Particle-number projected Bogoliubov coupled cluster formalism

From weakly to strongly correlated systems

Thomas DUGUET

CEA/SPhN, Saclay, France IKS, KU Leuven, Belgium

Recent advances on proton-neutron pairing and quartet correlations in nuclei ESNT workshop, Sept 2-6 2019, Saclay, France

Contents

© Introduction
© Breaking and restoring symmetries in quantum many-body theory

- Prolegomena
- Bogoliubov coupled cluster formalism
- Particle-number-projected Bogoliubov coupled cluster formalism
© Application to Richardson/BCS pairing Hamiltonian
© Conclusions

Contents

© Introduction
© Breaking and restoring symmetries in quantum many-body theory

- Prolegomena
- Bogoliubov coupled cluster formalism
- Particle-number-projected Bogoliubov coupled cluster formalism
© Application to Richardson/BCS pairing Hamiltonian
© Conclusions

Ab initio nuclear chart

O Approximate methods for closed-shells

- Since 2000's
- MBPT, SCGF, CC, IMSRG
- Polynomial scaling
© Approximate methods for open-shells
- Since 2010's
- (P)BMBPT, GGF, (P)BCC, MR-IMSRG, MCPT
- Polynomial scaling

© "Exact" methods
- Since 1980's
- Monte Carlo, CI, ...
- Factorial/exponential scaling

N Bold = symmetry breaking (\&restoration) single-reference methods

Single-reference expansion many-body methods

Nuclear Hamiltonian

$$
H=T+V^{2 \mathrm{~N}}+W^{3 \mathrm{~N}}
$$

Symmetry group
U(1) dealt with today $[H, S]=0 \quad$ where $\quad S \equiv A, J^{2}, J_{z} \ldots$

Mean-field reference state

$H=H_{0}+H_{1}$ such that	$\left[H_{0}, S\right]=0$
$H_{0}\left\|\Phi_{0}^{\mathrm{S}}\right\rangle=\mathcal{E}_{0}^{\mathrm{S}}\left\|\Phi_{0}^{\mathrm{S}}\right\rangle$	Exactly solvable

Closed-shell

Non-degenerate Good starting point

Open-shell

NoDedfegrenatate

IRRpoppestextitiggpiotit

A-body eigenvalue problem

$$
H\left|\Psi_{0}^{\mathrm{S}}\right\rangle=E_{0}^{\mathrm{S}}\left|\Psi_{0}^{\mathrm{S}}\right\rangle \quad \mathrm{N}^{\mathrm{A}} \text { cost where } \mathrm{N}=\operatorname{dim} \mathcal{F}_{1}
$$

Many-body expansion

$$
H=H_{0}+H_{1}
$$

$$
\left|\Psi_{0}^{S}\right\rangle=U^{S}(\infty)\left|\Phi_{0}^{S}\right\rangle
$$

Wave operator Reference state

- Accounts for « weak/dynamical » correlations
- Expand as a series (MBPT, CC...) + truncate $=\mathrm{N}^{\mathrm{p}}$ cost
$\left[H_{0}^{\prime}, S\right] \neq 0$
$\left[H_{1}^{\prime}, S\right] \neq 0$

Symmetry breaking
$H=H_{0}^{\prime}+H_{1}^{\prime}$

$$
\left|\Psi_{0}^{\mathrm{S}}\right\rangle=\underline{U(\infty)\left|\Phi_{0}\right\rangle} \begin{aligned}
& \text { More general } \\
& \text { reference state }
\end{aligned}
$$

-Accounts for "strong/non-dynamical" correlations

- Expand (BMBPT, BCC...) + truncate $=\mathrm{N}^{\mathrm{p}}$ cost

1) Truncated series breaks symmetry
2) Exact symmetry must eventually be restored

Single-reference expansion many-body methods and symmetries

Nuclear Many-Body Methods

Single-reference expansion many-body methods and symmetries

Nuclear Many-Body Methods

Single-reference expansion many-body methods and symmetries

Nuclear Many-Body Methods

Today: BCC and Projected BCC formalism applied to the pairing (Richardson) Hamiltonian

Contents

(0) Introduction
© Breaking and restoring symmetries in quantum many-body theory

- Prolegomena
- Bogoliubov coupled cluster formalism
- Particle-number-projected Bogoliubov coupled cluster formalism
© Application to Richardson/BCS pairing Hamiltonian
© Conclusions

