Isoscalar and isovector proton-neutron pairing in N > Z nuclei

Daniel Negrea

National Institute of Physics and Nuclear Engineering Bucharest, Romania

Outline of this talk

1. Introduction

2. Isovector-isoscalar quartet model for odd-odd nuclei

- proton-neutron pairing and quartetting in odd-odd nuclei;

- competition between isovector and isoscalar pairing in odd-odd nuclei.

3. Generalization of the isovector-isoscalar quartet model for N > Z even-even nuclei

- like-particle pairing and quartetting in N > Z nuclei;

- competition between isovector and isoscalar pairing in N > Z nuclei.

4. Conclusions and perspectives

Alpha-like quartet condensation offers very accurate results for isovector pairing correlations in even-even N=Z and N>Z nuclei (errors < 1%).

What about the isoscalar proton-neutron pairing? Does exists such kind of pairing in N=Z nuclei?

How it competes with the isovector pairing?

Proton-neutron pairing in odd-odd nuclei

Isovector and isoscalar pairs in N=Z nuclei

(exact solution for a set of degenerate states)

Calculation scheme

Competition between T=1 and T=0 pairing in realistic calculations

$$\widehat{H} = \sum_{i,\tau=\pm 1/2} \, \mathcal{E}_{i,\tau} N_{i,\tau} + \sum_{i,j} V^{T=1} \, (i,j) \sum_{t=-1,0,1} P_{i,t}^+ P_{j,t} + \sum_{i,j} V^{T=0} \, (i,j) \, D_{i,0}^+ D_{j,0}$$

- s.p. states given by axially deformed Skyrme-HF calculations

- zero range delta interaction
$$V_{pairing}^{T=\{0,1\}}(\vec{r}_1 - \vec{r}_2) = V_0^{T=\{0,1\}} \delta(\vec{r}_1 - \vec{r}_2) \widehat{P}_{S=\{0,1\}} = \begin{cases} V_0^{T=1} = 465 \text{ MeV fm}^{-3} \\ V_0^{T=0}/V_0^{T=1} = 1.5 \end{cases}$$
 (Bertsch et al.

		Exact	QCM>	$ iv\rangle$	is>	(iv is)	Correlation energies (MeV)
¹⁶ O	²⁰ Ne ²⁴ Ma	11.38	11.38 (0.00%)	11.31 (0.62%)	10.92 (4.00%) 18.02 (2.00%)	0.976	$E_{corr} = E_0 - E$
-	²⁸ Si	19.52 18.74	19.51 (0.05%) 18.74 (0.01%)	19.18 (0.74%) 18.71 (0.14%)	18.54 (1.07%)	0.980	
⁴⁰Ca	⁴⁴ Ti ⁴⁸ Cr ⁵² Fe	7.095 12.78 16.39	7.094 (0.02%) 12.76 (0.1%) 16.34 (0.26%)	7.08 (0.18%) 12.69 (0.67%) 16.19 (1.17%)	6.30 (10.78%) 12.22 (4.37%) 15.62 (4.65%)	0.928 0.936 0.946	
¹⁰⁰ Sn	¹⁰⁴ Te ¹⁰⁸ Xe ¹¹² Ba	4.53 8.08 9.36	4.52 (0.06%) 8.03 (0.61%) 9.27 (0.93%)	4.49 (0.82%) 7.96 (1.45%) 9.22 (1.43%)	4.02 (11.26%) 6.75 (16.47%) 7.50 (19.81%)	0.955 0.814 0.784	

$$|\text{QCM}\rangle = (\text{A}^+ + \Delta_0^{+2})^{n_q} |0\rangle \quad |\text{iv}\rangle = (\text{A}^+)^{n_q} |0\rangle \quad |\text{is}\rangle = (\Delta_0^{+2})^{n_q} |0\rangle$$

Conclusions:

- QCM describes with very good precision the isoscalar-isovector pairing (errors under 1%);

- isovector pairing correlations are stronger than the isoscalar ones;

- isoscalar pairing coexist with the isovector pairing.

