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Ab initio nuclear chart 

⦿ “Exact” methods 

○ Since 1980’s 

○ Factorial/exponential scaling 

○ Monte Carlo, CI, … 

⦿ Hybrid methods (ab initio shell model) 

○ Since 2014 for non-perrtubative methods 

○ Effective interaction via MBPT/NCSM/CC/IMSRG 

○ Mixed scaling (at best) 

⦿ Approximate methods for closed-shells 

○ Since 2000’s 

○ MBPT, SCGF, CC, IMSRG 

○ Polynomial scaling 

⦿ Approximate methods for open-shells 

○ Since 2010’s 

○ (P)BMBPT, GGF, (P)BCC, MR-IMSRG, MCPT 

○ Polynomial scaling 

2019 

Bold = symmetry breaking (&restoration) single-reference methods 



Single-reference expansion many-body methods 

Nuclear Hamiltonian A-body eigenvalue problem 

Many-body expansion 

Wave operator Reference state 

Symmetry breaking 

►Accounts for « weak/dynamical » correlations 

►Expand as a series (MBPT, CC…) + truncate = Np cost 

Symmetry group 

where 

Mean-field reference state 

such that 

Closed-shell 

Non-degenerate 

Good starting point 

Open-shell 

Degenerate 

Improper starting point 

Open-shell 

Non-degenerate 

Proper starting point 

NA cost where N = dim H1 

More general  

reference state 

Exactly solvable 

1) Truncated series breaks symmetry  

2) Exact symmetry must eventually be restored 

►Accounts for “strong/non-dynamical” correlations 

►Expand (BMBPT, BCC…) + truncate = Np cost 

U(1) dealt with today 



Formulation 

Solvable model 

Realistic calculations 

[Gorkov 1958; Somà et al. 2011] 

[Somà et al. 2013]  

Single-reference expansion many-body methods and symmetries 

1 

[Henley, Wilets, 1964] 

[Duguet, Signoracci 2016] 

[Tichai et al. 2018]  

[Signoracci et al. 2015] 

[Henderson et al. 2014]  

Hamiltonian H 



2 

[Duguet, Signoracci 2016] 

[Tichai et al. 2019]  

[Duguet, Signoracci 2016] 

[Qiu et al. 2019]  

1 

[Gorkov 1958; Somà et al. 2011] 

[Somà et al. 2013]  

[Signoracci et al. 2015] 

[Henderson et al. 2014]  

Single-reference expansion many-body methods and symmetries 

[Henley, Wilets, 1964] 

[Duguet, Signoracci 2016] 

[Tichai et al. 2018]  

Formulation 

Solvable model 

Realistic calculations 

Hamiltonian H 
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[Signoracci et al. 2015] 

[Henderson et al. 2014]  

[Duguet, Signoracci 2016] 

[Qiu et al. 2019]  

1 

Today: BCC and Projected BCC formalism applied to the pairing (Richardson) Hamiltonian 

Single-reference expansion many-body methods and symmetries 

Formulation 

Solvable model 

Realistic calculations 

Hamiltonian H 
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Operators 

Nuclear Hamiltonian Particle number 

Genuine 3N interaction / six-legs vertex 

k-body force 

↕ 

Mode-2k tensor 

↕ 

Basis representation dim N 

↕ 

Storage cost N2k 

Grand potential 

Chemical potential 

Controls the average particle number in the system  

When working in Fock space 



Normal ordering via Wick’s theorem in quasi-particle basis 

Breaks U(1) symmetry Bogoliubov reference state 

Bogoliubov reference state and normal ordering 

Vacuum state 
Reduces to SD in HA for closed-shell 

Six-index tensors 

Too expensive to handle 
PNO2B approximation 

Particle-number conserving 
[Ripoche, Tichai, Duguet, arXiv:1908.00765]  

Hij matrix elements function of  

Similarly for A and W 6-qp operators 

NO2B approximation 

1-3% error in closed shell 
[Roth et al., PRL 109 (2012) 052501] 
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Quasi-particle excitations  

Orthonormal basis of Fock space 

Bogoliubov reference state 

BCC formalism 

Bogoliubov CC ansatz 

Energy and amplitude equations 

with 

n-tuple connected cluster operator as soon as U is truncated 

Cluster amplitudes 

Unknowns of the problem 

Truncate, e.g. U= U1+U2 (BCCSD)  

Solve for n=1,2 

Reduces to npnh excit. in closed-shell 

Pure excitation operators 

Connected = terminating exponential 

Algebraic expression through Wick’s theorem/diagrammatic rules 

[Signoracci et al. PRC 2015]  

Ex: for the energy 

Constrained to be true in average 



Bogoliubov many-body perturbation formalism 

⦿ Perturbative reduction of BCC 

Chiral NN+3N Hamiltonian 

SRG α = 0.08 fm4 

13 major shells (1820 s.p. states) 

Canonical HFB reference 

[Tichai et al. PLB 2018] 

Runtime  

 NCSM:       20.000 hours 

 MCPT:         2.000 hours 

 IMSRG(2):   1.500 hours 

 SCGF(2):        400 hours  

 BMBPT(2):         < 1min ! 

