Entanglement entropy and proton-neutron interactions

Calvin W. Johnson

"This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Nuclear Physics, under Award Numbers DE-FG02-96ER40985"

ESNT workshop on PN Pairing + Quartets, Saclay, Sept 2019

Two related questions about the structure of atomic nuclei:

1) Is there a simple picture in which to understand nuclear properties?
2) Is there an efficient scheme in which to model nuclear structure for applications (e.g., dark matter cross-sections, $0 \nu \beta \beta$ matrix elements, ν-A scattering, etc.)?

Two related questions about the structure of atomic nuclei:

1) Is there a sipmin nintam in mhinh to danctand nuclear properties?
2) Is there an structure for a_{1}

What do we mean by "simple"?
 el nuclear s-sections,

 $0 \vee \beta \beta$ matrix ele $\quad, ~ v-A$ scattering, etc.)?
Ideally, "simple" means a few degrees

 of freedom describe many behaviors qualitatively / quantitativelyrand nuclear properties?
2) Is there an structure for a_{1}

What do we mean by

 "simple"?el nuclear s-sections, $0 v \beta \beta$ matrix eler $\quad, ~ \vee$-A scattering, etc.)?

ESNT workshop on PN Pairing + Quartets, Saclay, Sept 2019

Some simple pictures:

- Single-particle/ (deformed) mean-field;
- Single-quasiparticle (HFB);
- pair condensates (both like particles, and p-n);
- quartets;
- Group theoretical frameworks ("simple" = dominated by few irreps);

ESNT workshop on PN Pairing + Quartets, Saclay, Sept 2019

Simplicity is defined relative to a "complete" picture, which here is configuration-interaction

$$
\hat{\mathbf{H}}|\Psi\rangle=E|\Psi\rangle
$$

$$
|\Psi\rangle=\sum_{\alpha} c_{\alpha}|\alpha\rangle \quad H_{\alpha \beta}=\langle\alpha| \hat{\mathbf{H}}|\beta\rangle
$$

$$
\sum_{\beta} H_{\alpha \beta} c_{\beta}=E c_{\alpha} \quad \text { if } \quad\langle\alpha \mid \beta\rangle=\delta_{\alpha \beta}
$$

The basis states here are
shell-model Slater determinants
ESNT workshop on PN Pairing + Quartets, Saclay, Sept 2019

The interacting shell model is useful here because it is flexible and is a superset of many of these approximations
Ψ
α
$\sum_{\beta} H_{\alpha \beta} c_{\beta}=E c_{\alpha} \quad$ if $\quad\langle\alpha \mid \beta\rangle=\delta_{1}$
ESNT workshop on PN Pairing + Quartets, Saclay, Sept 2019

The BIGSTICK shell-model code is public!

Download from: github.com/cwjsdsu/BigstickPublick

Manual at arXiv:1801.08432

Links to BIGSTICK and other free, open-source many-body codes available through
fribtheoryalliance.org

Despite advances, it is easy to get to model spaďés ${ }^{\text {ERSITY }}$ beyond our reach:
$s d$ shell: max dimension 93,000. Can be done in a few minutes on a laptop.
pf shell: ${ }^{48} \mathrm{Cr}$, dim 2 million, ~ 10 minutes on laptop ${ }^{52} \mathrm{Fe}$, $\operatorname{dim} 110$ million, a few hours on modest workstation ${ }^{56} \mathrm{Ni}$, dim 1 billion, 1 day on advanced workstation ${ }^{60} \mathrm{Zn}$, dim 2 billion, < 1 hour on supercomputer

Despite advances, it is easy to get to model spadee s beyond our reach:
shells between 50 and $82\left(0 g_{7 / 2} 2\right.$ s $\left.1 \mathrm{~d} 0 h_{11 / 2}\right)$
${ }^{128} \mathrm{Te}$: dim 13 million (laptop)
${ }^{127} \mathrm{I}$: dim 1.3 billion (small supercomputer)
${ }^{128} \mathrm{Xe}$: dim 9.3 billion (supercomputer)
${ }^{129} \mathrm{Cs}$: dim 50 billion (haven't tried!)