Evolution of the isovector and isoscalar proton-neutron pairing correlations

$$\widehat{H} = \sum_{i,\tau=\pm 1/2} \epsilon_{i,\tau} N_{i,\tau} + g_1 \sum_{i,j} \sum_{t=-1,0,1} P_{i,t}^+ P_{j,t} + g_0 \sum_{i,j} D_{i,0}^+ D_{j,0}$$

$$\begin{bmatrix} g_1 = g(1 - x)/2 \\ g_0 = g(1 + x)/2 \end{bmatrix}$$

 $|\Psi\rangle = (A^+ + \Delta_0^{+2})^{n_q} |0\rangle \quad |iv\rangle = (A^+)^{n_q} |0\rangle \quad |is\rangle = (\Delta_0^{+2})^{n_q} |0\rangle$

Pairing energies:

- E(T=1) and E(T=0) follow very well the exact pairing energies (obtained by diagonalization);

- isovector and isoscalar pairing correlations coexist for any ratio between the strengths of the two pairing forces.

Overlaps:

- the overlaps show a smooth transition from a condensate of quartets to a condensate of pairs.

N. Sandulescu, D. N. and D. Gambacurta, Phys. Lett. B751 (2015), p. 348

How does the proton-neutron pairing affects the ground state of odd-odd N=Z nuclei?

Generalization of QCM for odd-odd systems!

Pairing and quartetting in odd-odd N=Z nuclei

Calculation scheme

Strength of the pairing force in T=1 and T=0 channels

$$\widehat{H} = \sum_{i,\tau=\pm 1/2} \underbrace{\epsilon_{i,\tau}}_{V_{i,\tau}} N_{i,\tau} + \sum_{i,j} \underbrace{V^{T=1}(i,j)}_{t_z=-1,0,1} \sum_{i,t_z} P_{i,t_z} P_{j,t_z} + \sum_{i,j} \underbrace{V^{T=0}(i,j)}_{i,j_z=0} D_{i,j_z=0}^+ D_{j,j_z=0}^+ D_{j,j_z=0}^+$$

- s.p. states given by Skyrme-HF calculations for axially deformed m.f.

- zero range delta interaction $V_{pairing}^{T=\{0,1\}}(\vec{r}_1 - \vec{r}_2) = V_0^{T=\{0,1\}} \delta(\vec{r}_1 - \vec{r}_2) \widehat{P}_{S=\{0,1\}}$

$$V_0^{T=0} = \bigvee V_0^{T=1}$$
$$w = ?$$

A<40: w=1.6 A≥40: w=1.0

The structure of the lowest T=0 and T=1 states of odd-odd nuclei

T=0 ground state

D.N., N. Sandulescu, D. Gambacurta, PTEP 2017, 073D05

Conclusions:

QCM describes well the low-lying states of odd-odd nuclei.

The pn pair condensates (isovector or isoscalar) are less accurate than the quartet condensates.

Isovector and isoscalar pairing correlations coexist in the even-even core.

⁵⁰ Mn	Exact $\tilde{\Gamma}_0^+ (Q_{iv}^+ + \Delta_0^{+2})^{n_q}$		$\tilde{\Gamma}^+_0(Q^+_{iv})^{n_q}$	$\tilde{\Gamma}_0^+ (\Delta_0^{+2})^{n_q}$	$(\Gamma_0^+)^{2n_q+1}$
T = 1	12.77	12.76 (0.07%)	12.75 (0.14%)	12.52 (2.02%)	12.62 (1.22%)
T = 0	12.37	12.36 (0.04%)	12.34 (0.24%)	12.18 (1.61%)	12.19 (1.48%)
	Exact	$\widetilde{\Delta}^+_0(Q^+_{iv}+\Delta^{+2}_0)^{n_q}$	$\widetilde{\Delta}^+_0(Q^+_{iv})^{n_q}$	$(\Delta_0^+)^{2n_q+1}$	$\widetilde{\Delta}^+_0(\Gamma^{+2}_0)^{n_q}$

⁵⁴ Co	T = 1	16.14	16.12 (0.14%)	16.09 (0.28%)	15.67 (3.01%)	15.86 (1.78%)	
	T = 0	15.93	15.92 (0.04%)	15.89 (0.22%)	15.53 (2.56%)	15.66 (1.73%)	

