Particle-number projection in HFB and BCS

From heavy nuclei to neutron matter

Alex Gezerlis

Recent advances on proton-neutron pairing Workshop
ESNT Saclay
September 3, 2019

Systems

Credit: Dany Page

Credit: University of Colorado

Ultracold atomic gases

Systems: neutron stars

Neutron stars as ultra-dense matter laboratories

- Ultra-dense: 1.4 solar masses (or more) within a radius of 10 kilometres
- Terrestrial-like (outer layers) down to exotic (core) behaviour
- Observationally probed, i.e., not experimentally accessible
- Can we describe neutron-star matter from first principles?
- What does first mean?

Systems: nuclei

- Experimental facilities continue to push the envelope
- Using complicated many-body methods we can try to "build nuclei from scratch"
- No universal theoretical method exists (yet?)
- Regions of overlap between different methods are crucial
- Goal is to work to study nuclei from first principles (when possible)

Systems: cold atoms

Credit: University of Colorado

- Starting in the 1990s, it became possible to experimentally probe degenerate bosonic atoms (beyond ${ }^{4} \mathrm{He}$)
- Starting in the 2000s, the same happened for fermionic atoms (beyond ${ }^{3} \mathrm{He}$)
- These are very cold and strongly interacting (as well as strongly correlated)
- Can be used to simulate other systems, investigating pairing, polarization, polaron physics, many species, reduced dimensionality

Key questions

1. What is the nature of the nuclear force that binds protons and neutrons into stable and rare isotopes?

FRIB: Opening New Frontiers in Nuclear Science (2012), also LRP and NRC dec.

Key questions

1. What is the nature of the nuclear force that binds protons and neutrons into stable and rare isotopes?
2. What is the origin of simple patterns in complex nuclei?

FRIB: Opening New Frontiers in Nuclear Science (2012), also LRP and NRC dec.

Key questions

1. What is the nature of the nuclear force that binds protons and neutrons into stable and rare isotopes?
2. What is the origin of simple patterns in complex nuclei?
3. How did visible matter come into being and how does it evolve?

FRIB: Opening New Frontiers in Nuclear Science (2012), also LRP and NRC dec.

Types of pairs in nuclei

S. Frauendorf and A. O. Macchiavelli, Prog. Nucl. Part. Phys. 78, 24 (2014)

Deuteron-like pairing

Deuteron-Iike pairing

central to this workshop

- $n p$ interaction stronger than $n n$ and $p p$ interaction (there is no bound dineutron in vacuum)
- However, known nuclei exhibit $n n$ and $p p$ pairing.

Possible answer I:

- Isospin polarization discourages spin-triplet pairing: look at $N=Z$ nuclei
A. L. Goodman, Phys. Rev. C 58, R3051 (1998)
A. O. Macchiavelli et al., Phys. Rev. C 61, 041303(R) (2000)
R. Chasman, , Phys. Lett. B 524, 81 (2002)

Possible answer II:

- Spin-orbit field interferes with spin-triplet pairing more: look at heavy nuclei
A. Poves and G. Martinez-Pinedo, Phys. Lett. B 430, 203 (1998)
G. F. Bertsch and Y. L. Luo, Phys. Rev. C 81, 064320 (2010)
S. Baroni, A. O. Macchiavelli, A. Schwenk, Phys. Rev. C 81, 064308 (2010)

Motivation: Model for $\mathbf{N}=\mathbf{Z}$

Correlation energies

- Larger than one: spin-triplet
- Less than one: spin-singlet
- Vertical line: proton drip
- Spin-orbit influence mitigated for nuclei that are unrealistically large
G. F. Bertsch and Y. L. Luo, Phys. Rev. C 81, 064320 (2010)

Hamiltonian

$$
\hat{H}=\sum_{i}\langle i| H_{s p}|j\rangle a_{i}^{\dagger} a_{j}+\sum_{i>j, k>l}\langle i j| v|k l\rangle a_{i}^{\dagger} a_{j}^{\dagger} a_{l} a_{k}
$$

- $H_{s p} \quad$: kinetic + potential well + spin-orbit
- $\langle i j| v|k l\rangle$: contact pairing interaction in 6 channels

$$
\langle i j| v|k l\rangle=\sum_{\alpha}^{6} v_{\alpha}\langle i j| \delta^{(3)}\left(\mathbf{r}-\mathbf{r}^{\prime}\right) P_{L=0} P_{\alpha}|k l\rangle
$$

where v_{s} and v_{t} are fit (and varied)

α	1	2	3	4	5	6
$\left(S, S_{z}\right)$	$(0,0)$	$(0,0)$	$(0,0)$	$(1,1)$	$(1,0)$	$(1,-1)$
$\left(T, T_{z}\right)$	$(1,1)$	$(1,0)$	$(1,-1)$	$(0,0)$	$(0,0)$	$(0,0)$

Traditional HFB

- Applying the Bogoliubov U and V we go to the quasiparticle representation
- The ordinary and anomalous densities are:

$$
\rho=V^{*} V^{t} \quad \text { and } \quad \kappa=V^{*} U^{t}
$$

- Hartree-Fock-Bogoliubov equations:

$$
\left[\begin{array}{cc}
h & \Delta \\
-\Delta^{*} & -h^{*}
\end{array}\right]\binom{U_{k}}{V_{k}}=\binom{U_{k}}{V_{k}} E_{k}
$$

where $h=\varepsilon+\Gamma-\lambda$ and the interaction is buried inside Γ and Δ