How most shell-model codes represent the buniverity How most shell-model codes represent the basis: Proton-neutron factorization

$$
|\Psi\rangle=\sum_{\mu v} c_{\mu v}\left|p_{\mu}\right\rangle\left|n_{v}\right\rangle
$$

How most shell-model codes represent the basis: Proton-neutron factorization

$$
|\Psi\rangle=\sum_{\mu \nu} c_{\mu \nu}\left|p_{\mu}\right\rangle\left|n_{v}\right\rangle
$$

BIGSTICK is an M -scheme code, meaning total J_{z} fixed
We have a constraint: $\mathrm{M}_{\mathrm{p}}+\mathrm{M}_{\mathrm{n}}=\mathrm{M}$

How most shell-model codes represent the basis: Proton-neutron factorization

$$
|\Psi\rangle=\sum_{\mu v} c_{\mu v}\left|p_{\mu}\right\rangle\left|n_{v}\right\rangle
$$

BIGSTICK is an M -scheme code, meaning total J_{z} fixed
We have a constraint: $\mathrm{M}_{\mathrm{p}}+\mathrm{M}_{\mathrm{n}}=\mathrm{M}$

$$
|\Psi, M\rangle=\sum_{\mu \nu} c_{\mu \nu}\left|p_{\mu}, M_{p}\right\rangle\left|n_{v}, M_{n}=M-M_{p}\right\rangle
$$

FACTORIZATION

How most shell-model codes represent the basis: Proton-neutron factorization

$$
|\Psi\rangle=\sum_{\mu v} c_{\mu v}\left|p_{\mu}\right\rangle\left|n_{v}\right\rangle
$$

ESNT workshop on PN Pairing + Quartets, Saclay, Sept 2019

FACTORIZATION

For fast calculation these are typically bit strings, or "occupation representation of Slater determinants"

$$
\begin{aligned}
& |\Psi\rangle=\sum_{\mu v} c_{\mu v}\left|p_{\mu}\right\rangle\left|n_{v}\right\rangle \\
& \downarrow \downarrow \\
& 01101000 \ldots\rangle|10010100 \ldots\rangle
\end{aligned}
$$

ESNT workshop on PN Pairing + Quartets, Saclay, Sept 2019

Alternate approach for medium/nuclei:
Proton-neutron factorization

$$
|\Psi\rangle=\sum_{\mu \nu} c_{\mu \nu}\left|p_{\mu}\right\rangle\left|n_{v}\right\rangle
$$

Can we truncate for just a few components?

Alternate approach for medium/nuclei:

Proton-neutron factorization

$$
\begin{gathered}
|\Psi\rangle=\sum_{\mu v} c_{\mu v}\left|p_{\mu}\right\rangle\left|n_{v}\right\rangle \\
\left(a_{1}|010110 \ldots\rangle+a_{2}|110010 \ldots\rangle+a_{3}|001011 \ldots\rangle+\ldots .\right)
\end{gathered}
$$

No longer single "Slater determinants" but linear combinations...

Alternate approach for medium/nuclei:
Proton-neutron factorization

$$
|\Psi\rangle=\sum_{\mu v} c_{\mu v}\left|p_{\mu}\right\rangle\left|n_{v}\right\rangle
$$

Can we truncate for just a few components?
Priori work by Papenbrock, Juodagalvis, Dean, Phys. Rev. C 69, 024312 (2004), but focused on N =Z

Alternate approach for medium/nuclei:
Proton-neutron factorization

$$
|\Psi\rangle=\sum_{\mu \nu} c_{\mu v}\left|p_{\mu}\right\rangle\left|n_{v}\right\rangle
$$

Can we truncate for just a few components?
(Alternate idea: truncated in each configuration/ partition, e.g. Liao et al Phys. Rev. C 90, 024306)

Example application:
shells between 50 and $82\left(0 g_{7 / 2} 2\right.$ s $\left.1 \mathrm{~d} 0 \mathrm{~h}_{11 / 2}\right)$
${ }^{129} \mathrm{Cs}: \mathrm{M}$-scheme dim 50 billion (haven't tried!)