			g.s./e.s.	Exact	iv;QCM angle/ is;QCM angle	$ iv;Q_{iv} angle/ is;Q_{iv} angle$	$ iv;C_{is} angle/ C_{is} angle$	$ C_{iv} angle/ is;C_{iv} angle$
ſ	- 1	⁸ F	T=0	3.365	3.365	3.365	3.365	3.365
			T=1	2.914	2.914	2.914	2.914	2.914
	22	Na	T=0	13.869	13.869 (0.00%)	13.859 (0.07%)	13.853 (0.12%)	13.848 (0.15%)
¹⁶ 0			T=1	13.230	13.226 (0.03%)	13.224 (0.05%)	12.974 (1.97%)	13.216 (0.11%)
	26	³ A1	T=0	22.058	22.052 (0.03%)	22.043 (0.07%)	21.941 (0.53%)	21.789 (1.24%)
			T=1	21.066	21.061 (0.02%)	21.051 (0.07%)	20.929 (0.66%)	20.980 (0.41%)
	3	⁰ P	T=0	12.655	12.599 (0.44%)	12.547 (0.86%)	11.955 (5.86%)	11.944 (5.95%)
L	_		T=1	11.715	11.664 (0.44%)	11.620 (0.82%)	10.937 (7.11%)	10.955 (6.94%)
ſ	42	² Sc	T=1	0.837	0.837	0.837	0.837	0.837
			T=0	0.241	0.241	0.241	0.241	0.241
	4	^{6}V	T=1	7.922	7.919 (0.04%)	7.914 (0.10%)	7.328 (8.11%)	7.758 (2.11%)
⁴⁰ Ca _			T=0	6.930	6.929~(0.01%)	6.925~(0.07%)	6.729 (2.99%)	6.791 (2.05%)
	50	Mn	T=1	12.774	$12.765\ (0.07\%)$	12.756 (0.14%)	12.521 (2.02%)	12.620 (1.22%)
			T=0	12.372	12.367~(0.04%)	12.343 (0.24%)	12.176 (1.61%)	12.192 (1.48%)
	54	⁴ Co	T=1	16.138	16.116 (0.14%)	16.093 (0.28%)	15.667 (3.01%)	15.856 (1.78%)
Ĺ	_		T=0	15.931	15.925~(0.04%)	$15.896\ (0.22\%)$	15.533 (2.56%)	15.660 (1.73%)
[10	⁾² Sb	T=1	0.104	0.104	0.104	0.104	0.104
			T=0	0.039	0.039	0.039	0.039	0.039
	1	.06I	T=1	5.147	5.143~(0.08%)	5.135 (0.23%)	4.706 (9.37%)	4.925 (4.51%)
¹⁰⁰ Sn			T=0	4.525	4.523 (0.04%)	4.506 (0.42%)	4.196 (7.84%)	4.288 (5.53%)
	11	^{10}Cs	T=1	8.034	7.989~(0.56%)	7.974 (0.75%)	7.164 (12.14%)	7.589 (5.86%)
			T=0	7.096	7.064~(0.45%)	7.040 (0.80%)	6.472 (9.64%)	6.646 (6.77%)
	11	4 La	T=1	9.758	9.723~(0.36%)	9.687 (0.73%)	8.789 (11.03%)	9.273 (5.23%)
			T=0	8.954	8.929~(0.28%)	$158.917 \ (0.42\%)$	8.311 (7.74%)	8.513 (5.18%)

How does the isoscalar and isovector proton-neutron pairing compete in N > Z even-even nuclei?

Generalization of QCM for N > Z systems!

D. N., P. Buganu, D. Gambacurta, and N. Sandulescu, Phys. Rev. C98, 064319 (2018)

Pairing and quartetting in even-even N > Z nuclei

Calculation scheme

$$\textbf{Hamiltonian:} \quad \widehat{H} = \sum_{i,\tau=\pm 1/2} \epsilon_{i,\tau} N_{i,\tau} + \sum_{i,j} V^{T=1} \left(i,j \right) \sum_{t_z=-1,0,1} P^+_{i,t_z} P_{j,t_z} + \sum_{i,j} V^{T=0} \left(i,j \right) D^+_{i,j_z=0} D_{j,j_z=0} D_{j,j_z=0$$

Pair-quartet condensate: $|QCM\rangle = (\tilde{\Gamma}_{1}^{\dagger})^{n_{p}} (2\Gamma_{1}^{\dagger}\Gamma_{-1}^{\dagger} - \Gamma_{0}^{\dagger 2} + \Delta_{0}^{\dagger 2})^{n_{q}} |0\rangle$

Unknown parameters: mixing amplitudes xi, yi and z_i

$$\Gamma_{t}^{+} = \Sigma_{i} \chi_{j} \Gamma_{i,t}^{+}$$
$$\Delta_{0}^{+} = \Sigma_{i} \chi_{j} D_{i,0}^{+}$$
$$\tilde{\Gamma}_{1}^{+} = \sum_{i} Z_{i} P_{i,t=1}^{+}$$