Operators

Nuclear Hamiltonian

$H \equiv \frac{1}{(1!)^{2}} \sum_{p q} t_{p q} c_{p}^{\dagger} c_{q}$
$+\frac{1}{(2!)^{2}} \sum_{\text {pqrs }} \bar{v}_{\text {pqrs }} c_{p}^{\dagger} c_{q}^{\dagger} c_{s} c_{r}$
$\left.+\frac{1}{(3!)^{2}} \sum_{p q r s t u} \bar{w}_{p q r s t u} c_{p}^{\dagger} c_{q}^{\dagger} c_{r}^{\dagger} c_{u} c_{t} c_{s}\right]$

Grand potential
When working in Fock space
$\Omega \equiv H-\underline{\lambda} A$
Chemical potential
\downarrow

Bogoliubov reference state and normal ordering

Bogoliubov reference state

$$
\begin{array}{ll}
\beta_{k}=\sum_{p} U_{p k}^{*} c_{p}+V_{p k}^{*} c_{p}^{\dagger} & |\Phi\rangle \equiv C \prod_{k} \beta_{k}|0\rangle \\
\beta_{k}^{\dagger}=\sum_{p} U_{p k} c_{p}^{\dagger}+V_{p k} c_{p} & \beta_{k}|\Phi\rangle=0 \forall k
\end{array}
$$

Breaks U(1) symmetry

$A|\Phi\rangle \neq \mathrm{A}|\Phi\rangle$

Vacuum state
Reduces to SD in \mathscr{F}_{A} for closed-shell

Normal ordering via Wick's theorem in quasi-particle basis

$$
\begin{array}{rlr}
H & \equiv \sum_{n=0}^{3} \sum_{i+j=2 n} \frac{1}{i!j!} \sum_{l_{1} \ldots l_{i+j}} H_{l_{1} \ldots l_{i+j}}^{i j} \beta_{k_{1}}^{\dagger} \ldots \beta_{k_{i}}^{\dagger} \beta_{k_{i+j} \ldots \beta_{k_{i+1}}} \begin{array}{l}
\text { Hij matrix elements function of } \\
\\
\end{array} \sum_{p q} \bar{H}_{p q r s} \bar{w}_{p q r s t u} U_{p k} V_{p h}+\left[H^{20}+H^{11}+H^{02}\right]+\left[H^{40}+H^{31}+H^{22}+H^{13}+H^{04}\right]+\sum_{i+j=6} H^{i j} \\
& \equiv \sum_{n=0}^{2} H^{[2 n]}+H^{[6]} & \text { 6-qp operators }
\end{array}
$$

Six-index tensors
Too expensive to handle

NO2B approximation
$1-3 \%$ error in closed shell
[Roth et al., PRL 109 (2012) 052501]

PNO2B approximation
Particle-number conserving
[Ripoche, Tichai, Duguet, arXiv:1908.00765]

Contents

(0) Introduction
© Breaking and restoring symmetries in quantum many-body theory

- Prolegomena
- Bogoliubov coupled cluster formalism
- Particle-number-projected Bogoliubov coupled cluster formalism
© Application to Richardson/BCS pairing Hamiltonian
© Conclusions

BCC formalism

Bogoliubov reference state

$$
|\Phi\rangle \equiv C \prod_{k} \beta_{k}|0\rangle
$$

Bogoliubov CC ansatz

Quasi-particle excitations [Signoracci et al. PRC 2015]

$$
\left\lvert\, \begin{aligned}
& \mathcal{B}^{\mu} \equiv \mathcal{B}^{k_{1} \ldots k_{2 n}}=\beta_{k_{1} \ldots}^{\dagger} \ldots \beta_{k_{2 n}}^{\dagger} \\
& \left|\Phi^{\mu}\right\rangle \equiv \mathcal{B}^{\mu}|\Phi\rangle \quad \text { Orthonormal basis of Fock space }
\end{aligned}\right.
$$