Traditional HFB

- Applying the Bogoliubov U and V we go to the quasiparticle representation
- The ordinary and anomalous densities are:

$$
\rho=V^{*} V^{t} \quad \text { and } \quad \kappa=V^{*} U^{t}
$$

- Hartree-Fock-Bogoliubov equations:

$$
\left[\begin{array}{cc}
h & \Delta \\
-\Delta^{*} & -h^{*}
\end{array}\right]\binom{U_{k}}{V_{k}}=\binom{U_{k}}{V_{k}} E_{k}
$$

where $h=\varepsilon+\Gamma-\lambda$ and the interaction is buried inside Γ and Δ

$$
\begin{aligned}
\Gamma_{i j} & =\sum_{k l} \bar{v}_{i l j k} \rho_{k l} \\
\Delta_{i j} & =\frac{1}{2} \sum_{k l} \bar{v}_{i j k l} \kappa_{k l}
\end{aligned}
$$

Traditional HFB

End goal (for now) is

$$
H^{00}=\operatorname{Tr}\left(\varepsilon \rho+\frac{1}{2} \Gamma \rho-\frac{1}{2} \Delta \kappa^{*}\right)
$$

HFB + gradient method

- We want to apply numerous constraining fields:
$H^{\prime}=H-\sum \lambda_{i} Q_{i}$
The Q_{i} are neutron and proton numbers (and possibly 6 more quantities, 1 per channel). Constraining pairing to zero gives us normal system
- Using the Thouless matrix Z the energy can be expanded:

$$
\left(H^{\prime}\right)_{\text {new }}^{00} \approx\left(H^{\prime}\right)^{00}-\operatorname{Tr}\left(\left(H^{\prime}\right)^{20} Z\right)-\operatorname{Tr}\left(\left(H^{\prime}\right)^{11} Z^{2}\right)
$$

- More information:
\rightarrow L. M. Robledo and G. F. Bertsch, Phys. Rev. C 84, 014312 (2011)
\rightarrow P. Ring and P. Schuck, The Nuclear Many-Body Problem
(Springer)

Pairing in heavy nuclei (A~130)

Correlation energies

- Blue line: proton drip
- Green: spin-singlet
- Red: spin-triplet
- Blue: mixed-spin
- Spin-triplet pairing persists off $N=Z$ line
- Mixed-spin pairing appears to be energetically stable (note: no deformation)
A. Gezerlis, G. F. Bertsch, and Y. L. Luo, Phys. Rev. Lett. 106, 252502 (2011)

Energy contour for spin-singlet

$$
{ }_{60}^{132} \mathrm{Nd}
$$

- Dot: uncorrelated
- X: unconstrained
- Energy surface elongated in vertical direction, so is soft with respect to forming a spin-triplet condensate
A. Gezerlis, G. F. Bertsch, and Y. L. Luo, Phys. Rev. Lett. 106, 252502 (2011)

Energy contour for spin-triplet

${ }_{66}^{132}$ Dy

- Dot: uncorrelated
- X: unconstrained
- What happens when one goes between this case and the previous one?
A. Gezerlis, G. F. Bertsch, and Y. L. Luo, Phys. Rev. Lett. 106, 252502 (2011)

Energy contour for mixed-spin

${ }_{64}^{132} \mathrm{Gd}$

- Dot: uncorrelated
- X: unconstrained
- Smooth transition. Dependent on the presence of spin-orbit splitting. Prediction.
A. Gezerlis, G. F. Bertsch, and Y. L. Luo, Phys. Rev. Lett. 106, 252502 (2011)

Pairing in heavy nuclei (A~130)

$$
H^{00}=\operatorname{Tr}\left(\varepsilon \rho+\frac{1}{2} \Gamma \rho-\frac{1}{2} \Delta \kappa^{*}\right)
$$

- Fixed up Γ term (Hartree-Fock contribs)
- Shown is the prototypical mixed-spin case
- Effect weakened
- Rich structure yet to be determined
B. Bulthuis and A. Gezerlis, Phys. Rev. C 93, 014312 (2016)

Pairing in heavy nuclei (A~130)

Again, fixed up Г term

- Blue line: proton drip
- Green: spin-singlet
- Red: spin-triplet
- Blue: mixed-spin
- Spin-triplet pairing persists off $N=Z$ line
- Mixed-spin pairing still appears to be energetically stable (note: no deformation)
B. Bulthuis and A. Gezerlis, Phys. Rev. C 93, 014312 (2016)

Experimental signatures?