 $-\Gamma^+ - \Sigma \nabla P^+$

 $\begin{array}{ll} \mbox{Minimization:} & \delta_{x,y,z} \langle \Psi | \widehat{H} | \Psi \rangle = 0 \\ \mbox{Constraint:} & \langle \Psi | \Psi \rangle = 1 \end{array}$

The method of recurrence relations

Auxiliary states: $|n_1n_2n_3n_4n_5\rangle = (\Gamma_1^{\dagger})^{n_1}(\Gamma_{-1}^{\dagger})^{n_2}(\Gamma_0^{\dagger})^{n_3}(\Delta_0^{\dagger})^{n_4}(\tilde{\Gamma}_1^{\dagger})^{n_5}|0\rangle$

Strength of the pairing force in T=1 and T=0 channels

 $\widehat{H} = \widehat{H}_0 + \widehat{H}_p$

 $\widehat{H}_0 = \sum_{i,\tau} \epsilon_{i,\tau} N_{i,\tau} \ \ \, \text{-s.p. states given by Skyrme-HF calculations for axially deformed m.f.}$

Pairing interactions:

(I) State-independent pairing force

$$\widehat{H}_{p} = \underbrace{V^{(T=1)}}_{t=-1,0,1} \sum_{\substack{i,j, \\ t=-1,0,1}} P_{i,t}^{\dagger} P_{j,t} + \underbrace{V^{(T=0)}}_{i,j} \sum_{i,j} D_{i,0}^{\dagger} D_{j,0}$$

Strength of the isovector pairing force

 $V^{(T=1)} = -24/A$

Strength of the isoscalar pairing force

 $\mathbf{V}^{(\mathrm{T}=0)} = \mathbf{W} \cdot \mathbf{V}^{(\mathrm{T}=1)}$

w = ?
$$\longrightarrow$$
 sd-shell nuclei: w=1.2
heavier nuclei: w=0.8

(II) Zero range delta interaction

$$\begin{split} \widehat{H}_{p} &= \sum_{i,j} V_{i,j}^{(T=1)} \sum_{t=-1,0,1} P_{i,t}^{\dagger} P_{j,t} + \sum_{i,j} V_{i,j}^{(T=0)} D_{i,0}^{\dagger} D_{j,0} \\ V_{pairing}^{T=\{0,1\}}(\vec{r}_{1} - \vec{r}_{2}) = V_{0}^{T=\{0,1\}} \delta(\vec{r}_{1} - \vec{r}_{2}) \widehat{P}_{S=\{0,1\}} \end{split}$$

Strength of the isovector pairing force

$$V_0^{T=1} = 465 \text{ MeV fm}^{-3}$$

Strength of the isoscalar pairing force

$$V_0^{T=0} = w \cdot V_0^{T=1}$$

w = ? \longrightarrow sd-shell nuclei: w=1.6 heavier nuclei: w=1.0

Isovector and isoscalar pn pairing in N > Z nuclei: results (I)

QCM> describes well the ground state pairing

correlations (errors < 1%).

|Civ> and |Cis> (larger errors): not a fast transition to a pure condensate of iv/is pn pairs.

D. N., P. Buganu, D. Gambacurta, and N. Sandulescu, Phys. Rev. C98, 064319 (2018)

State-independent pairing force

Pairing energies (MeV):
$$\begin{cases} E_{t}^{(T=1)} = V^{(T=1)} \sum_{i,j,t} \langle QCM | P_{i,t}^{\dagger} P_{j,t} | QCM \rangle \\ E_{pn}^{(T=0)} = V^{(T=0)} \sum_{i,j} \langle QCM | D_{i,0}^{\dagger} D_{j,0} | QCM \rangle \end{cases}$$

Pn pairing energies are decreasing, but remain significantly large even when 3 extra nn pairs are added.

Isovector and isoscalar pn pairing correlations coexist in both N = Z and N > Z nuclei.

D. N., P. Buganu, D. Gambacurta, and N. Sandulescu, Phys. Rev. C98, 064319 (2018) QCM describes with good precision the isovector-isoscalar pairing.

Isovector pairing correlations are stronger than the isoscalar ones.

QCM describes very well the low-lying states of odd-odd nuclei.