$\left|\Psi_{\mathrm{BCC}}^{* *}\right\rangle \equiv e^{U}|\Phi\rangle$ with as soon as U is truncated

$$
\begin{aligned}
& \begin{cases}U=\sum_{n=1} U_{n} & \begin{array}{l}
\text { Cluster amplitudes } \\
\text { Unknowns of the problem }
\end{array} \\
U_{n} \equiv \frac{1}{(2 n)!} \sum_{k_{1} \ldots k_{2 n}} U_{k_{1} \ldots k_{2 n}}^{2 n 0} \beta_{k_{1}}^{\dagger} \ldots \beta_{k_{2 n}}^{\dagger}\end{cases} \\
& \text { Pure excitation operators } \\
& 0=\left.\left\langle\Phi^{\mu}\right| H e^{U}|\Phi\rangle_{C}\right|^{\text {Truncate, e.g. } U=U_{1}+U_{2}} \text { (BCCSD) } \\
& \text { Solve for } n=1,2 \\
& \text { Constrained to be true in average } \\
& \text { Connected }=\text { terminating exponential } \\
& \text { Algebraic expression through Wick's theorem/diagrammatic rules }
\end{aligned}
$$

Energy and amplitude equations

Ex: for the energy

$$
E^{X}=H^{00}+\frac{1}{2} \sum_{k_{1} k_{2}} H_{k_{1} k_{2}}^{02} U_{k_{1} k_{2}}^{20}+\frac{1}{8} \sum_{k_{1} k_{2} k_{3} k_{4}} H_{k_{1} k_{2} k_{3} k_{4}}^{04} U_{k_{1} k_{2}}^{20} U_{k_{3} k_{4}}^{20}+\frac{1}{4!} \sum_{k_{1} k_{2} k_{3} k_{4}} H_{k_{1} k_{2} k_{3} k_{4}}^{04} U_{k_{1} k_{2} k_{3} k_{4}}^{40}
$$

Bogoliubov many-body perturbation formalism

O Perturbative reduction of BCC
[Duguet, Signoracci JPG 2016]
\rightarrow Code for automated generation\&evaluation of many-body diagrams to arbitrary order [Arthuis et al. CPC 2018]
\rightarrow Convergence properties at high orders and resummation methods [Demol et al. to be published 2019]
O BMBPT(2) ab initio calculations of mid-mass semi-magic nuclei [Tichai et al. PLB 2018]

Calculation details
Chiral NN+3N Hamiltonian
SRG $\alpha=0.08 \mathrm{fm}^{4}$
13 major shells (1820 s.p. states)
Canonical HFB reference

Runtime

NCSM: 20.000 hours MCPT: 2.000 hours IMSRG(2): 1.500 hours SCGF(2): 400 hours BMBPT(2): <1min!
$\rightarrow 2-3 \%$ agreement of all methods with exact results (IT-NCSM)
\rightarrow Different truncation schemes yield consistent description of open-shell nuclei
\rightarrow BMBPT optimal to systematically test next generation of Chiral EFT nuclear Hamiltonians
© Future implementation of $\operatorname{BCCSD}(\mathrm{T})$ for accurate ab initio calculations of open-shell nuclei

Contents

(0) Introduction
© Breaking and restoring symmetries in quantum many-body theory

- Prolegomena
- Bogoliubov coupled cluster formalism
- Particle-number-projected Bogoliubov coupled cluster formalism
© Application to Richardson/BCS pairing Hamiltonian
© Conclusions

$\mathrm{U}(1)$ breaking and projection

Particle-number conserving states, i.e. states belonging to \mathscr{H}_{A} Exact eigenstates of $\mathrm{H}:\left|\Psi_{\mu}^{\mathrm{A}}\right\rangle \quad$ Slater determinants: $\quad\left|\Phi^{\mathrm{A}}\right\rangle=\prod_{i=1}^{\mathrm{A}} a_{i}^{\dagger}|0\rangle$ Particle-number breaking states

General states on Fock space: $|\Phi\rangle$ $A|\Phi\rangle \neq \mathrm{A}|\Phi\rangle \quad|\Phi(\varphi)\rangle \equiv R(\varphi)|\Phi\rangle \neq e^{i \mathrm{~A} \varphi}|\Phi\rangle$

Particle-number projection operator

$$
P^{\mathrm{A}} \equiv \frac{1}{2 \pi} \int_{0}^{2 \pi} d \varphi e^{-i \mathrm{~A} \varphi} R(\varphi)
$$