- Pairing gaps:
$\Delta_{o}^{(3)}(n)=E(n)-\frac{1}{2}[E(n-1)+E(n+1)]$ blue(=small) one unit off $N=Z$ and a little below
- Two-particle transfer direct reaction cross sections
B. Bulthuis and A. Gezerlis, Phys. Rev. C 93, 014312 (2016)

Pairing in heavy nuclei (A~130)

Turn spin-orbit off as a consistency check

B. Bulthuis and A. Gezerlis, Phys. Rev. C 93, 014312 (2016)

Pairing in heavy nuclei (A~130)

Check to see that you're not using a "magic" value of v_{t} / v_{s}

B. Bulthuis and A. Gezerlis, Phys. Rev. C 93, 014312 (2016)

Symmetry restoration: particle number

$$
\begin{gathered}
\hat{P}_{N Z}^{(L T S)}\left(N_{0}, Z_{0}\right)=\int_{0}^{2 \pi} \frac{d \varphi_{N}}{2 \pi} e^{-i N_{0} \varphi_{N}} \int_{0}^{2 \pi} \frac{d \varphi_{Z}}{2 \pi} e^{-i Z_{0} \varphi_{Z}} \times e^{i R\left(\varphi_{N}, \varphi_{Z}\right)} \\
R\left(\varphi_{N}, \varphi_{Z}\right)=\mathbb{I}_{N_{L}} \otimes\left(\begin{array}{cc}
\varphi_{N} & 0 \\
0 & \varphi_{Z}
\end{array}\right) \otimes \mathbb{I}_{2}
\end{gathered}
$$

E. Rrapaj, A. O. Macchiavelli, and A. Gezerlis, Phys. Rev. C 99, 014321 (2019)

Symmetry restoration: particle number

$$
\begin{gathered}
\hat{P}_{N Z}^{(L T S)}\left(N_{0}, Z_{0}\right)=\int_{0}^{2 \pi} \frac{d \varphi_{N}}{2 \pi} e^{-i N_{0} \varphi_{N}} \int_{0}^{2 \pi} \frac{d \varphi_{Z}}{2 \pi} e^{-i Z_{0} \varphi_{Z}} \times e^{i R\left(\varphi_{N}, \varphi_{Z}\right)} \\
R\left(\varphi_{N}, \varphi_{Z}\right)=\mathbb{I}_{N_{L}} \otimes\left(\begin{array}{cc}
\varphi_{N} & 0 \\
0 & \varphi_{Z}
\end{array}\right) \otimes \mathbb{I}_{2}
\end{gathered}
$$

E. Rrapaj, A. O. Macchiavelli, and A. Gezerlis, Phys. Rev. C 99, 014321 (2019)

Symmetry restoration: particle number

$$
\begin{gathered}
\hat{P}_{N Z}^{(L T S)}\left(N_{0}, Z_{0}\right)=\int_{0}^{2 \pi} \frac{d \varphi_{N}}{2 \pi} e^{-i N_{0} \varphi_{N}} \int_{0}^{2 \pi} \frac{d \varphi_{Z}}{2 \pi} e^{-i Z_{0} \varphi_{Z}} \times e^{i R\left(\varphi_{N}, \varphi_{Z}\right)} \\
R\left(\varphi_{N}, \varphi_{Z}\right)=\mathbb{I}_{N_{L}} \otimes\left(\begin{array}{cc}
\varphi_{N} & 0 \\
0 & \varphi_{Z}
\end{array}\right) \otimes \mathbb{I}_{2}
\end{gathered}
$$

E. Rrapaj, A. O. Macchiavelli, and A. Gezerlis, Phys. Rev. C 99, 014321 (2019)

Symmetry restoration: particle number

$$
\begin{gathered}
\hat{P}_{N Z}^{(L T S)}\left(N_{0}, Z_{0}\right)=\int_{0}^{2 \pi} \frac{d \varphi_{N}}{2 \pi} e^{-i N_{0} \varphi_{N}} \int_{0}^{2 \pi} \frac{d \varphi_{Z}}{2 \pi} e^{-i Z_{0} \varphi_{Z}} \times e^{i R\left(\varphi_{N}, \varphi_{Z}\right)} \\
R\left(\varphi_{N}, \varphi_{Z}\right)=\mathbb{I}_{N_{L}} \otimes\left(\begin{array}{cc}
\varphi_{N} & 0 \\
0 & \varphi_{Z}
\end{array}\right) \otimes \mathbb{I}_{2}
\end{gathered}
$$

E. Rrapaj, A. O. Macchiavelli, and A. Gezerlis, Phys. Rev. C 99, 014321 (2019)

Symmetry restoration: spin

$$
\begin{aligned}
& \hat{P}_{J}^{(L T S)}\left(I_{0}, m^{\prime}, m\right)=\frac{2 I_{0}+1}{8 \pi^{2}} \int_{0}^{2 \pi} d \alpha \int_{0}^{\pi} d \beta \sin (\beta) \\
& \times \int_{0}^{2 \pi} d \gamma e^{i\left(m^{\prime} \alpha+m \gamma\right)} d_{m^{\prime}, m}^{\left(I_{0}\right)}(\beta) e^{i \alpha \hat{J}_{z}^{(L T S)}} \\
& \times e^{i \beta \hat{J}_{y}^{(L T S)}} e^{i \gamma \hat{J}_{z}^{(L T S)}}
\end{aligned}
$$

E. Rrapaj, A. O. Macchiavelli, and A. Gezerlis, Phys. Rev. C 99, 014321 (2019)

Symmetry restoration: spin

$$
\begin{aligned}
\hat{P}_{J}^{(L T S)} & \left(I_{0}, m^{\prime}, m\right)=\frac{2 I_{0}+1}{8 \pi^{2}} \int_{0}^{2 \pi} d \alpha \int_{0}^{\pi} d \beta \sin (\beta) \\
& \times \int_{0}^{2 \pi} d \gamma e^{i\left(m^{\prime} \alpha+m \gamma\right)} d_{m^{\prime}, m}^{\left(I_{0}\right)}(\beta) e^{i \alpha \hat{J}_{z}^{(L T S)}} \\
& \times e^{i \beta \hat{J}_{y}^{(L T S)}} e^{i \gamma \hat{J}_{z}^{(L T S)}}
\end{aligned}
$$

E. Rrapaj, A. O. Macchiavelli, and A. Gezerlis, Phys. Rev. C 99, 014321 (2019)

Symmetry restoration: spin

$$
\begin{aligned}
& \hat{P}_{J}^{(L T S)}\left(I_{0}, m^{\prime}, m\right)=\frac{2 I_{0}+1}{8 \pi^{2}} \int_{0}^{2 \pi} d \alpha \int_{0}^{\pi} d \beta \sin (\beta) \\
& \times \int_{0}^{2 \pi} d \gamma e^{i\left(m^{\prime} \alpha+m \gamma\right)} d_{m^{\prime}, m}^{\left(I_{0}\right)}(\beta) e^{i \alpha \hat{J}_{z}^{(L T S)}} \\
& \times e^{i \beta \hat{J}_{y}^{(L T S)}} e^{i \gamma \hat{J}_{z}^{(L T S)}}
\end{aligned}
$$

E. Rrapaj, A. O. Macchiavelli, and A. Gezerlis, Phys. Rev. C 99, 014321 (2019)

Symmetry restoration: spin

$$
\begin{array}{rll}
\hat{P}_{J}^{(L T S)}\left(I_{0}, m^{\prime}, m\right)=\frac{2 I_{0}+1}{8 \pi^{2}} \int_{0}^{2 \pi} d \alpha \int_{0}^{\pi} d \beta \sin (\beta) & \begin{array}{l}
\text { N.B. This is Projection } \\
\text { After Variation (but }
\end{array} \\
& \times \int_{0}^{2 \pi} d \gamma e^{i\left(m^{\prime} \alpha+m \gamma\right)} d_{m^{\prime}, m}^{\left(I_{0}\right)}(\beta) e^{i \alpha \hat{J}_{z}^{(L T S)}} & \text { the 5d integral can } \\
& \times e^{i \beta \hat{J}_{y}^{(L T S)}} e^{i \gamma \hat{J}_{z}^{(L T S)}} & \text { still get challenging) }
\end{array}
$$

E. Rrapaj, A. O. Macchiavelli, and A. Gezerlis, Phys. Rev. C 99, 014321 (2019)

Symmetry restoration: pair transfer

$$
\begin{aligned}
& \mathcal{A}_{\Phi_{i}, \Phi_{f}}^{\left(J_{p}\right)}\left(I_{i}, I_{f}\right)=\left|\frac{\left\langle\Phi_{f}\right| \hat{\mathscr{P}}\left(I_{f}, J_{p}\right)\left|\Phi_{i}\right\rangle}{\mathcal{N}_{i} \mathcal{N}_{f}}\right| \\
& \hat{\mathscr{P}}\left(I_{f}, J_{p}\right)=\sum_{m_{j_{p}}=-J_{p}}^{J_{p}} \hat{P}_{J}\left(I_{f}\right) \hat{c}^{\dagger\left(J_{p},-m_{j_{p}}\right)} \hat{c}^{\dagger\left(J_{p}, m_{j_{p}}\right)}
\end{aligned}
$$

E. Rrapaj, A. O. Macchiavelli, and A. Gezerlis, Phys. Rev. C 99, 014321 (2019)

Symmetry restoration: pair transfer

$$
\begin{aligned}
& \mathcal{A}_{\Phi_{i}, \Phi_{f}}^{\left(J_{p}\right)}\left(I_{i}, I_{f}\right)=\left|\frac{\left\langle\Phi_{f}\right| \hat{\mathscr{P}}\left(I_{f}, J_{p}\right)\left|\Phi_{i}\right\rangle}{\mathcal{N}_{i} \mathcal{N}_{f}}\right| \\
& \hat{\mathscr{P}}\left(I_{f}, J_{p}\right)=\sum_{m_{j_{p}}=-J_{p}}^{J_{p}} \hat{P}_{J}\left(I_{f}\right) \hat{c}^{\dagger\left(J_{p},-m_{j_{p}}\right)} \hat{c}^{\dagger\left(J_{p}, m_{j_{p}}\right)}
\end{aligned}
$$

E. Rrapaj, A. O. Macchiavelli, and A. Gezerlis, Phys. Rev. C 99, 014321 (2019)

Symmetry restoration: pair transfer

$$
\begin{aligned}
& \mathcal{A}_{\Phi_{i}, \Phi_{f}}^{\left(J_{p}\right)}\left(I_{i}, I_{f}\right)=\left|\frac{\left\langle\Phi_{f}\right| \hat{\mathscr{P}}\left(I_{f}, J_{p}\right)\left|\Phi_{i}\right\rangle}{\mathcal{N}_{i} \mathcal{N}_{f}}\right| \\
& \hat{\mathscr{P}}\left(I_{f}, J_{p}\right)=\sum_{m_{j_{p}}=-J_{p}}^{J_{p}} \hat{P}_{J}\left(I_{f}\right) \hat{c}^{\dagger\left(J_{p},-m_{j_{p}}\right)} \hat{c}^{\dagger\left(J_{p}, m_{j_{p}}\right)}
\end{aligned}
$$

(a) Final isotope is ${ }_{66}^{132} \mathrm{Dy}$.

(b) Final isotope is ${ }_{64}^{132} \mathrm{Gd}$.
E. Rrapaj, A. O. Macchiavelli, and A. Gezerlis, Phys. Rev. C 99, 014321 (2019)

Symmetry restoration: pair transfer

$$
\begin{aligned}
& \mathcal{A}_{\Phi_{i}, \Phi_{f}}^{\left(J_{p}\right)}\left(I_{i}, I_{f}\right)=\left|\frac{\left\langle\Phi_{f}\right| \hat{\mathscr{P}}\left(I_{f}, J_{p}\right)\left|\Phi_{i}\right\rangle}{\mathcal{N}_{i} \mathcal{N}_{f}}\right| \\
& \hat{\mathscr{P}}\left(I_{f}, J_{p}\right)=\sum_{m_{j_{p}}=-J_{p}}^{J_{p}} \hat{P}_{J}\left(I_{f}\right) \hat{c}^{\dagger\left(J_{p},-m_{j_{p}}\right)} \hat{c}^{\dagger\left(J_{p}, m_{j_{p}}\right)}
\end{aligned}
$$

(a) Final isotope is ${ }_{66}^{132} \mathrm{Dy}$.

(b) Final isotope is ${ }_{64}^{132} \mathrm{Gd}$.

(c) Final isotope is ${ }_{60}^{132} \mathrm{Nd}$.
E. Rrapaj, A. O. Macchiavelli, and A. Gezerlis, Phys. Rev. C 99, 014321 (2019)

Approaching the thermodynamic limit with BCS in neutron matter

Two complementary approaches

Quantum Monte Carlo

- Microscopic
- Computationally demanding (3N particle coordinates + spins)
- Limited to smallish N

$$
\begin{aligned}
\Psi(\tau \rightarrow \infty) & =\lim _{\tau \rightarrow \infty} e^{-\left(\mathcal{H}-E_{T}\right) \tau} \Psi_{V} \\
& \rightarrow \alpha_{0} e^{-\left(E_{0}-E_{T}\right) \tau} \Psi_{0}
\end{aligned}
$$

Credit: Steve Pieper

Two complementary approaches

Mean-field theory

- More phenomenological
- Easier to implement, allowing quicker access to qualitative insights
- Can do any large N, including thermodynamic limit
$\Delta(\mathbf{k})=-\sum_{\mathbf{k}^{\prime}}\langle\mathbf{k}| V\left|\mathbf{k}^{\prime}\right\rangle \frac{\Delta\left(\mathbf{k}^{\prime}\right)}{2 \sqrt{\xi(\mathbf{k})^{2}+\Delta(\mathbf{k})^{2}}}$

Two complementary approaches

Quantum Monte Carlo

- Microscopic
- Computationally demanding (3N particle coordinates + spins)
- Limited to smallish N

$$
\begin{aligned}
\Psi(\tau \rightarrow \infty) & =\lim _{\tau \rightarrow \infty} e^{-\left(\mathcal{H}-E_{T}\right) \tau} \Psi_{V} \\
& \rightarrow \alpha_{0} e^{-\left(E_{0}-E_{T}\right) \tau} \Psi_{0}
\end{aligned}
$$

Mean-field theory

- More phenomenological
- Easier to implement, allowing quicker access to qualitative insights
- Can do any large N , including thermodynamic limit
$\Delta(\mathbf{k})=-\sum_{\mathbf{k}^{\prime}}\langle\mathbf{k}| V\left|\mathbf{k}^{\prime}\right\rangle \frac{\Delta\left(\mathbf{k}^{\prime}\right)}{2 \sqrt{\xi(\mathbf{k})^{2}+\Delta(\mathbf{k})^{2}}}$

Two complementary approaches

Quantum Monte Carlo

- Microscopic
- Computationally demanding (3N particle coordinates + spins)
- Limited to smallish N

$$
\begin{aligned}
\Psi(\tau \rightarrow \infty) & =\lim _{\tau \rightarrow \infty} e^{-\left(\mathcal{H}-E_{T}\right) \tau} \Psi_{V} \\
& \rightarrow \alpha_{0} e^{-\left(E_{0}-E_{T}\right) \tau} \Psi_{0}
\end{aligned}
$$

Mean-field theory

- More phenomenological
- Easier to implement, allowing quicker access to qualitative insights
- Can do any large N , including thermodynamic limit

$$
\Delta(\mathbf{k})=-\sum_{\mathbf{k}^{\prime}}\langle\mathbf{k}| V\left|\mathbf{k}^{\prime}\right\rangle \frac{\Delta\left(\mathbf{k}^{\prime}\right)}{2 \sqrt{\xi(\mathbf{k})^{2}+\Delta(\mathbf{k})^{2}}}
$$

Research Strategies

i) Use QMC as a benchmark with which to compare mean-field results
ii) Constrain mean-field-like theory with QMC, then use former to make predictions

Start from strong pairing

Cold atoms to the rescue

Theoretical many-body problem formulated by George Bertsch more than 15 years ago:

"What is the ground-state energy of a gas of spin-1/2 particles with infinite scattering length, zero range interaction?"

$$
E=\xi E_{F G} \quad E_{F G}=\frac{3}{5} N \frac{\hbar^{2} k_{F}^{2}}{2 m}
$$

Cold atoms to the rescue

Theoretical many-body problem formulated by George Bertsch more than 15 years ago:
"What is the ground-state energy of a gas of spin-1/2 particles with infinite scattering length, zero range interaction?"

$$
E=\xi E_{F G} \quad E_{F G}=\frac{3}{5} N \frac{\hbar^{2} k_{F}^{2}}{2 m}
$$

Now within direct experimental reach!

What do cold atoms have to do with nuclear physics?

Connections

Difficulties with ab initio description of neutron stars:

- No direct experiment (though gravitational-wave studies of NS-NS mergers promising)
- No such thing as "one true interaction"
- Many-body problem difficult, due to strong correlations

Connections

Difficulties with ab initio description of neutron stars:

- No direct experiment (though gravitational-wave studies of NS-NS mergers promising)
- No such thing as "one true interaction"
- Many-body problem difficult, due to strong correlations

Cold atoms can help with all 3 problems

Connections

Difficulties with ab initio description of neutron stars:

- No direct experiment: tune atomic interactions
- No such thing as "one true interaction"
- Many-body problem difficult, due to strong correlations

Cold atoms can help with all 3 problems

Connections

Difficulties with ab initio description of neutron stars:

- No direct experiment: tune atomic interactions
- No such thing as "one true interaction": probe universal regime
- Many-body problem difficult, due to strong correlations

Cold atoms can help with all 3 problems

Connections

Difficulties with ab initio description of neutron stars:

- No direct experiment: tune atomic interactions
- No such thing as "one true interaction": probe universal regime
- Many-body problem difficult, due to strong correlations: carry out non-perturbative calculations for both systems and compare

Cold atoms can help with all 3 problems

Connections

Neutron matter

- MeV scale
- $O\left(10^{57}\right)$ neutrons

Credit: Dany Page

Cold atoms

- peV scale
- $\mathrm{O}(10)$ or $O\left(10^{5}\right)$ atoms

Credit: University of Colorado

- Very similar $E / E_{F G}$ and Δ / E_{F}
- Weak to intermediate to strong coupling

Connections

Neutron matter

- MeV scale
- $O\left(10^{57}\right)$ neutrons

Credit: Dany Page

Cold atoms

- peV scale
- $\mathrm{O}(10)$ or $O\left(10^{5}\right)$ atoms

Credit: University of Colorado
A. Gezerlis, C. J. Pethick, and A. Schwenk Pairing and superfluidity of nucleons in neutron stars chapter in "Novel Superfluids: Volume 2"
(Oxford University Press, 2014)

Fermionic dictionary

Energy of a free Fermi gas:

$$
E_{F G}=3 / 5 N E_{F}
$$

Fermi energy:

$$
E_{F}=\hbar^{2} k_{F}^{2} / 2 m
$$

Fermi wave number: k_{F}
Number density: $\quad \rho=g k_{F}^{3} / 6 \pi^{2}$
Scattering length:

Fermionic dictionary

Energy of a free Fermi gas:

$$
E_{F G}=3 / 5 N E_{F}
$$

Fermi energy:
Fermi wave number: k_{F}
Number density: $\quad \rho=g k_{F}^{3} / 6 \pi^{2}$
Scattering length:

In what follows, the dimensionless quantity $k_{F} a$ is called the "coupling"

Coupling

Weak coupling

- $k_{F} a \rightarrow 0$
- Studied for decades
- Experimentally difficult
- Pairing exponentially small
- Analytically known

Strong Coupling

- $k_{F} a \rightarrow \infty$
- More recent (2000s)
- Experimentally probed
- Pairing significant
- Non-perturbative

Coupling

Weak coupling

- $k_{F} a \rightarrow 0$
- Studied for decades
- Experimentally difficult
- Pairing exponentially small
- Analytically known

Connection:

Using "Feshbach" resonances one can tune the coupling

Strong Coupling

- $k_{F} a \rightarrow \infty$
- More recent (2000s)
- Experimentally probed
- Pairing significant
- Non-perturbative

Credit: Thesis of Martin Zwierlein

Hamiltonian: unity in diversity

$$
\mathcal{H}=-\frac{\hbar^{2}}{2 m} \sum_{k=1}^{N} \nabla_{k}^{2}+\sum_{i<j^{\prime}} v\left(r_{i j^{\prime}}\right)
$$

Neutron matter

${ }^{1} S_{0}$ channel of AV18 - later AV4 $a=-18.5 \mathrm{fm}, r_{e}=2.7 \mathrm{fm}$

Cold atoms basically any well-behaved potential $a=$ tunable, $r_{e}=$ tunable/infinitesimal

What do we know for sure?

Weak Coupling

Equation of state: $\frac{E}{E_{F G}}=1+\frac{10}{9 \pi} k_{F} a+\frac{4}{21 \pi^{2}}(11-2 \ln 2)\left(k_{F} a\right)^{2}$
Pairing gap: $\frac{\Delta}{E_{F}}=\frac{1}{(4 e)^{1 / 3}} \Delta_{\mathrm{BCS}}$

What do we know for sure?

Weak Coupling

Equation of state: $\frac{E}{E_{F G}}=1+\frac{10}{9 \pi} k_{F} a+\frac{4}{21 \pi^{2}}(11-2 \ln 2)\left(k_{F} a\right)^{2}$
Pairing gap: $\frac{\Delta}{E_{F}}=\frac{1}{(4 e)^{1 / 3}} \Delta_{\mathrm{BCS}}$

Strong Coupling

Mean-field BCS is easy but unreliable:

$$
\Delta(\mathbf{k})=-\sum_{\mathbf{k}^{\prime}}\langle\mathbf{k}| V\left|\mathbf{k}^{\prime}\right\rangle \frac{\Delta\left(\mathbf{k}^{\prime}\right)}{2 \sqrt{\xi(\mathbf{k})^{2}+\Delta(\mathbf{k})^{2}}}
$$

Ab initio GFMC is difficult but accurate:

$$
\Psi_{V}=\prod_{i<j} f\left(r_{i j}\right) \mathcal{A}\left[\prod \phi\left(r_{i j}\right)\right]
$$

Equations of state: results

- Results identical at low density
- Range important at high density
- Duke and ENS experiments at unitarity (current QMC and MIT experiment are lower)

NEUTRONS

ATOMS

A. Gezerlis and J. Carlson, Phys. Rev. C 77, 032801 (2008)
S. Gandolfi, A. Gezerlis, and J. Carlson, Ann. Rev. Nucl. Part. Sci. 65, 303 (2015)

Pairing gaps: results

- Results identical at low density
- Range important at high density
- Two independent MIT experiments at unitarity

NEUTRONS

ATOMS

A. Gezerlis and J. Carlson, Phys. Rev. C 77, 032801 (2008)
S. Gandolfi, A. Gezerlis, and J. Carlson, Ann. Rev. Nucl. Part. Sci. 65, 303 (2015)

Experiment on cold-gas gaps away from unitarity

- New experiment at University of Tokyo
- ${ }^{6} \mathrm{Li}$ at $T / T_{F}<0.06$
- Experimental extraction includes (some) beyond mean-field effects

ATOMS

M. Horikoshi et al, Phys. Rev. X 7, 041004 (2017)

Pairing gaps: comparison

- Consistent suppression with respect to BCS ; similar to Gorkov
- Disagreement with AFDMC studied extensively
- Emerging consensus
A. Gezerlis and J. Carlson, Phys. Rev. C 81, 025803 (2010)
S. Gandolfi, A. Gezerlis, and J. Carlson, Ann. Rev. Nucl. Part. Sci. 65, 303 (2015)

BCS in a box

$$
\Delta(\mathbf{k})=-\sum_{\mathbf{k}^{\prime}}\langle\mathbf{k}| V\left|\mathbf{k}^{\prime}\right\rangle \frac{\Delta\left(\mathbf{k}^{\prime}\right)}{2 \sqrt{\xi(\mathbf{k})^{2}+\Delta(\mathbf{k})^{2}}} \quad\langle N\rangle=\sum_{\mathbf{k}}\left[1-\frac{\xi(\mathbf{k})}{\sqrt{\xi(\mathbf{k})^{2}+\Delta(\mathbf{k})^{2}}}\right]
$$

Figure by George Palkanoglou

BCS in a box: symmetry restoration

$$
\begin{aligned}
& \left|\psi_{N}\right\rangle=\int_{0}^{2 \pi} \frac{d \phi}{2 \pi i} e^{-i M \phi} \prod_{\mathbf{k}}\left(u_{\mathbf{k}}+e^{i \phi} v_{\mathbf{k}} \hat{p}_{\mathbf{k}}^{\dagger}\right)|0\rangle \\
& E_{\text {even }}(N)=\sum_{\mathbf{k}} \epsilon_{\mathbf{k}} 2 v_{\mathbf{k}}^{2} \frac{R_{1}^{1}(\mathbf{k})}{R_{0}^{0}}+\sum_{\mathbf{k}} V_{\mathbf{k} \mathbf{k}} v_{\mathbf{k}} \frac{R_{1}^{1}(\mathbf{k})}{R_{0}^{0}}+\sum_{\mathbf{k}, l \mathbf{l} \neq 1} V_{\mathbf{k} 1} u_{\mathbf{k}} u_{1} v_{\mathbf{k}} v_{1} \frac{R_{1}^{2}(\mathbf{k})}{R_{0}^{0}}
\end{aligned}
$$

K. Dietrich, H. J. Mang, and J. H. Pradal, Phys. Rev. 135, 22 (1964)

BCS in a box: symmetry restoration

$$
\left|\psi_{N}\right\rangle=\int_{0}^{2 \pi} \frac{d \phi}{2 \pi i} e^{-i M \phi} \prod_{\mathbf{k}}\left(u_{\mathbf{k}}+e^{i \phi} v_{\mathbf{k}} \hat{p}_{\mathbf{k}}^{\dagger}\right)|0\rangle
$$

Figure by George Palkanoglou

Clustering in four-component unitary fermions

QMC for 4 species

QMC for 4 species

Motivation

- Very successful cold Fermi atom experiments with few or many particles
- Nuclear physics around the unitary limit: S. Koenig, H. W. Griesshammer, H.-W. Hammer, U. van Kolck Phys. Rev. Lett. 118, 202501 (2017)
- Unitary bosons from clusters to matter
J. Carlson, S. Gandolfi, U. van Kolck, S. A. Vitiello Phys. Rev. Lett. 119, 223002 (2017)

QMC for 4 species

Hamiltonian

$$
\begin{gathered}
H=-\frac{\hbar^{2}}{2 m} \sum_{i} \nabla_{i}^{2}+\sum_{i<j} V_{i j}+\sum_{i<j<k} V_{i j k} \\
V_{i, j}=-V_{2} \mu^{2} \frac{2 \hbar^{2}}{m} \exp \left[-\left(\mu r_{i j}\right)^{2} / 2\right] \\
V_{i, j, k}=V_{3}\left(\frac{\mu}{4}\right)^{2} \frac{2 \hbar^{2}}{m} \exp \left[-\left(\mu R_{i j k} / 4\right)^{2} / 2\right]
\end{gathered}
$$

QMC for 4 species

Three trial wave functions explored

$$
\psi_{T}^{A}=f_{J}\left[\Phi_{B C S}^{I, I I} \Phi_{B C S}^{I I I, I V}+\Phi_{B C S}^{I, I I I} \Phi_{B C S}^{I I, I V}+\Phi_{B C S}^{I, I V} \Phi_{B C S}^{I I, I I I}\right]
$$

QMC for 4 species

Three trial wave functions explored

$$
\begin{gathered}
\psi_{T}^{A}=f_{J}\left[\Phi_{B C S}^{I, I I} \Phi_{B C S}^{I I I, I V}+\Phi_{B C S}^{I, I I I} \Phi_{B C S}^{I I, I V}+\Phi_{B C S}^{I, I V} \Phi_{B C S}^{I I, I I I}\right] \\
\psi_{T}^{B}=\mathcal{A}\left[e^{-\alpha \sum_{i=1,3,5,7}\left(r_{i}-r_{C M}^{1,3,5,7}\right)^{2}} \times\right. \\
e^{-\alpha \sum_{j=2,4,6,8}\left(r_{j}-r_{C M}^{2,4,6,8}\right)^{2}} \times \\
\left.e^{-\beta\left(r_{C M}^{1,3,5,7}-r_{C M}^{2,4,6,8}\right)^{2}}\left(r_{C M}^{1,3,5,7}-r_{C M}^{2,4,6,8}\right)^{n}\right]
\end{gathered}
$$

QMC for 4 species

Three trial wave functions explored

$$
\begin{gathered}
\psi_{T}^{A}=f_{J}\left[\Phi_{B C S}^{I, I I} \Phi_{B C S}^{I I I, I V}+\Phi_{B C S}^{I, I I I} \Phi_{B C S}^{I I, I V}+\Phi_{B C S}^{I, I V} \Phi_{B C S}^{I I, I I I}\right] \\
\psi_{T}^{B}=\mathcal{A}\left[e^{-\alpha \sum_{i=1,3,5,7}\left(r_{i}-r_{C M}^{1,3,5,7}\right)^{2}} \times\right. \\
e^{-\alpha \sum_{j=2,4,6,8}\left(r_{j}-r_{C M}^{2,4,6,8}\right)^{2}} \times \\
\left.e^{-\beta\left(r_{C M}^{1,3,5,7}-r_{C M}^{2,4,6,8}\right)^{2}}\left(r_{C M}^{1,3,5,7}-r_{C M}^{2,4,6,8}\right)^{n}\right] \\
\psi_{T}^{C}=\mathcal{A}\left[F\left(r_{C M}^{1,3,5,7}-r_{C M}^{2,4,6,8}\right) \times f_{J}\left(r_{1}, r_{3}, r_{5}, r_{7}\right) \times\right. \\
\left.f_{J}\left(r_{2}, r_{4}, r_{6}, r_{8}\right) \times \prod_{n=1,3,5,7} g\left(r_{n m}\right)\right] \\
m=2,4,6,8
\end{gathered}
$$

QMC for 4 species: 8 particles

- Pionless EFT with NN+NNN
- Careful time-step extrapolation
- 8 Be found to be (barely) bound wrt to α decay, already at LO

QMC for 4 species: 8 particles

The two clusters are communicating

W. Dawkins, J. Carlson, U. van Kolck, A. Gezerlis, arXiv:1908.04288

QMC for 4 species: 8 particles

- Clusters of unitary fermions
- Tested dependence on V_{3} and μ
- Extrapolated to zero range

$$
\frac{E_{8}}{E_{4}}=c_{0}+\frac{c_{1}}{\mu R_{4}}+\frac{c_{2}}{\left(\mu R_{4}\right)^{2}}
$$

$$
\text { finding } \frac{E_{8}}{E_{4}}=2.04 \pm 0.05
$$

W. Dawkins, J. Carlson, U. van Kolck, A. Gezerlis, arXiv:1908.04288

Conclusions

- Lots of pairing physics insensitive to interaction details
- Rich connections between ultracold atomic gases and nuclear physics
- Ab initio and phenomenology are mutually beneficial

Acknowledgments

Collaborators

Guelph

- Brendan Bulthuis
- George Palkanoglou
- Bernard Ross
- Ermal Rrapaj
- Tash Zielinski

LBNL

- Augusto Macchiavelli

LANL

- Joe Carlson
- Stefano Gandolfi

Acknowledgments

Funding

Collaborators

Guelph

- Brendan Bulthuis
- George Palkanoglou
- Bernard Ross
- Ermal Rrapaj
- Tash Zielinski

LBNL

- Augusto Macchiavelli

LANL

- Joe Carlson
- Stefano Gandolfi