The isovector and isoscalar pairing correlations coexist in even-even and odd-odd N = Z nuclei, but also in N > Z even-even nuclei.

Isovector and isoscalar pn pairing remain significant in systems with a few extra nn pairs.

Perspectives

Total angular momentum restoration by standard projection techniques.

Generalization of the QCM formalism to N>Z odd-odd nuclei:

$$\begin{split} & (\widetilde{\Gamma}_{1}^{\dagger})^{n_{p}} \left[\widetilde{\Gamma}_{0}^{+} (Q_{iv}^{+} + \Delta_{0}^{+2})^{n_{q}} \right] | 0 \rangle \quad \text{T=1 state} \\ & (\widetilde{\Gamma}_{1}^{\dagger})^{n_{p}} \left[\widetilde{\Delta}_{0}^{+} (Q_{iv}^{+} + \Delta_{0}^{+2})^{n_{q}} \right] | 0 \rangle \quad \text{T=0 state} \end{split}$$

Quartetting and isospin conservation

even-even N=Z nuclei have T=0 in the ground state

Isovector pairing and quartetting in axially deformed N>Z nuclei

$$\widehat{H} = \sum_{i,\tau=\pm 1/2} \epsilon_{i,\tau} N_{i,\tau} - g \sum_{t_z=-1,0,1} P_{i,t_z}^+ P_{j,t_z}$$

(S.p. spectrum is given by deformed Skyrme-HF calculations.)

 $|QCM\rangle = \left(\tilde{\Gamma}_{1}^{+}\right)^{n_{N}} (A^{+})^{n_{q}} |0\rangle \qquad |PBCS1\rangle = (\tilde{\Gamma}_{1}^{+})^{N/2} (\Gamma_{-1}^{+})^{Z/2} |0\rangle$

Isotopes with double magic core ¹⁶O

Correlation energies (MeV) $E_{corr} = E_0 - E$

	Exact	QCM	PBCS1		Exact	QCM	PBCS1
²⁰ Ne	6.550	6.539 (0.17%)	5.752 (12.18%)	²⁴ Mg	8.423	8.388 (0.41%)	7.668 (8.96%)
²² Ne	6.997	6.969 (0.40%)	6.600 (5.67%)	²⁶ Mg	8.680	8.654 (0.30%)	8.258 (4.86%)
²⁴ Ne	7.467	7.426 (0.55%)	7.226 (3.23%)	²⁸ Mg	8.772	8.746 (0.30%)	8.531 (2.75%)
²⁶ Ne	7.626	7.592 (0.45%)	7.486 (1.84%)	³⁰ Mg	8.672	8.656 (0.18%)	8.551 (1.39%)
²⁸ Ne	7.692	7.675 (0.22%)	7.622 (0.91%)	³² Mg	8.614	8.609 (0.06%)	8.567 (0.55%)
³⁰ Ne	7.997	7.994 (0.04%)	7.973 (0.30%)	²⁸ Si	9.661	9.634 (0.28%)	9.051 (6.31%)
³⁰ Si	9.310	9.296 (0.15%)	9.064 (2.64%)	³² Si	9.292	9.283 (0.10%)	9.196 (1.03%)

N. Sandulescu, D. N., C.W. Johnson, PRC 86, 041302 (R) (2012)

Isovector pairing energies for Ne isotopes

Proton-neutron correlations survive away of N=Z line!

T=1 and T=0 pairing energies

Extra pairing energy in the T=0 channel: contribution from the odd T=0 pair

Extra pairing energy in the T=1 channel: caused not only by the odd T=1 pair

Table 3. Schmidt numbers for the proton–neutron pairs in the lowest T = 1 and T = 0 states of various odd–odd N = Z nuclei. K_x and K_y denote the Schmidt numbers for the pairs Γ_0^+ and Δ_0^+ while K_z is the Schmidt number for the odd pair, i.e., $\tilde{\Gamma}_0^+$ for T = 1 states and $\tilde{\Delta}_0^+$ for T = 0 states.

	26	Al	30	P'P	⁵⁰ N	Мn	⁵⁴	Co	110	Cs	114]	La
	T = 1	T = 0	T = 1	T = 0	T = 1	T = 0	T = 1	T = 0	T = 1	T = 0	T = 1	T = 0
K_x	1.25	1.92	3.05	3.05	1.47	1.41	2.37	2.36	1.64	1.66	3.18	3.09
K_{v}	1.97	1.31	1.89	1.56	2.39	1.33	1.72	1.25	2.24	1.88	1.16	1.24
K_z	2.77	1.63	2.82	1.65	1.99	1.09	2.30	1.63	2.34	1.29	4.09	1.33

$$K = \left(\sum_{i} \omega_{i}^{2}\right)^{2} / \sum_{i} \omega_{i}^{4}$$

T = 0 pairs are less collective than the isovector T = 1

In particular, the odd T = 0 pair is less collective than the odd T = 1 pair.

in all nuclei, except ⁵⁰Mn, the collectivity of the odd T = 0 pair is significant and comparable to the

collectivity of the T = 0 pairs in the even-even core of the QCM states.

Isovector pairing in QCM+Skyrme-HF

$$\widehat{H} = \sum_{i,\tau=\pm 1/2} \epsilon_{i,\tau} N_{i,\tau} - g \sum_{t_z=-1,0,1} P_{i,t_z}^+ P_{j,t_z}$$

Pairing is treated as a residual interaction relative to a HF mean field.

The HF and QCM calculations are iterated together until the convergence. The pairing energy is added to the mean-field energy.

The influence of isovector pn pairing on the Wigner energy

D. N., N. Sandulescu, Phys. Rev. C 90, 024322 (2014)

- HF+BCS fails to describe the Wigner energy (X close to zero for many chains).
- HF+QCM results are following well the large fluctuations of X with the mass number.
- pn pairing is essential in describing the Wigner energy by respecting correctly the particle number and the isospin symmetries.

Comparison between QCM and PBCS(N,T)

isospin conservation

(Comparison with PBCS(N) solutions.)

 $|PBCS(N,T)\rangle = \widehat{P}_{T}\widehat{P}_{N}|BCS\rangle$ $\widehat{P}_{T}, \widehat{P}_{N}$ standard projection operators

Calculations - application for ⁵²Fe;

$$\widehat{H} = \sum_{i,\tau=\pm 1/2} \epsilon_{i,\tau} N_{i,\tau} - g \sum_{t_z=-1,0,1} P_{i,t_z}^+ P_{j,t_z}$$

- spherical single-particle states;

- isovector pairing force of constant strength g=24/A.

Chen, Mutter, Faessler, Nucl. Phys. A 297, 1978

- QCM is more accurate than PBCS(N,T)

- QCM describes additional quartet-type correlations !

Competition between isovector and isoscalar pairing: spherical symmetry

$$\hat{H} = \sum_{i} \epsilon_{i} (N_{i}^{\nu} + N_{i}^{\pi}) + \sum_{i,j} V_{ij}^{(T=1)} \sum_{\tau} P_{i,\tau}^{+} P_{j,\tau} + \sum_{i,j} V_{ij}^{(T=0)} \sum_{M} D_{i,M}^{+} D_{j,M}$$
$$|\Psi\rangle = (\alpha A^{+} - \beta B^{+})^{n_{q}} |0\rangle$$

- pairing interactions: extracted from the KB3G interaction

Valence nucleons in pf-shell, above the closed core ⁴⁰Ca

Nuclei	Shell Model	Quartets (errors)	β^2
^{44}Ti	4.261	4.221 (0.38 %)	0.0094
^{48}Cr	6.303	6.271~(0.50~%)	0.075

 $\frac{\text{Correlation energies}}{(\text{MeV})}$ $E_{\text{corr}} = E_0 - E$

Isoscalar quartet neglected in the quartet condensate

Nuclei	Shell Model	Quartets (errors)
^{44}Ti	4.261	4.169 (2.2 %)
^{48}Cr	6.303	6.119~(2.9~%)
^{52}Fe	5.978	5.737~(4.0~%)

1. Recurrence relations method (auxiliary states)

'Analytic expressions' method (without auxiliary states) !

$$\begin{split} & \langle n_1' n_2' n_3' | P_{i,1}^+ P_{j,1} | n_1 n_2 n_3 \rangle = n_1 x_j \langle n_1 - 1 n_2 n_3 | P_{i,1} | n_1' n_2' n_3' \rangle \\ & - x_i x_j^2 (n_1' n_1 n_3 \langle n_1 - 1 n_2 n_3 - 1 | P_{j,0} | n_1' - 1 n_2' n_3' \rangle \\ & + n_1' n_1 (n_1 - 1) \langle n_1 - 2 n_2 n_3 | P_{j,1} | n_1' - 1 n_2' n_3' \rangle \\ & + \frac{1}{2} n_1' n_3 (n_3 - 1) \langle n_1 n_2 n_3 - 2 | P_{j,-1} | n_1' - 1 n_2' n_3' \rangle) \\ & + x_i^2 x_j^2 [n_1' n_3' n_1 n_3 [\langle n_1' - 1 n_2' n_3' - 1 | P_{j,0}^+ P_{i,0} | n_1 - 1 n_2 n_3 - 1 \rangle \\ & - \frac{1}{2} \langle n_1' - 1 n_2' n_3' - 1 | N_{i,0} | n_1 - 1 n_2 n_3 - 1 \rangle \\ & - \frac{1}{2} \langle n_1' - 1 n_2' n_3' - 1 | N_{i,0} | n_1 - 1 n_2 n_3 - 1 \rangle \\ & - \frac{1}{2} \langle n_1' - 1 n_2' n_3' - 1 | N_{i,0} | n_1 - 1 n_2 n_3 - 1 \rangle] \\ & + n_1' (n_1' - 1) n_1 n_3 [\langle n_1' - 2 n_2' n_3' | P_{j,0}^+ P_{i,1} | n_1 - 1 n_2 n_3 - 1 \rangle \\ & - \delta_{ij} \langle n_1' - 2 n_2' n_3' | T_{i,-1} | n_1 - 1 n_2 n_3 - 1 \rangle] \\ & + \frac{1}{2} n_3' (n_3' - 1) n_1 n_3 [\langle n_1' n_2' n_3' - 2 | P_{j,0}^+ P_{i,-1} | n_1 - 1 n_2 n_3 - 1 \rangle \\ & + \delta_{ij} \langle n_1' n_2' n_3' - 2 | T_{i,1} | n_1 - 1 n_2 n_3 - 1 \rangle] \\ & + n_1' n_3' n_1 (n_1 - 1) [\langle n_1 - 2 n_2 n_3 | P_{i,0}^+ P_{j,1} | n_1' - 1 n_2' n_3' - 1 \rangle \\ & - \delta_{ij} \langle n_1 - 2 n_2 n_3 | T_{i,-1} | n_1' - 1 n_2' n_3' - 1 \rangle] \\ & + n_1' (n_1' - 1) n_1 (n_1 - 1) [\langle n_1' n_2' n_3' - 2 | P_{j,1}^+ P_{i,1} | n_1 - 2 n_2 n_3 \rangle \\ & + \frac{1}{2} n_1' n_3' n_3 (n_3 - 1) [\langle n_1 n_2 n_3 - 2 | P_{j,1}^+ P_{j,-1} | n_1' - 2 n_2' n_3' \rangle] \\ & + \frac{1}{2} n_1' n_3' n_3 (n_3 - 1) [\langle n_1 n_2 n_3 - 2 | P_{j,1}^+ P_{j,-1} | n_1' - 2 n_2' n_3' \rangle \\ & + \frac{1}{4} n_3' (n_3' - 1) n_3 (n_3 - 1) \langle n_1 n_2 n_3 - 2 | P_{j,-1}^+ P_{i,-1} | n_1 - 2 n_2' n_3' \rangle \\ & + \frac{1}{4} n_3' (n_3' - 1) n_3 (n_3 - 1) [\langle n_1' n_2' n_3' - 2 | P_{j,-1}^+ P_{i,-1} | n_1 n_2 n_3 - 2 \rangle \\ & + \delta_{ij} (\langle n_1' n_2' n_3' - 2 | n_1 n_2 n_3 - 2 \rangle - \langle n_1' n_2' n_3' - 2 | N_{i,-1} | n_1 n_2 n_3 - 2 \rangle)]]. \end{split}$$

2. 'Analytic expressions' method: CADABRA calculations

 $\left\langle 2\mathbf{q} \right| \mathbf{P}_{\mathbf{i},\mathbf{0}}^{\dagger} \mathbf{P}_{\mathbf{j},\mathbf{0}} \left| 2\mathbf{q} \right\rangle = \left\langle 0 \right| \left(2\Gamma_{1}\Gamma_{2} - \Gamma_{3}\Gamma_{3} \right) \left(2\Gamma_{1}\Gamma_{2} - \Gamma_{3}\Gamma_{3} \right) P^{\dagger}{}_{i3}P_{j3} \left(2\Gamma^{\dagger}{}_{1}\Gamma^{\dagger}{}_{2} - \Gamma^{\dagger}{}_{3}\Gamma^{\dagger}{}_{3} \right) \left(2\Gamma^{\dagger}{}_{1}\Gamma^{\dagger}{}_{2} - \Gamma^{\dagger}{}_{3}\Gamma^{\dagger}{}_{3} \right) \left| 0 \right\rangle$

1. Define all the collective operators: $\Gamma_t^+ \rightarrow \sum_i x_i P_{i,t}^+$, $\Delta_0^+ \rightarrow \sum_i y_i D_{i,0}^+$, ...

- 2. Specify explicitly all the possible commutators $\partial \hat{\partial}^{\dagger} \rightarrow \hat{\partial}^{\dagger} \hat{\partial}^{\dagger} + [\hat{\partial}, \hat{\partial}^{\dagger}]$ between the non-collective operators:
- 3. Impose other necessary transformations: $\widehat{\mathcal{O}} \mid 0 \rangle \to 0$, $\langle 0 \mid \widehat{\mathcal{O}}^{\dagger} \to 0$, $\langle 0 \mid 0 \rangle \to 1$, ...
- 4. Transformations to simplify the final expressions: $\sum_i x_i^n \rightarrow \ a_n \ \ , \ldots$

Final result for $\langle 2q | P_{i,0}^+ P_{j,0} | 2q \rangle$ is:

 $\begin{aligned} &40x_i^7x_j + 40x_i^5x_j^3 + 40x_i^3x_j^5 + 40x_ix_j^7 - 240a_2x_i^5x_j - 240a_2x_i^3x_j^3 + 280a_4x_i^3x_j - 240a_2x_ix_j^5 + 280a_4x_ix_j^3 - \\ &80a_6x_ix_j - 27\delta_{ij}x_i^5x_j^3 + 204\delta_{ij}x_i^3x_j^5 - 18\delta_{ij}x_i^2x_j^6 - 106\delta_{ij}x_ix_j^7 - 176\delta_{ji}x_i^5x_j^3 + 46\delta_{ji}x_i^4x_j^4 + 57\delta_{ji}x_i^3x_j^5 - \\ &80a_2^2x_i^3x_j - 80a_2^2x_ix_j^3 - 80a_2a_4x_ix_j + 72\delta_{ij}a_2x_i^3x_j^3 - 36\delta_{ij}a_2x_i^2x_j^4 + 76\delta_{ij}a_4x_i^2x_j^2 + 76\delta_{ij}a_2x_ix_j^5 - 256\delta_{ij}a_4x_ix_j^3 + \\ &60\delta_{ji}a_2x_i^3x_j^3 - 92\delta_{ji}a_2x_i^2x_j^4 + 160a_2^3x_ix_j - 76\delta_{ij}a_2^2x_i^2x_j^2 + 356\delta_{ij}a_2^2x_ix_j^3 \end{aligned}$

5. Minimize this expression with respect to the mixing amplitudes x(i).

The running time of the new code decreases drastically!

Ground state: $|\Psi\rangle = (Q^+)^{n_q}|0\rangle$ $Q^+ = (2\Gamma_1^+\Gamma_{-1}^+ - \Gamma_0^{+2}) - \beta(2\Delta_1^+\Delta_{-1}^+ - \Delta_0^{+2})$

Excited states can be constructed in many ways.

Ex.: - break a quartet;

- recouple the nucleons to angular momentum J>1.

$$(Q^+)^{n_q-1} (\nu_i^+ \nu_j^+ \pi_k^+ \pi_l^+)^{J=2} |0\rangle$$

Analysis of excitation spectra of N=Z nuclei.

Testing T=1 and T=0 pn pairing by deuteron-like transfer reactions

Relative strength of T=1 and T=0 channels: ratio between cross sections.

Experimentally: - evaluate the transfer amplitudes from ⁵²Fe to ⁵⁰Mn (higher collectivity of pn pairs for A>40)

 $\left<{}^{52}Fe\left|\nu_{i}^{+}\pi_{i}^{+}\right|{}^{50}Mn\right>$

Theoretically: - evaluate pn pair transfer amplitudes

- understand the influence of isovector and isoscalar pairing on the pair transfer

How? Use the generalization of QCM for odd-odd nuclei!