Particle number projection
$|\Phi\rangle \equiv \sum_{\mathrm{A}^{\prime} \in \mathbb{N}} c_{\mathrm{A}^{\prime}}\left|\Theta^{\mathrm{A}^{\prime}}\right\rangle \quad P^{\mathrm{A}}|\Phi\rangle \equiv \sum_{\mathrm{A}^{\prime} \in \mathbb{N}} \frac{c_{\mathrm{A}^{\prime}}}{2 \pi}\left|\Theta^{\mathrm{A}^{\prime}}\right\rangle \int_{0}^{2 \pi} d \varphi e^{-i\left(\mathrm{~A}-\mathrm{A}^{\prime}\right) \varphi}=c_{\mathrm{A}} \underbrace{\left|\Theta^{\mathrm{A}}\right\rangle}$

Particle-number projected BCC formalism

Projected BCC ansatz

$\left|\Psi \frac{\mathrm{PBCC}}{(\mathrm{PBCC}}\right\rangle \equiv P^{\mathrm{A}}\left|\Psi_{\mathrm{BCC}}^{(\mathcal{X})}\right\rangle \quad$ Always true!

Projected BCC energy and particle number

$$
\left.\begin{array}{l}
H\left|\Psi^{\mathrm{A}}\right\rangle=E^{\mathrm{A}}\left|\Psi^{\mathrm{A}}\right\rangle \\
A\left|\Psi^{\mathrm{A}}\right\rangle=A^{\mathrm{A}}\left|\Psi^{\mathrm{A}}\right\rangle
\end{array}\right\rangle \begin{aligned}
& E^{\mathrm{A}}=\frac{\int_{0}^{2 \pi} d \varphi e^{-i \mathrm{~A} \varphi} \mathcal{H}(\varphi)}{\int_{0}^{2 \pi} d \varphi e^{-i \mathrm{~A} \varphi} \mathcal{N}(\varphi)} \\
& A^{\mathrm{A}}=\frac{\int_{0}^{2 \pi} d \varphi e^{-i \mathrm{~A} \varphi} \mathcal{A}(\varphi)}{\int_{0}^{2 \pi} d \varphi e^{-i \mathrm{~A} \varphi} \mathcal{N}(\varphi)}
\end{aligned}
$$

[Duguet, Signoracci JPG 2016] [Qiu et al. PRC 2019]

Similarity transformed operator

$$
O_{Z}(\varphi) \equiv e^{Z(\varphi)} O e^{-Z(\varphi)}
$$

$$
\begin{aligned}
\binom{\beta(\varphi)}{\beta^{\dagger}(\varphi)} & \equiv e^{Z(\varphi)}\binom{\beta}{\beta^{\dagger}} e^{-Z(\varphi)} \\
& =\left(\begin{array}{cc}
1 & 0 \\
Z^{20}(\varphi) & 1
\end{array}\right)\binom{\beta}{\beta^{\dagger}}
\end{aligned}
$$

Non-unitary Bogoliubov transformation

Normal-ordered operator with ME $O_{k_{1} \ldots k_{i+j}}^{i j}(\varphi)$

Not a pure excitation operator...
with $\left\lvert\, \begin{aligned} & \mathcal{N}(\varphi) \equiv\langle\Phi(\varphi)| e^{U}|\Phi\rangle=\langle\Phi(\varphi) \mid \Phi\rangle\langle\Phi| e^{U_{Z}(\varphi)}|\Phi\rangle \\ & \mathcal{H}(\varphi) \equiv\langle\Phi(\varphi)| H e^{U}|\Phi\rangle=\langle\Phi(\varphi) \mid \Phi\rangle\langle\Phi| H_{Z}(\varphi) e^{U_{Z}(\varphi)}|\Phi\rangle \\ & \mathcal{A}(\varphi) \equiv\langle\Phi(\varphi)| A e^{U}|\Phi\rangle=\langle\Phi(\varphi) \mid \Phi\rangle\langle\Phi| A_{Z}(\varphi) e^{U_{Z}(\varphi)}|\Phi\rangle\end{aligned}\right.$
Off-diagonal norm, Hamiltonian and particle-number kernels

Particle-number projected BCC formalism

Disentangled cluster operators

\square Disantengling the algebra to extract pure excitation terms
$e^{U_{Z}(\varphi)}|\Phi\rangle \equiv e^{\frac{\sqrt{W(\varphi)}}{\square}}$

1) Pure excitation operator BUT contains a constant term
2) Allows algebraic expressions of kernels following standard steps
(3) Explicit relation between $\mathrm{W}(\varphi)$ and $\mathrm{U}_{\mathrm{z}}(\varphi)$ too complicated (need other approach)
$W(\varphi)=\sum_{n=0} W_{n}(\varphi) \equiv \underline{W_{0}(\varphi)}+\frac{\mathcal{T}(\varphi)}{\text { Constant }} \quad$ with $\quad W_{n}(\varphi) \equiv \frac{1}{2 n!} \sum_{k_{1} \ldots k_{2 n}} W_{k_{1} \ldots k_{2 n}}^{2 n 0}(\varphi) \beta_{k_{1}}^{\dagger} \ldots \beta_{k_{2 n}}^{\dagger}$

Connected kernels and PBCC energy

$$
\begin{aligned}
\mathcal{N}(\varphi) & \equiv \frac{e^{W_{0}(\varphi)}}{\mathcal{H}(\varphi)}\langle\Phi(\varphi) \mid \Phi\rangle \\
h(\varphi) & \equiv \frac{\mathcal{N}(\varphi)}{\mathcal{N}\left(\varphi \mid H_{Z}(\varphi) e^{\mathcal{T}}(\varphi\right.} \\
E^{\mathrm{A}} & =\frac{\int_{0}^{2 \pi} d \varphi e^{-i \mathrm{~A} \varphi} h(\varphi) \mathcal{N}(\varphi)}{\int_{0}^{2 \pi} d \varphi e^{-i \mathrm{~A} \varphi} \mathcal{N}(\varphi)}
\end{aligned}
$$

$$
\begin{aligned}
& \text { But how to determine } W(\varphi) ? \\
& \text { Correlated norm kernel determined by } W_{0}(\varphi)
\end{aligned}
$$

$$
h(\varphi) \equiv \frac{\mathcal{H}(\varphi)}{}=\langle\Phi| H_{Z}(\varphi) e^{\mathcal{T}(\varphi)}|\Phi\rangle_{C}=\begin{gathered}
\text { Connected partefenergy kernel determined by } \mathcal{J}(\varphi)
\end{gathered}
$$

Consistent dynamical and static correlations [Duguet, Signoracci JPG 2016] [Qiu et al. PRC 2019]

1) Reduction to BCC

Particle-number projected BCC formalism

Gauge-rotated cluster amplitudes $\mathrm{W}_{\mathrm{k}}(\varphi)$

Coupled ordinary differential equations

Initial conditions
Connected off-diagonal kernel of A^{02}
$\frac{d}{d \varphi} W_{0}(\varphi)=\frac{i}{2} \sum_{k_{1} k_{2}} A_{k_{1} k_{2}}^{02}(\varphi) W_{k_{1} k_{2}}^{20}(\varphi)$
$\frac{d}{d \varphi} W_{k_{1} k_{2}}^{20}(\varphi){ }_{j}^{i} \sum_{k_{3} k_{4}}^{02}(\varphi)\left[\frac{1}{2} W_{k_{3} k_{4} k_{1} k_{2}}^{40}(\varphi)\right.$
$\mathcal{N}(\varphi)=e^{W_{0}(\varphi)}\langle\Phi(\varphi) \mid \Phi\rangle=e^{i \int_{0}^{\varphi} \underline{a(\phi)} d \phi}$
$\left.-W_{k_{1} k_{3}}^{20}(\varphi) W_{k_{2} k_{4}}^{20}(\varphi)\right]$
Correlated norm kernel from connected off-diagonal kernel of $\stackrel{k_{A}}{k_{3}}=$ generator of ${ }^{k}(1)$
$\frac{d}{d \varphi} W_{k_{1} k_{2} k_{3} k_{4}}^{40}(\varphi) \sum_{k_{5} k_{6}} A_{k_{5} k_{6}}^{02}(\varphi)\left[\frac{1}{2} W_{k_{5} k_{6} k_{1} k_{2} k_{3} k_{4}}^{60}(\varphi)\right.$
All ranks $A^{\mathrm{A}}=\frac{\int_{0}^{2 \pi} d \varphi e^{-i \mathrm{~A} \varphi} a(\varphi) \mathcal{N}(\varphi)}{\int_{0}^{2 \pi} d \varphi e^{-i \mathrm{~A} \varphi} \mathcal{N}(\varphi)}=\begin{gathered}+W_{k_{1} k_{5}}^{20}(\varphi) W_{k_{6} k_{2} k_{3} k_{4}}^{40}(\varphi) \\ +W_{k_{2} k_{5}}^{20}(\varphi) W_{k_{1} k_{6} k_{3} k_{4}}^{0}(\varphi)\end{gathered}$

$$
\begin{align*}
& W_{0}(0)=0 \\
& W_{k}(0)=U_{k}
\end{align*}
$$

Even when U truncated

Approximation on P^{A}

 Second truncation on $\mathbf{W}_{\mathbf{k}}(\varphi)$

$$
+W_{k_{4} k_{5}}^{20}(\varphi) W_{k_{1} k_{2} k_{3} k_{6}}^{40}
$$

Integrate coupled ODEs and insert in PBCC energy

Contents

(0) Introduction
© Breaking and restoring symmetries in quantum many-body theory

- Prolegomena
- Bogoliubov coupled cluster formalism
- Particle-number-projected Bogoliubov coupled cluster formalism
© Application to Richardson/BCS pairing Hamiltonian
© Conclusions

BCS pairing Hamiltonian

Hamiltonian

$H=\sum_{p}\left(\epsilon_{p}-\lambda\right) N_{p}-G \sum_{p q} P_{p}^{\dagger} P_{q}$
Doubly-degenerate picket fence model

$$
\epsilon_{p}=\epsilon_{\bar{p}}=p \Delta \epsilon
$$

Exact ground-state energy

Richardson solution
[R.W. Richardson, PL 1963; PR 1966]

What about BCC? [Henderson et al. PRC 2014] BCCSD: $\mathrm{U} \approx \mathrm{U}_{1}+\mathrm{U}_{2}$

What about PBCC? [Qiu et al. PRC 2019]
$\operatorname{PBCCSD}(2): \mathbf{U} \approx \mathrm{U}_{1}+\mathrm{U}_{2}$

Operators

$$
\begin{aligned}
& N_{p}=c_{p}^{\dagger} c_{p}+c_{\bar{p}}^{\dagger} c_{\bar{p}} \\
& P_{p}^{\dagger}=c_{p}^{\dagger} c_{\bar{p}}^{\dagger}
\end{aligned}
$$

SU(2) algebra

$$
\begin{aligned}
& {\left[P_{p}, P_{q}^{\dagger}\right]=\delta_{p q}\left(1-N_{p}\right)} \\
& {\left[N_{p}, P_{q}^{\dagger}\right]=2 \delta_{p q} P_{q}^{\dagger}}
\end{aligned}
$$

Typical approximate methods
> BCS and projected BCS (before variation)
> Coupled cluster theory with doubles
> Self-consistent RPA

Other recent accurate methods
[Degroote et al. PRB 2016; Ripoche et al. PRC 2017]

Connected hamiltonian kernel

PBCC energy and kernels

$$
E^{\mathrm{A}}=\frac{\int_{0}^{2 \pi} d \varphi e^{-i \mathrm{~A} \varphi} h(\varphi) \mathcal{N}(\varphi)}{\int_{0}^{2 \pi} d \varphi e^{-i \mathrm{~A} \varphi} \mathcal{N}(\varphi)} \quad \text { with }
$$

Exact (or symmetry-conserving) limit

$$
\begin{aligned}
\mathcal{N}(\varphi) & =e^{i \mathrm{~A} \varphi} \\
\frac{d}{d \varphi} h(\varphi) & =0
\end{aligned}
$$

$$
\begin{aligned}
& \mathcal{N}(\varphi) \equiv e^{W_{0}(\varphi)}\langle\Phi(\varphi) \mid \Phi\rangle \\
& h(\varphi) \equiv \frac{\mathcal{H}(\varphi)}{\mathcal{N}(\varphi)}=\langle\Phi| H_{Z}(\varphi) e^{\mathcal{T}(\varphi)}|\Phi\rangle_{C}
\end{aligned}
$$

○ PBCC \leftrightarrow PBCS-CC(S)D here

- $\mathrm{h}(\varphi)$ real with typical bell-shape curve
- PBCC brings $h(\varphi)$ closer to constant
- Not constant $\mathrm{h}(\varphi)$ induces non-trivial projection

Norm kernel

PBCC energy and kernels

$$
E^{\mathrm{A}}=\frac{\int_{0}^{2 \pi} d \varphi e^{-i \mathrm{~A} \varphi} h(\varphi) \mathcal{N}(\varphi)}{\int_{0}^{2 \pi} d \varphi e^{-i \mathrm{~A} \varphi} \mathcal{N}(\varphi)} \quad \text { with }
$$

Exact (or symmetry-conserving) limit

$$
\begin{aligned}
\mathcal{N}(\varphi) & =e^{i \mathrm{~A} \varphi} \\
\frac{d}{d \varphi} h(\varphi) & =0
\end{aligned}
$$

$$
\begin{aligned}
& \mathcal{N}(\varphi) \equiv e^{W_{0}(\varphi)}\langle\Phi(\varphi) \mid \Phi\rangle \\
& h(\varphi) \equiv \frac{\mathcal{H}(\varphi)}{\mathcal{N}(\varphi)}=\langle\Phi| H_{Z}(\varphi) e^{\mathcal{T}(\varphi)}|\Phi\rangle_{C}
\end{aligned}
$$

O PBCC \leftrightarrow PBCS-CC(S)D here

- $|\mathcal{N}(\varphi)|$ displays bell-shape curve and phase $\propto A$
- PBCC brings $\mathcal{N}(\varphi)$ closer to single IRREP e ${ }^{i A \varphi}$
- $\mathcal{N}(0)=1 \leftrightarrow$ Intermediate normalization

Results - 1

Fraction of correlation energy

Dependence on system size

Absolute energy error

© BCC \leftrightarrow BCS-CC(S)D here

- Extends quality of CC through phase transition
- Better than PBCS except for for $G \gg G_{c}$
- Poor in small systems

○ PBCC \leftrightarrow PBCS-CC(S)D here

- Perfect from weak to strong coupling
- Perfect from small to large systems
- Dominates all other methods

Results - 2

Filling fraction

3) For all system sizes
4) At low polynomial cost

Particle number dispersion

it.) and non-dynamical (def.+proj.) correlations
g regimes

- Poor near « closed shell»
- Reduce σ_{A} by factor of 2 compared to BCS

○ PBCC \leftrightarrow PBCS-CC(S)D here

- Perfect «throughout the shell »
- One-body properties are perfect
- $\sigma_{\mathrm{A}}=0\left(\mathrm{~W}_{3}(\varphi)\right.$ to be added for very high precision $)$

Contents

© Introduction
© Breaking and restoring symmetries in quantum many-body theory

- Prolegomena
- Bogoliubov coupled cluster formalism
- Particle-number-projected Bogoliubov coupled cluster formalism
© Application to Richardson/BCS pairing Hamiltonian
© Conclusions

Conclusions

© Particle-number projected Bogoliubov coupled cluster and many-body perturbation theories

- Extends single-reference CC/MBPT methods to open-shell nuclei via symmetry breaking\&restoration
- First consistent formulation of symmetry restoration techniques beyond the mean-field
- Results obtained for $\mathbf{U}(1)$ on the solvable Richardson Hamiltonian hold great promises
© Future
- Ab initio PBCC and PBMBPT calculations of singly open-shell nuclei
[Tichai, Ripoche, Duguet, in progress]
- Apply to $\operatorname{SU}(2)$ (already formulated) for ab initio calculations of doubly open-shell nuclei
[Tichai, Hagen, Duguet, in progress]
- Combine with IT/TF techniques to go to heavier nuclei
[Tichai, Ripoche, Duguet, EPJA 2019]
- Extend BCC and PBCC to excited states
[Demol, Tichai, Duguet, planned]

Current collaborators on ab initio many-body calculations

J.-P. Ebran
M. Frosini
F. Raimondi
J. Ripoche
V. Somà
A. Tichai

T. M. Henderson
Y. Qiu
G. E. Scuseria
P. Arthuis
C. Barbieri
M. Drissi

H. Hergert
R. Wirth

TECHNISCHE
UNIVERSITAT
DARMSTADT
R. Roth
treUNIVERSITYof
G. Hagen
T. Papenbrock
P. Demol

