrization

$a(\mathrm{fm})$	$W(\mathrm{MeV})$	$B(\mathrm{MeV})$	$H(\mathrm{MeV})$	$M(\mathrm{MeV})$
0.636	-369	369	0	0

Followed by implementation of isoscalar pairing and the symmetry-restoration methodology.

Conclusions

Summary and ongoing work

- Symmetry-restored mean-field techniques accurately describes the exact solution within a simple $S O(8)$ pairing interaction model and the coexistence of the isoscalar and isovector pair condensates.

Summary and ongoing work

- Symmetry-restored mean-field techniques accurately describes the exact solution within a simple $S O(8)$ pairing interaction model and the coexistence of the isoscalar and isovector pair condensates.
- Restoration of both angular momentum and isospin seems to be of crucial importance for the description of pairing coexistence.

Summary and ongoing work

- Symmetry-restored mean-field techniques accurately describes the exact solution within a simple $S O(8)$ pairing interaction model and the coexistence of the isoscalar and isovector pair condensates.
- Restoration of both angular momentum and isospin seems to be of crucial importance for the description of pairing coexistence.
- Further studies are to be carried out using realistic interactions and shell structure settings.

Thank you for your attention.

[^0]: ${ }^{1}$ Frauendorf, S., Macchiavelli, A. O. (2014). Overview of np pairing. PPNP, 78
 ${ }^{2}$ Rrapaj, Ermal, Macchiavelli A.O., and Gezerlis A. Symmetry restoration in mixed-spin paired heavy nuclei. PRC 99.1 (2019)
 ${ }^{3}$ Perliska, E., et al. "Local density approximation for pn pairing correlations:

[^1]: ${ }^{1}$ Frauendorf, S., Macchiavelli, A. O. (2014). Overview of np pairing. PPNP, 78 ${ }^{2}$ Rrapaj, Ermal, Macchiavelli A.O., and Gezerlis A. Symmetry restoration in mixed-spin paired heavy nuclei. PRC 99.1 (2019)
 ${ }^{3}$ Perliska, E., et al. "Local density approximation for pn pairing correlations:

