Cluster emission from superheavy
nuclel



The process leading to the emission of clusters from nuclel is a
very difficult subject. The most common treatment of this process
IS to assume some effective theory which takes into account
properly how the particle overcomes the Coulomb and centrifugal
barriers that trap it inside the nucleus. This was done by Gamow
some 90 years ago in what can be considered the beginning of
the probabillistic interpretation of Quantum Mechanics.

Gamow explained alpha-decay as the penetration of an already
formed alpha particle through the Coulomb and centrifugal
barriers. To obtain the proper units, Gamow also introduced the
concept of "assault frequency" which is an effective quantity
which, due to the Pauli principle, does not carry any quantum
mechanics validity.

This theory has been extremely successful in explaining relative
decay widths, but could not describe absolute decays.



Yet the calculation of the penetrability is very easy and therefore
the theory was applied in many situations, trying to get the absolute
decay widths by adjusting effective parameters, as the assault
frequency, to fit the corresponding decay width. These effective
theories are very useful because they are easy to apply. However,
a proper calculation of the decay process needs to address the
clustering of the nucleons on the surface of the mother nucleus and
the following penetrability of the cluster thus formed through the
Coulomb and centrifugal barriers. The evaluation of the cluster
formation probability is a challenging undertaking because a
proper description of the cluster in terms of its components
requires a microscopic framework that is highly complex. That is
the reason why effective approaches are used when dealing with
clusterization.



The microscopic treatment of alpha-decay required a general
framework which was provided by the introduction of the R-matrix.
In this formalism the collision between two nuclei leading to a
compound system and its subsequent decay is described by
dividing the configuration space of the composite system into an
“internal region”, to which the compound state is restricted, and
the complementary “external region”. This division is made such
that in the external region only the Coulomb interaction is
Important and the system in the outgoing channel behaves like a
two-particle system. This is what occurs in cluster-decay, where
the outgoing channel consists of two fragments - the cluster and
the daughter nucleus — interacting through the Coulomb
Interaction only. The important feature of the formalism is that the
residues of the R-matrix is proportional to the decay width of the
resonance induced by the decay process..



This formalism was applied by Thomas to evaluate the alpha-
decay in a profound but difficult paper.
Thomas classical expression has the form,

W’k R?|F.(R)|?
p FZ(R)+ Gi(R)

where c labels the decaying channel, k is the linear momentum
carried by the cluster, mu is the reduced mass, R is the distance
between the mass centers of the daughter and cluster nuclei,
F.(R) (G.(R)) is the regular (irregular) Coulomb function
corresponding to the two-body system in the outgoing channel an
F.(R) is the formation amplitude, i. e. the wave function of the
mother nucleus at the point R.

We will only consider ground state to ground state transitions
between even even nuclei. Therefore outside the central nuclear
field only the Coulomb interactions is important. and the outgoing
wave function in this region has the form

[L(R) = k)T =



RF.(R) = N [Go(kR) + iFy(kR)] — Ne™h

Where N is a normalization constant. Bound states, with k purely
Imaginary and therefore vanishing at large distances, also satisfies
this condition. From this equation one gets

R?|F.(R)’

."\l'r|:2 — S )
F;(kR) + Gi(kR)

and therefore the Thomas width

W’k R?|F.(R)|?

LlB) =1/T == " =Ry + G2 (R)

IS Independent upon R. One can write this width as



where

IS the cluster formation probability per unit of volume and

B kR
 F§(kR) + Gj(kR)

T(R)

IS the transmission probability, or penetrability, through the
Coulomb barrier

2
= h’j'ﬁ-{ﬁj?{ﬂ)
The quantit h’R
1 4 p Pc(R)

IS the one which is parameterized in effective approaches



The cluster wave function is outgoing. For its evaluation we used
the computer code Gamow GAMOW (vertse, K. F. Pal and Z. Balogh,
Comput. Phy. Commun. 27, 309 (1982)). We will evaluate ground state to
ground state decays of even even nuclel. Also the cluster will be
even even nuclei. Therefore the decaying cluster carries angular
momentum |=0. The outside solution provided by GAMOW is

just G+iF, which implies that the calculated width will be
iIndependent upon R.



The cluster is formed outside the surface of the daughter nucleus.
Therefore the cluster formation probability is

b
Fe 2/ ridr | Fo(r)|*
;.

The integral runs from a = Ry + R. to b = Ry + 3R Larger
values of b do not affect P significantly.

The calculation of half lives depends very critically on the Q-values
of the decays. In cases where the Q-values are not measured one
has to rely upon some mass model that would allow one to evaluats

them. We use the mass formula of A. Bhagwat, Phys. Rev. C 90}, 064306
(2014)



One of the aims of this work was to probe the large values of the
ratio

bo = Tﬂ“EKTﬁQ

for some very heavy isotopes reported in Poenaru, Gherghescu,
Greiner, PRL 107, 062503 (2011) Which, Is correct, would mean that

for those isotopes the detection of the decaying cluster would be
a fingerprint of the existence of the superheavy mother nucleus.



Poenaru, Gherghescu, Greiner, PRL 107, 062503 (2011)
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FIG. 4 (color online). Decimal logarithm of the branching
ratio relative to @ decay for cluster emission from superheavy

nuclei versus the neutron number of the parent nucleus. Vertical
dashed lines correspond to N = 174, 186, 198.



We evaluated the decay widths of all even-even isotopes from
Z=100 to Z=122 against alpha and even-even clusters.

The clusters were chosen by requiring that they should lie
between He (Z=2) and Kr (Z=36), that they have to be bound and
living at least 1ms.

The total number of cases is huge, of the order of ten of
thousands. To make the presentation understandable in the table
below we restricted cases to the three largest values of p_

for each mother nucleus. -



(e
Mother Cluster (MeV) P, logb, log 17,

““Fm '*C  37.69 5.22x10 '’ -14.08 -3.57
26pm  YCa  146.66 6.75x10 %% 1477  7.05
258%Pm  %9Ca  144.32 1.65x10%* -15.28 9.42

“®No 'C 37.27 2.69x10°'! -15.53 -2.89
**No  "Ca 153.67 4.21x10** -15.53  3.53
*No  *¥Ca 153.65 1.70x10* -16.46 2.25

24pr %987 108.51 2.99x%10°% _18.07 -1.94
2Mpr 120 3593 1.06x10°' -18.29 -1.94
246pF %981 107.14 1.51x10°%% -18.81 -1.46

08¢ 120 37.02 9.51x1071% -20.11 -4.26
gy 2C 36.72 8.81x1071% -20.69 -4.42
2ige 120 36.49 8.34x10°1? -21.05 -4.46

“PHs  *C 39.24 1.25x10°'' -18.23 -4.75
28Hg 120 39.09 1.22x10°'! -18.24 -4.60
260s 120 38.81 1.14x10 ' -18.30 -4.30

262y 200 41.35 1.680x10 ' -16.22 -4.73
®ing 120 40.92 1.42x10 ' -16.36 -4.32
®EDg 120 40.25 L.76x10° ' -16.50 -3.70

268 (1 1?1': 41.74 1.15x107'" -16.58 -4.43
00y 1200 40,90 8.90x10 ' -17.12 -3.76
20 120 39.90 6.52x10°'2 -17.96  -3.09



It is important to probe our results with available experimental
values in order to assess the credibility of our results. This
IS shown In the table below



Q. (MeV) log T, Qa log 17,
Mother Cluster P, Cale. Expt. Cale. Expt. F, Cale. Expt. Cale. Expt.
22RBa  MC  B.01x10°' 33.63 33.05 0.41 11.22 1.79%x10°* 6.50 6.68 2.58 1.58
24pa MO 2.13x10°' 30.96 30.54 14.30 15.86 1.43x10°* 567 5.79 6.83 5.50
226Ra MO 4.99x10°'2 28.27 28.20 20.22 21.34 1.17x10°* 4.84 4.87 11.70 10.70
228 h 200 3.96x10°'7 45.15 44.72 21.09 20.72 1.18x10°* 5.44 5.52 9.07 7.78
2307 Ne 1.10x10 2! 538.01 57.76 25.73 24.61 1.01x10 % 4.78 4.77 13.18 12.38
*2Th  **Ne 2.53x10** 55.07 54.67 31.19 >29.20 _
28 Th  Ne 4.92x10°2° 56.67 55.91 30.76 >29.20 8.89x10°° 4.23 4.0 17.38 17.656
2011 2Ne 2.32x107Y 61.72 61.39 21.29 19.57 1.21x10°* 6.12 5.99 6.45 6.26
23211 *Ne a.ﬁs.x:m-?{ 62.87 62.31 20.91 21.08
2 Mg 9.42x107%% 74.06 74.32 25.78 >22.26 1.05x10°* 5.533 5.41 9.56 9.34

e



Q. (MeV) log T, a log T7,

Mother Cluster P, Cale. Expt. Cale. Expt. F, Cale. Expt. Cale. Expt.
23417 2‘fNe 6.28 %10 22 50.39 58.83 26.16 25.92

2417 Ne 1.01x107% 50.52 59.42 25.97 25.92

BT Mg 1.11x10%° 74.17 74.11 25.44 2592 9.38x10°° 503 4.86 12.57 12.89
2361y 2‘fNe 8.04x 10 2% 56.13 55.95 31.59 >25.90

23617 26Ne 1.41x1ﬂ-i’ff 57.63 56.70 32.40 >25.90

HE Mg 1.26x10%% 70.82 70.73 30.23 27.58

WE Mg 2.98x107%7 72.47 72.28 29.19 27.58 8.52x10°° 4.62 4.57 15.44 14.87
286py  BNg 6.19x10°%° 79.85 79.65 20.84 2167 9.97x10°° 585 5.87 B8.71 7.96
“Epy Mg 6.67x10 %% 76.02 75.91 25.69 25.70

“¥pu Mg 9.68x10 7 77.20 76.80 25.49 25.70

ZEpy ¥ 1.90x10% 91.42 91.19 26.37 25.27 9.17x10°° 5.50 5.59 10.69 10.44
240py  *Mgi 1.83x10 %" 90.83 91.03 27.97 >25.52 8.54%x10°° 5.19 5.26 12.53 11.32
2om M8 R.52x1077Y 96.47 96.51 24.27 23.15 9.29x10°° 6.11 6.22 829 7T.15




Conclusions

A systematic calculation of cluster and o decay of su-
perheavy nuclei with charge number up to Z=122 has
been carried out. The o decay branch was always found
to be dominant over any other cluster decay branch. We
have also found that in a particular isotopic chain, the «
decay probability decreases with increasing neutron num-
ber. The same observation also holds good for cluster
decay probability.



Our calculations indicate that it would be extremely
difficult, if possible at all, to measure cluster decays in
this superheavy mass region. The difficulty in detection
of the cluster decay branches gets compounded due to
vet another reason: formation cross section for the su-
perheavy nuclei is usually very small. In fact, with in-
creasing charge number, the formation cross section de-
creases, thereby making it increasingly difficult to de-
tect the cluster decay branches with increasing charge
number. However, we have also found that the relative
branching ratio of cluster emission and o« emission for



superheavies is comparable to that of the known cluster
emitters (88<Z<96). Thus, if one could device methods
to improvise production cross section of superheavies, it
can be expected that the cluster emission branches could
still serve as a possible detection mechanism for the su-
perheavies.

But an important result of the calculations is that the
method presented here, which contents no free parame-

ters, is adequate to evaluate half lives of cluster decays
from heavy nuclei.



This work has been performed in collaboration with

A. Bhagwat





















It is by using the special relativity version of quantum mechanics, where the four
dimensional linear momentum is P = (pz, py, Pz, E/c), with E as the relativistic
energy, and the four dimensional position is R = (z,y, z, ¢t), that one obtains the
fourth component of the relativistic version of the Heisenberg uncertainty principle
as A(E/c)A(ct) = AEAt > h.

This relation was used by Einstein in a thought experiment (called the Einstein
box experiment) which he presented in the famous Solvay Congress in 1930, to show
that quantum mechanics was inconsistent. It took some time for Niels Bohr to realize
that in that thought experiment Einstein neglected to include general relativistic
effects. When these were included the uncertainty principle was restored.

It is important to point out that the Heisenberg time-energy uncertainty relation
asserts that one cannot know the energy of a system at a certain time with a presicion
as high as one wishes. It is not related to the Gamow relation, which associates the
width and mean life of a resonance.



We have seen that bound states and Gamow resonances have the common prop-
erty of obeying outgoing boundary conditions. We will call all states satisfying
outgoing boundary conditions ”Gamow states”, i. e. Gamow states are bound
states as well as Gamow resonances, since there is more than the outgoing character
of the wave function that relates Gamow resonances to bound states.



In the figure is represented the spectrum of a system consisting of a particle

moving in an attractive potential plus a repulsive barrier. In this case bound states,
at energy Ej, as well as resonances, at energy E,., are present.




Both consist of a discrete number of levels, as expected since this is the number
of states satisfying the outgoing boundary condition. One sees in the figure that
the resonances have a width, which is minus twice the imaginary part of the energy,
indicated in the figure by the dashed lines. Through the Gamow relation I',T,, = h
one sees that the width reflects the time in which the system stays in the resonance
state. The wider the resonance, 1. e. the larger I'y,, the smaller the time T}, at which
the system is trapped inside the barrier.



Close to the continuum threshold, i. e. resonances lying close to zero energy,
the width of the resonance is small since here the barrier is high and the mean time
T, at which the particle stay inside the baeeier is large. On the other extreme,
close to the top of the barrier at energy V}, the resonance is wide since the particle
can easily escape the trapping induced by the potential and, therefore, the mean
time 7,, is short. If the high of the barrier V}, increases then the states lying close
to the continuum threshold will have more difficult to escape the barrier, and the
resonances will be narrower. At the extreme situation in which the high of the
barrier approaches infinite, then all resonances will have a negligible width. Finally,
when V;, becomes infinite all states will have a zero width, that is all states will be
bound. One thus sees that Gamow resonances are a generalization of bound states.



The relation between the size of the barrier and th_e width of the resonances that

we have seen above in the case of a simple potential, is valid in general. There are
a number of computer codes that calculate Gamow states (i. e. resonances together
with bound states), for instance Vertse et. al., Comput. Phys. Commun. 27, 309
(1982). This code was used in the first calculation of many-body systems in the
continuum using the complex energy plane, as shown in Vertse et. al., Phys. Rev.
37 C 876 (1988) and Curutchet et. al., Phys. Rev. 39 C 1009 (1989). From this
last paper are the Gamow single particle states shown below corresponding to a

particle moving in the 2°*Pb core using a Wood-Saxon plus a spin-orbit potential.
The Woods-Saxon potential has the form,

B Vo
1 + exp( ‘"_R)

1

V(r) =

the effective potential that the particle feels is the potential above plus the Coulomb
part plus the centrifugal part, which is proportional to [(I+ 1), where [ is the orbital
angular momentum of the particle. Besides there is the spin-orbit part, which in
this case is the derivative of a Woods-Saxon potential. The parameters used are



r

Particle Va o a V.o r,
Neutron 44.40 1.27 0.70 16.5
Proton 66.04 1.19 0.75 19.0 1.19

and the potential looks like






One sees that the potential is narrower as the real part of the energy &, =
E, — ivn/2 approaches the top of the barrier and, therefore, the probability that
the particle escape is larger as the energy FE,, increases. In other words, when E,
increases also the width I';, increases, and the mean time 7;, decreases. At very high
energy there is no barrier that trapps the particle and T;, should be negligible while
I';, should be very large.

And indeed this happens in the evaluated energies. Thus, in the energies given
below one sees that with the same centrifugal barrier (i. e. the same value of [) the
states evolve from deeply to slightly bound and from narrow to wide resonances. For
instance, for proton states it is, in MeV, £(2s;/5)=(-8.71,0), £(351/2)=(7.84,-0.04),
E(451/2)=(16.88,-11.90).
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—22.67
—20.17
—18.32
—17.33
—16.23
—12.37
—11.04
—0.26
—9.10
—8.71
—3.78
—3.54
—1.84
—0.69
—0.52
0.49—0.00
4.03—i0.00
5.43—i0.00
5.96—i0.00
6.75—i0.00
7.84—10.04
8.09—0.00
8.53—1i0.03
12.64—i1.89




7 2f1n 12.75—i0.65 2.10—i0.87
7 1hy 2 11.39—i0.02 2.25—i0.03
7 3p1 2 13.22—i2.50

7 2fsp 14.65—i1.56 2.70—i2.32
8 0k 11 5 14.06— i0.00 5.03— i0.00
7 1hg s 15.96— i0.39 5.40— i0.73
7 0j139 15.09— i0.00 5.41— i0.01
8 i 13 12 18.14— i0.57 7.66— i1.04
8 3ds 16.62— i8.47 7.41— i13.20
8 3d, 17.86— i10.93

8 s, 16.88— i11.90

8 280 2 17.84— i3.55 5.54— i6.38
8 2g 5 20.07— i6.63 8.35— i11.54
9 0l 145 22.34— i0.04 12.02— i0.09
8 1i11 23.24— 2.52 11.33— i3.94
8 20, 1 23.40— i9.22 13.04— i13.59
8 0k 15 24.82— i0.22 13.58 — i0.44
9 1759 24.68— i2.31 13.22— i3.52

One sees that the centrifugal and Coulomb barriers play a big role. For instance
the state 2f;/,, with [ = 3, lies at (12.75,-0.65) Mev for protons but at (2.10,-0.87)

MeV for neutrons.



The Gamow wave functions provide even more information than the energies
regarding the physical meaning of the resonances. Thus, in the figure it is plotted
the real part of the wave function corresponding to the 3s,/, neutron state, which
is weakly bound. Notice that in the figure the Woods-Saxon potential is somehow

modified as compared to the table above. The new values of the energies are in
agreement with more states than in the table (which is from 1988). One sees that

the bound state becomes less bound when the depth of the potential diminishes,
and eventually becomes a resonance that diverges at large distances.
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This can also be seen for protons. In the figure below we show the real part of
the 2f7/, proton wave function. In this case the barrier is higher than in the neutron
state 351/ shown above because now the Coulomb plus the centrifugal barriers are
higher. As a result the state lives longer than before and the widths are smaller.
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But the most important feature from the viewpoint of the interpretation of physi-
cal quantities in the complex energy plane, is that the wave functions of bound states
are localized within the nuclear volume. This is also the case with narrow resonances,
but as the resonance becomes wider it spreds outside the nuclear volume. Since all
spectroscopic physical processes (i. e. excluding, for instance, elastic scattering),
which are the ones we are interested in, occur around the nuclear surface up to at
most a few times outside the nuclear radius, we conclude that meaningful resonances
are those with wave functions localized inside the nuclear volume.



Hilbert and Berggren metrics and representations

We have seen that in quantum mechanics the projector is composed of bound
states and scattering states, 1. e. states that consist of outgoing as well as ingoing
components, thus describibg time-independent processes. The scattering states lie
in the continuum part of the spectrum. Therefore the projector is,

N o
S (Fun(7) + f dg®: (7, (7) = 6(7 — )

where u,(7) is the bound and ®,(7) the scattering wave function. All these wave
functions (in three spatial dimensions) consist of a radial and an angular momentum
part. In orbit-spin coupling it is,

Untim (7) = Ry (}/}(Tﬁ)‘flfg)jm

where £ is the spin wave function.



Replacing this in the projector one can perform the integral over the angles and
the spin to get only the radial integral. This is important because the extension of
quantum mechanics to the complex energy plane to be done here is only related to
the radial part of the wave function. The spin-angular part remains unchanged.

The radial wave function can always be chosen to be real, Therefore the complex
conjugate operation in the radial integral is not operative and one can replace the
complex conjugate of the wave function for the wave function itself. This is crucial
in what follows.



It is very important to define the metric as the product of a function times the
function itself (Berggren metric), instead of the function times its complex conju-
gate (Hilberts metric), because the resonance radial wave functions diverge at large
distance. Besides, to perform the procedure shown below to obtain the Berggren rep-
resentation, one has to use the Berggren metric. To avoid the divergences Zeldovich
proposed to define the normalization N; of the wave function w,;(r) as

o
N; = lim E_“rzu?(r)dr
a—+0 0

Later other ways of renormalizing the wave function (as well as the matrix elements)
were introduced. The most commonly used is the complex scaling or exterior com-
plex scaling (for details see e. g. B. Gyarmati and T. Vertse, Nucl. Phys. A160, 573
(1971)). Notice that it is uf(r) and not the Hilbert scalar product u}(r)u;(r) that
enters in the integral. This is because the Hilbert metric does not allow to perform
the renormalization procedure (this is clearly seen in the complex scaling method).
The important point for us is that all these normalization procedures provide the
same result.



The reason why the Hilbert metric is necessary in quantum mechanics is related
to the probabilistic interpretation of the evaluated quantum observables. To obtain
probabilities as real numbers one has to use the Hilbert metric. The introduction of
the Berggren metric implies that the probabilities may be complex, which requires
either a new interpretation of those probabilities or an analysis of its limitations.
This is the task that we will pursue below.

It is more convenient to use the single-particle Green function instead of the
projector to introduce the Berggren representation (T. Berggren, Nucl. Phys. A
109, 265 (1968)).

In quantum mechanics (Hilbert space) the Green function can be written as,

N

' Uy, (7, K )un (1", k) = @ (r,q)®(r, q)
orr'sk) =) = +L U — g fie

n=1



where k? = 2mFE /h?, m is the mass of the particle and € is a positive infinitesimal.
Here the Hilbert metric is use, but assuming the radial wave functions to be real
one can use the Berggren metric as well. One sees in the expression above that the
poles of the Green function are the energies of the system. In the complex k-plane
we will call

k=kr+iy
and F212 2
E,' — p— 2 —_ 2 2 !
2m 2m (K" =77 + 2ir)
with r
E=F—i—-
"
one gets
B =1 (=)
- 2m T
2h?
['=—ky

m



The wave function behaves at large distance as
u(k,r) = Net*™ = Nere™ "

and therefore it is outgoing (incoming) if kK > 0 (k < 0).
There are four classes of poles. They are
1) Bound states, k =0, > 0,
72

E = —2—72 <0,I'=0,u(k,7) = e 7" = 0 converges
m

2) Antibound states, k = 0,7 < 0,

B2
E = —2—’)’2 <0,T =0,u(k,r) = " = 0o diverges
m



3) Decaying resonances, k > 0,y < 0,

h? 2h?
E = Zm(fi — ), T = ——fil"}’l < 0,u(k,r) —e

m

wrehlt s oo diverges

4) Capturing resonances, £ < 0,y < 0,

R 2 2h* —ikr |y|r -
E = > —(k* —~%),T = ——|H,Hf}f| < 0,u(k,r) = e ™" — o diverges
m

Notice that for all class of states I' is zero or negative.



In the complex k-plane these four classes of poles can be represented as,

a . (k)

> O, ti)




The Green function is,

N
Uy un(r kn) / O*(r, q)P(r', q)
“E) = + d ’

where k* = 2mE/h?, ¢*> = 2mE,;/h*. This Green function is the one obtained in
quantum mechanics, i. e. the one use within the shell-model. It can be represented
in the complex energy plane as



Shell model




The Continuum Shell Model

From the Green function, which has as residues the product of the wave functions,
one can again get the projector as,

N 00
> @) + [ dE (B )B(Ee ) = 87— )

where u,,(7) and ®(Ej, r) are the wave functions of the bound and scattering states,
respectively.

The integral can be approximated by a discretization procedure. For instance,
in the Gaussian procedure one has N Gaussian points at energies £, with h, as
weights. The integral becomes,

Ng

| B (B (B ) = 3 by (B D(E,, 7
0

p=1



Defining,
u,(7) for bound states

0. (F) =
#i(7) { V he®(E,, 7) for scattering states
one gets the Continuum Shell Model (CSM) projector as

N+Ng

o(r—7) ~ Z 5 (r)e; ()

and the set of N + Ng functions < j|©¥ >= {p;(7)}, or the set of N + Ng vectors
{|7 >}, constitutes the CSM basis.



The Complex (or Gamow) Shell Model

Since the radial wave functions can be taken as real quantities the Green function
can be written as,

N
/ Un (7, kn)un (7", kn) > (r,q)®(r', q)
Q(TT;E):Z L2 _ 2 +£ dq k2 — g2 +ie

n=1

Bergeren realized that the integral of the scattering states over the real k-axis in
this equation can be extended by performing the integral over a path going below
that axis, as shown in the figure.



4. (k)

(< ()




The outstanding feature is that by applying the Cauchy theorem the poles of
the integrand has to be added to the integral over the path I'. Notice that this
integral goes over scattering states with complex k-values. The pole energies are the
Gamow energies and the wave functions are the Gamow wave functions. Therefore
the Green function becomes

N
3 - Un (T, k) un (7', ky) ®(r,q)®(r', q)
o B) =) = pa +frdq k2 — g7+ e
n=1 n

where the sum goes over the bound states and the Gamow resonances contained
inside the contour I'. Therefore N, is the number of all Gamow states, i. e. bound
plus resonances.



From the Green function one can get, as before, the projector,

Yt (Fun () + fr dE.®(Ey, 7)® (B, 7) = 0(F — 7)

It 1s important to notice the Berggren metric appearing in this expression.

One can again replace the path integral by a discretization procedure as the
Gaussian one. That is,

Ng
/dEkii-(Eh 7)®(Br, ™) & Y hp®(E,, 7)®(E,, )

r —1

where the Ng Gaussian points F, are on the path I'.



Defining,

- un(7) for Gamow states
. ':.""' p—
¥i Vhpy®(E,,7) for complex scattering states

the complex shell model (CXSM) projector becomes

Ng+Ng

S~ Y. G

and now the set of N, + N¢ functions < j|r¥ >= {¢;(r)}, or the set of N, + Ng
vectors {|7 >}, constitutes the CXSM, or Berggren, basis.



A nice feature of the Berggren basis is that the basis elements include the Gamow
resonances, thus carrying an important part of the otherwise structureless contin-
uum. In the figure this feature is outlined with the dashed line around the resonance
energy.

But the most important features of the Berggren basis is that it coincides with the
Hilbert (shell model) basis if the path I' is chosen as the real energy axis. Therefore
the Hilbert space is one particular instance of the Berggren space. One can say that
the Hilberts space is a subspace of the Berggren one.

It is also important to mention that an integral of any regular function along the
real energy axis should provide the same result whether one evaluates it within the
Hilbert or the Berggren basis. For instance, the Green function above is the same
whether one uses the real energy axis or the path I' since one is connected to the
other by the Cauchy theorem. This equality vanishes when evaluating quantities in
the complex energy plane, as we will see below.



Proof of the validity of the Complex Shell Model

The Berggren representation should describe all physical quantities in the com-
plex energy plane. Therefore it should be able to provide the complex eigenvalues
and eigenvectors of a Hamiltonian with a given potential using the representation
provided by other potential. To probe this we choose a realistic case, using as a
representation the eigenvectors of the Hamiltonian H; corresponding to the Woods-
Saxon potential fitting the proton and neutron single-particle levels outside 2°*Pb.

These states were shown above, where Hy is defined by the Woods-Saxon poten-
tial with parameters given by V, = 44.4 MeV and a=0.70 fm. We will consider the
neutron state f14/2, but the conclusion drawn from this case are valid for all states.
From the values of the energies shown before one sees that the Gamow states in our
Berggren basis are the Ohyq/5 at -14.96 Mev and 1h4,/2 at (2.25,-0.03) MeV. The
continuum path that we chose is defined by the triangular contour shown in the
figure. The vertices of the triangle are defined by the values of k or of the energy £
— h?k?/2m =~ 20k?, where the energy is in MeV and k£ in fm™!.
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They are, V;=(0,0), V;=(0.4,-0.1) fm~! or (3,—1.6)MeV, V,=(0.6,0) fm~! or
(7.2,0) MeV and V3=(4,0) fm~"! or (320,0) MeV. In each side of this triangular we
chose a number n of Gaussian point. Therefore the Berggren basis consists of the
two Gamow states plus the scattering states chosen on the integration path of the
figure, which is 3n, in total the basis dimension is thus 3n + 2.

Using this representation we diagonalized another Woods-Saxon potential with
Vo = 40 MeV, a = 0.60 fm, which is considerable different than H,.

The convergence of the calculation as a function of the numbers of points n is as
seen in the table below.



n Bound state Resonance

(—14.960,0.000) (2.251,~0.026)
0 (~12.517,0.001) (4.405,~0.133)

2 (—12.527,0.000) (4.081, —0.275)

4 (—12.527,0.000) (4.237,—0.283)

8  (—12.525,0.000) (4.305,-0.314)

16 (—12.526,0.000) (4.319, -0.320)

32 (—12.526,0.000) (4.321,-0.321)
128 (—12.526,0.000) (4.321,-0.321)
ANTE  (—12.526,0.000) (4321, -0.321)

One sees that the bound state is already obtaned within 10 keV by including
only the two Gamow states, 1. e. with n = 0. The resonance is obtained within 2
keV with n = 16.

But the important point here is that the Berggren representation can indeed de-
scribe the outgoing solutions of the Schrodinger equation corresponding to a realistic
potential.



It 1s perhaps no surprising that the description of the bound state virtually does
not need the inclusion of scattering states, since the standard shell model (without
the continuum) was just designed to evaluate bound states. But even resonances
lying close to the real energy axis show a similar feature, although in this case
scattering states on the real energy axis are needed in the Berggren basis. In other
words, resonances with small imaginary parts of the energy, 1. e. small widths,
can be well described by the continuum shell model. This is reasonable, since very
narrow resonances live a very long time, and they can be considered quasibound
states. From a mathematical viewpoinp this can be understood by noticing that the
Gamow wave function of a quasibound state is very similar to the scattering wave
function at the resonance energy and even to the harmonic oscillator wave function
at that energy, as seen in the figure below.
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Using the Berggren representation one has studied many-nucleon
excitations in the continuum within the Complex Shell Model,
which is the same as the Gamow Shell Model.



THE END