Proton dimension: 14,677
Neutron dimension: 646,430

Example application:
${ }^{129} \mathrm{Cs}: \mathrm{M}$-scheme dim 50 billion (haven't tried!)
Proton dimension: 14,677
Neutron dimension: 646,430

ESNT workshop on PN Pairing + Quartets, Saclay, Sept 2019

So we want to ask:

Can the wave function can be wellapproximated by just a few select proton and neutron states?

These would not be single Slater determinants but linear combinations

ESNT workshop on PN Pairing + Quartets, Saclay, Sept 2019

So we want to ask:

Can the wave function can be wellapproximated by just a few select proton and neutron states?

> In other words, is it "simple" in terms of coupling between proton and neutron building blocks

ESNT workshop on PN Pairing + Quartets, Saclay, Sept 2019

My tool for investigation:
The entanglement entropy

$$
|\Psi\rangle=\sum_{\mu \nu} c_{\mu \nu}\left|p_{\mu}\right\rangle\left|n_{v}\right\rangle
$$

Let any wavefunction have two components (i.e., proton and neutron components) "bipartite"

Find the singular-value-decomposition eigenvalues of $c_{\mu v}$

My tool for investigation:
The entanglement entropy

$$
|\Psi\rangle=\sum_{\mu \nu} c_{\mu \nu}\left|p_{\mu}\right\rangle\left|n_{v}\right\rangle
$$

Find the singular-value-decomposition eigenvalues of $c_{\mu \nu}$:
Find eigenvalues λ_{i} of $\rho_{\mu \mu^{\prime}}=\sum_{\nu} c_{\mu \nu} c_{\mu^{\prime} \nu}$

$$
S=-\sum_{i} \lambda_{i} \ln \lambda_{i}=-\operatorname{tr} \rho \ln \rho
$$

The entanglement entropy

$$
\begin{aligned}
& |\Psi\rangle=\sum_{\mu v} c_{\mu v}\left|p_{\mu}\right\rangle\left|n_{v}\right\rangle \\
& S=-\sum_{i} \lambda_{i} \ln \lambda_{i}=-\operatorname{tr} \rho \ln \rho
\end{aligned}
$$

The entanglement entropy measures how correlated ('entangled') the two sectors are. $\mathrm{S}=0$ means uncorrelated.

SAN Diego State UNIVERSITY

Now let's turn to nuclei, with $|\Psi\rangle=\sum_{\mu \nu} c_{\mu \nu}\left|p_{\mu}\right\rangle\left|n_{v}\right\rangle$

ESNT workshop on PN Pairing + Quartets, Saclay, Sept 2019

Z=N nuclei in $s d$ shell

ESNT workshop on PN Pairing + Quartets, Saclay, Sept 2019

Z=N nuclei in $s d$ shell

ESNT workshop on PN Pairing + Quartets, Saclay, Sept 2019

Now let's follow as isospin increases

ESNT workshop on PN Pairing + Quartets, Saclay, Sept 2019

A=28 nuclei in $s d$ shell with USDB

ESNT workshop on PN Pairing + Quartets, Saclay, Sept 2019

USDB

USDB "traceless" = s.p.e, monopoles removed

SAN Diego State UNIVERSITY

What about as we increase in excitation energy?

ESNT workshop on PN Pairing + Quartets, Saclay, Sept 2019

SAN Diego State UNIVERSITY

What about other partitions?

Like pairing, or quartets?

ESNT workshop on PN Pairing + Quartets, Saclay, Sept 2019

It would be very interesting to look at the entanglement entropy of, say, single-particles, or pairs, or quartets.

These are independent tests of our ideas about mean-field pictures, or various 'condensates'

However it's not so easy if one wants to do it rigorously.

Let
$|\Psi\rangle=\sum_{\alpha, i} c_{i, \alpha} \hat{a}_{i}^{\dagger} \hat{b}_{\alpha}^{\hat{t}}|0\rangle$
How to find $\rho_{i j}=\sum c_{i, \alpha}^{*} c_{j, \alpha}$?
Especially if $\left[\hat{a}_{i}, \hat{b}_{\alpha}^{\dagger}\right] \neq 0$?

Compute

$\left\langle b_{\alpha}\right| \hat{a}_{i}|\Psi\rangle \underset{\text { "spectroscoppic factor" }}{ }\left|\Psi b_{\alpha}\right\rangle=$

but also need a density matrix
$\left\langle b_{\alpha}\right| \hat{a}_{i} \hat{a}_{j}^{\dagger}\left|b_{\beta}\right\rangle$

ESNT workshop on PN Pairing + Quartets, Saclay, Sept 2019

Then solve

$\left\langle b_{\alpha}\right| \hat{a}_{i}|\Psi\rangle=\sum_{j, \beta} c_{j, \beta}\left\langle b_{\alpha}\right| \hat{a}_{i} \hat{a}_{j}^{\dagger}\left|b_{\beta}\right\rangle$

Highly nontrivial, but possible in modest-sized systems (not yet done)
\rightarrow could lead to "how simple" a wave function looks like in terms of "pairing" or "quartet" bases

ESNT workshop on PN Pairing + Quartets, Saclay, Sept 2019

ESNT workshop on PN Pairing + Quartets, Saclay, Sept 2019

ESNT workshop on PN Pairing + Quartets, Saclay, Sept 2019

Let's decompose the wavefunction into eigenstates of $H_{D D}$ and $H_{n n}$

That is, take low-lying solutions of $H_{p p}$ and $H_{n n}$ and then project full solutions onto them

ESNT workshop on PN Pairing + Quartets, Saclay, Sept 2019

This will test if we can use the low-lying eigenstates of $H_{p p}$ and $H_{n n}$ as building blocks

Let's decompose the wavefunction into eigenstates of $H_{D D}$ and $H_{n n}$
That is, take low-lying solutions of $H_{p p}$ and $H_{n n}$ and then project full solutions onto them

ESNT workshop on PN Pairing + Quartets, Saclay, Sept 2019

Test:

Solve $\quad\left(\mathbf{H}_{p p}+\mathbf{H}_{n n}+\mathbf{H}_{p n}\right)\left|\Psi_{\text {full }}\right\rangle=E\left|\Psi_{\text {full }}\right\rangle$
then solve $\mathbf{H}_{p p}\left|\Psi_{p}\right\rangle=E_{p}\left|\Psi_{p}\right\rangle \quad \mathbf{H}_{n n}\left|\Psi_{n}\right\rangle=E_{n}\left|\Psi_{n}\right\rangle$
Expand

$$
\left|\Psi_{f u l l}\right\rangle=\sum_{p, n} c_{p, n}\left|\Psi_{p}\right\rangle \otimes\left|\Psi_{n}\right\rangle
$$

and compute $\mathrm{P}(\mathrm{p})=\left|\left\langle\Psi_{p} \mid \Psi_{\text {full }}\right\rangle\right|^{2}=\sum_{n} C_{p, n}^{2}$
ESNT workshop on PN Pairing + Quartets, Saclay, Sept 2019

Test:

ESNT workshop on PN Pairing + Quartets, Saclay, Sept 2019

ESNT workshop on PN Pairing + Quartets, Saclay, Sept 2019

We have written a code to take advantage of this (O. Gorton)

We want to find solutions to
$\hat{H}|\Psi\rangle=E|\Psi\rangle$ where $\hat{H}=\hat{H}_{p p}+\hat{H}_{n n}+\hat{H}_{p}$
We solve $\hat{H}_{p p}\left|\Psi_{p}\right\rangle=E_{p}\left|\Psi_{p}\right\rangle \quad \hat{H}_{n n}\left|\Psi_{n}\right\rangle=E_{n}\left|\Psi_{n}\right\rangle$
$\left.\begin{array}{l}\text { and choose certain } \\ \text { diagonalization: }\end{array} \Psi_{p}\right\rangle\left|\Psi_{n}\right\rangle$ as basis for our results with the entropy suggest we only need a few

PNISM = proton-neutron interacting shell model We have written a code to take advantage of this (O. Gorton)

We want to find solutions to
$\hat{H}|\Psi\rangle=E|\Psi\rangle$ where $\hat{H}=\hat{H}_{p p}+\hat{H}_{n n}+\hat{H}_{p}$
We solve $\hat{H}_{p p}\left|\Psi_{p}\right\rangle=E_{p}\left|\Psi_{p}\right\rangle \quad \hat{H}_{n n}\left|\Psi_{n}\right\rangle=E_{n}\left|\Psi_{n}\right\rangle$
and choose certain $\left|\Psi_{p}\right\rangle\left|\Psi_{n}\right\rangle$ as basis for diagonalization;
our results with the entropy suggest we only need a few

SAN Diego State UNIVERSITY

Although BIGSTICK is an M -scheme code

$$
|\Psi, M\rangle=\sum_{\mu v} c_{\mu \nu}\left|p_{\mu}, M_{p}\right\rangle\left|n_{v}, M_{n}=M-M_{p}\right\rangle
$$

because \mathbf{H} commutes with \mathbf{J}^{2}, the eigenstates have good J

$$
|\Psi, J M\rangle=\sum_{\mu \nu} c_{\mu \nu}\left|p_{\mu}, M_{p}\right\rangle\left|n_{v}, M_{n}=M-M_{p}\right\rangle
$$

This is true even if only protons or only neutrons

Using BIGSTICK we construct many-proton states of good J

$$
\left|\Psi_{p}, J_{p} M\right\rangle=\sum_{\mu} c_{\mu}\left|p_{\mu}, M\right\rangle
$$

and the same for many-neutron states; these we couple together in a J-scheme code with fixed J for basis:

$$
\left|\Psi_{J}\right\rangle=\sum_{a b} c_{a b}\left[\left|\Psi_{p} a, J_{p}\right\rangle \otimes\left|\Psi_{n} b, J_{n}\right\rangle\right]_{J}
$$

we find matrix elements of the Hamiltonian in basis of these states and diagonalize.

Some "J-scheme" codes, such as NuShell(X), do this, but including allstates.

μ
Ae for many-neutron states; these we couple to \quad a J-scheme code with fixed J for basis:

$$
\left|\Psi_{I}\right\rangle=\sum_{a b} c_{a b}\left[\left|\Psi_{p} a, J_{p}\right\rangle \otimes\left|\Psi_{n} b, J_{n}\right\rangle\right]_{J}
$$

rix elements of the Hamiltonian in basis of and diagonalize.

ESNT workshop on PN Pairing + Quartets, Saclay, Sept 2019

Some "J-scheme" codes, such as NuShell(X), do this, but including all states.

By truncating we hope to get approximate solutions in much larger spaces

$$
\left.\left|\Psi_{I}\right\rangle=\left\langle\square^{u, J_{p}}\right\rangle^{\otimes}\left|\Psi_{n} b, J_{n}\right\rangle\right]_{J}
$$

rix elements of the Hamiltonian in basis of and diagonalize.

Technical details (if time allows)
Let $\mathbf{H}=\mathbf{H}_{\mathrm{pp}}+\mathbf{H}_{\mathrm{nn}}+\mathbf{H}_{\mathrm{pn}}$
BIGSTICK:
generate states $\mid a_{p}>$, matrix elements $<a_{p}\left|\mathbf{H}_{p p}\right| a_{p}^{\prime}>$ and one body densities $<\mathrm{a}_{\mathrm{p}}\left|\mathrm{c}^{+} \mathrm{c}_{\mathrm{j}}\right| \mathrm{a}_{\mathrm{p}}^{\prime}>$
generate states $\left|b_{n}\right\rangle$, matrix elements $<b_{n}\left|\mathbf{H}_{n n}\right| b_{n}^{\prime}>$ and one body densities $<\mathrm{b}_{\mathrm{n}}\left|\mathrm{c}_{\mathrm{i}} \mathrm{c}_{\mathrm{j}}\right| \mathrm{b}_{\mathrm{n}}>$

PNISM (proton-neutron interacting shell model)
read in the above and
generate matrix elements $<\mathrm{a}_{\mathrm{p}}, \mathrm{b}_{\mathrm{n}}\left|\mathbf{H}_{\mathrm{pn}}\right| \mathrm{a}_{\mathrm{p}}^{\prime}, \mathrm{b}_{\mathrm{n}}^{\prime}>$ using proton, neutron one-body densities

Diagonalize $\mathbf{H}_{\mathrm{pp}}+\mathbf{H}_{\mathrm{nn}}+\mathbf{H}_{\mathrm{pn}}$ in truncated space.

${ }^{48} \mathrm{Cr}, \mathrm{GX} 1 \mathrm{~A}$ interaction

PNISM used 250 proton and 250 neutron states (out of 4845 each)

${ }^{48} \mathrm{Cr}, \mathrm{GX} 1 \mathrm{~A}$ interaction

We have yet to do applications, only "proof of principle."

Sample application:
shells between 50 and $82\left(0 g_{7 / 2} 2\right.$ s $\left.1 \mathrm{~d} 0 \mathrm{~h}_{11 / 2}\right)$
${ }^{129} \mathrm{Cs}:$ M-scheme dim 50 billion (haven't tried!)

Proton dimension: 14,677
Neutron dimension: 646,430

We have yet to do applications, only "proof of principle."

Crazy-difficult isotope: shells between 50 and $82\left(0 g_{7 / 2} 2\right.$ s $\left.1 d \mathrm{Oh}_{11 / 2}\right)$

${ }^{132} \mathrm{Nd}$: M-scheme dim 85 TRILLION

Proton dimension $=$ Neutron dimension $=3.7$ million

Summary:

- We can use entanglement entropy to see how "simple" a wave function looks in some bipartite basis.
- In many shell-model codes, it is natural to look at entanglement between neutron and proton Slater determinants
- With realistic interactions, shell model wave functions look simpler (have lower entropy) than with many schematic interactions (pairing, QQ)
* Entropy is often systematically lower for $N \neq Z$

This is not only enlightening, it is useful:

- Shell model codes are restricted in size of problem; how to go further?
- We build states using the "Weak-entanglement approximation" (WEA) for proton-neutron coupling.
* Looks promising-will try to apply to heavy nuclei

Additional slides

ESNT workshop on PN Pairing + Quartets, Saclay, Sept 2019

It's also important to know:

Computational burden is not primarily the dimension but is the \# of nonzero Hamiltonian matrix elements.

$$
\sum_{\beta} H_{\alpha \beta} c_{\beta}=E c_{\alpha}
$$

J-scheme matrices are smaller but much denser than M-scheme, and "symmetry-adapted" (i.e. SU(3)) matrices are smaller still.
example: ${ }^{12} \mathrm{C} \mathrm{N}_{\max }=8$
scheme basis dim
M
J (J=4)
0.6×10^{9}
9×10^{7}
SU(3) $\quad 9 \times 10^{6}$
(truncated)
\# of nonzero matrix elements
5×10^{11}
3×10^{13}
2×10^{12}

It's also important to know:

Computational burden is not primarily the dimension
but is the \# of nonzero Hamiltonian matrix elements.

BIGSTICK's factorization algorithm is less efficient for $\mathrm{N}_{\text {max }}$ calculations than for complete spaces. e.g. ${ }^{51} \mathrm{Cr}$ (dim 28 million) requires 0.4 Gb but ${ }^{12} \mathrm{C} \mathrm{N}_{\max }=6 \operatorname{dim} 30$ million requires 6 Gb !
to store the nonzero matrix elements would require
~ 150 Gb!

Example of entanglement entropy: good angular momentum

Consider 2 spin-1/2 particles:

$$
|\uparrow \uparrow\rangle,|\uparrow \downarrow\rangle,|\downarrow \uparrow\rangle|, \downarrow \downarrow\rangle
$$

Example of entanglement entropy: good angular momentum

Consider 2 spin-1/2 particles:

$$
|\uparrow \uparrow\rangle,|\uparrow \downarrow \downarrow, \downarrow \downarrow\rangle
$$

Consider total $J=0$ state: $|J=0\rangle=\frac{1}{\sqrt{2}}(|\uparrow \downarrow\rangle-|\downarrow \uparrow\rangle)$
then

$$
\mathbf{C}=\left(\begin{array}{cc}
0 & +\frac{1}{\sqrt{2}} \\
-\frac{1}{\sqrt{2}} & 0
\end{array}\right) \quad \text { and }
$$

$$
\rho_{\mu \mu^{\prime}}=\sum_{v} c_{\mu v} C_{\mu^{\prime} v}
$$

ESNT workshop on PN Pairing + Quartets, Saclay, Sept 2019

Example of entanglement entropy:

Consider total $J=0$ state: $|J=0\rangle=\frac{1}{\sqrt{2}}(|\uparrow \downarrow\rangle-|\downarrow \uparrow\rangle)$
then $\mathbf{C}=\left(\begin{array}{cc}0 & +\frac{1}{\sqrt{2}} \\ -\frac{1}{\sqrt{2}} & 0\end{array}\right)$ and $\rho_{\mu \mu^{\prime}}=\sum_{v} c_{\mu \nu} c_{\mu^{\prime} v}$
or $\rho=\left(\begin{array}{cc}\frac{1}{2} & 0 \\ 0 & \frac{1}{2}\end{array}\right)$
Note trace $\rho=1$.

Example of entanglement entropy:

Consider total $J=0$ state: $|J=0\rangle=\frac{1}{\sqrt{2}}(|\uparrow \downarrow\rangle-|\downarrow \uparrow\rangle)$
then $\mathbf{C}=\left(\begin{array}{cc}0 & +\frac{1}{\sqrt{2}} \\ -\frac{1}{\sqrt{2}} & 0\end{array}\right)$ and $\quad \rho_{\mu \mu^{\prime}}=\sum_{v} c_{\mu \nu} C_{\mu^{\prime} v}$
or $\rho=\left(\begin{array}{cc}\frac{1}{2} & 0 \\ 0 & \frac{1}{2}\end{array}\right)$
Then entropy $S=\ln 2$,
which is the maximum.
Note trace $\rho=1$.

Example of entanglement entropy: good angular momentum
Conversely,

$$
|J=1, M=1\rangle=|\uparrow \uparrow\rangle
$$

has

$$
\mathbf{C}=\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right)
$$

and $\quad \rho=\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right) \quad$ Then entropy $S=0$.
Note trace $\rho=1$.

Entanglement entropy for ph conjugate triplets in the 40Ca-core space
interaction file: gx1a

(From Oliver Gorton, MS Student)

ESNT workshop on PN Pairing + Quartets, Saclay, Sept 2019

Entanglement entropy for ph conjugate triplets in the 40Ca-core space interaction file: gx1a

ESNT workshop on PN Pairing + Quartets, Saclay, Sept 2019

Entanglement entropy for ph conjugate triplets in the 56 Ni -core space
interaction file: jun45

SAN Difgo State UNIVERSITY

Let's see what happens as we change the strength of the proton-neutron coupling

ESNT workshop on PN Pairing + Quartets, Saclay, Sept 2019

ESNT workshop on PN Pairing + Quartets, Saclay, Sept 2019

ESNT workshop on PN Pairing + Quartets, Saclay, Sept 2019

ESNT workshop on PN Pairing + Quartets, Saclay, Sept 2019
${ }^{24} \mathrm{Mg}$

${ }^{24} \mathrm{Mg}$

Overlap probability between states $\sim 40-60 \%$