Calculation details 

 2-3% agreement of all methods with exact results (IT-NCSM)  

 Different truncation schemes yield consistent description of open-shell nuclei  

 BMBPT optimal to systematically test next generation of Chiral EFT nuclear Hamiltonians 

 Code for automated generation&evaluation of many-body diagrams to arbitrary order [Arthuis et al. CPC 2018] 

[Duguet, Signoracci JPG 2016] 

⦿ Future implementation of BCCSD(T) for accurate ab initio calculations of open-shell nuclei 

⦿ BMBPT(2) ab initio calculations of mid-mass semi-magic nuclei 

 Convergence properties at high orders and resummation methods  [Demol et al. to be published 2019] 
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U(1) breaking and projection 

Particle-number projection operator 

Particle-number conserving states, i.e. states belonging to HA 

Particle number projection 

Exact eigenstates of H: Slater determinants:  

Particle-number breaking states 

General states on Fock space: 

Extracts component in HA 

Thouless operator 

Pure de-excitation operator Known from (U,V,j) 

with 

Thouless transformation of Bogoliubov states 



Particle-number projected BCC formalism 

Always true! 

Similarity transformed operator  

Projected BCC energy and particle number 

with 

Not a pure excitation operator… 

Off-diagonal norm, Hamiltonian and particle-number kernels 

[Duguet, Signoracci JPG 2016] 

[Qiu et al. PRC 2019]  Projected BCC ansatz 

Normal-ordered operator with ME  

Non-unitary Bogoliubov transformation 



Particle-number projected BCC formalism 

Disentangled cluster operators 

1) Pure excitation operator BUT contains a constant term  

2) Allows algebraic expressions of kernels following standard steps 

3) Explicit relation between W(j) and UZ(j) too complicated (need other approach) 

Disantengling the algebra to extract pure excitation terms 

with 

Connected kernels and PBCC energy   

2) Reduction to PHFB 

Constant Standard cluster operator form 

1) Reduction to BCC 

Correlated norm kernel determined by W0(j) 

Connected part of energy kernel determined by T(j) 

Same algebraic/terminating form as standard BCC kernel! 

in 

But how to determine W(j)? 

[Duguet, Signoracci JPG 2016] 

[Qiu et al. PRC 2019]  

Consistent dynamical and static correlations 



Particle-number projected BCC formalism 

Gauge-rotated cluster amplitudes Wk(j) 

 
Coupled ordinary differential equations 

Initial conditions 

Even when U truncated All ranks in W(j) coupled 

Second truncation on Wk(j) 

Connected off-diagonal kernel of A02 

Integrate coupled ODEs and insert in PBCC energy 
[Duguet, Signoracci JPG 2016] 

[Qiu et al. PRC 2019]  

Correlated norm kernel from connected off-diagonal kernel of A = generator of U(1) 

Excited kernels of A02 

Ensures that projected value of operator A equals targeted IRREP A 

Approximation on PA 
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What about PBCC? 

     PBCCSD(2): U ≈ U1+U2 

BCS pairing Hamiltonian 

Hamiltonian 

Doubly-degenerate picket fence model 

Exact ground-state energy 

Typical approximate methods 

Richardson solution 
[R.W. Richardson, PL 1963; PR 1966] 

 BCS and projected BCS (before variation) 

 Coupled cluster theory with doubles 

 Self-consistent RPA 

[Dukelsky et al., NPA 2003] 

100 levels 

Half filling 

De = 300 keV 

Gc/De =0.18 

High accuracy in normal phase 

Collapse near superfluid transition  

What about BCC? 

     BCCSD: U ≈ U1+U2 

CCD 

Operators SU(2) algebra 

[Henderson et al. PRC 2014]  

[Qiu et al. PRC 2019]  

Other recent accurate methods 
[Degroote et al. PRB 2016; Ripoche et al. PRC 2017] 



Connected hamiltonian kernel 

⦿ PBCC ↔ PBCS-CC(S)D here 

○ PBCC brings h(j) closer to constant  

○ Not constant h(j) induces non-trivial projection 

Exact (or symmetry-conserving) limit 

with 

PBCC energy and kernels 

100 levels 

Half filling 

G/Gc = 1.5 

BCCSD correlation energy 

○ h(j) real with typical bell-shape curve 



Norm kernel 

⦿ PBCC ↔ PBCS-CC(S)D here 

○ PBCC brings N(j) closer to single IRREP eiAj 

○ N(0) =1 ↔ Intermediate normalization 

Exact (or symmetry-conserving) limit 

with 

PBCC energy and kernels 

○ |N(j)| displays bell-shape curve and phase  A 

100 levels 

Half filling 

G/Gc = 1.5 



Results - 1 

Fraction of correlation energy Absolute energy error 

Dependence on  system size 

100 levels 

Half filling 

100 levels 

Half filling 

Half filling ⦿ PBCC ↔ PBCS-CC(S)D here 

○ Perfect from weak to strong coupling 

○ Perfect from small to large systems 

○ Dominates all other methods 

⦿ BCC ↔ BCS-CC(S)D here 

○ Extends quality of CC through phase transition 

○ Better than PBCS except for for G>>Gc 

○ Poor in small systems 
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Results - 2 

One-body properties 

100 levels 

Half filling 

G/Gc=5.5 

Particle number dispersion 

100 levels 

Half filling 

Filling fraction 

100 levels 

G/Gc=1.5 

⦿ PBCC ↔ PBCS-CC(S)D here 

○ Perfect « throughout the shell » 

○ One-body properties are perfect 

○ sA =0 (W3(j) to be added for very high precision) 

⦿ BCC ↔ BCS-CC(S)D here 

○ Improves on PBCS in the « bulk of the shell » 

○ Poor near « closed shell » 

○ Reduce sA by factor of 2 compared to BCS 

PBCC grasps both dynamical (ind. excit.) and non-dynamical (def.+proj.) correlations  

 1) Consistently and accurately 

 2) For weak and strong coupling regimes 

 3) For all system sizes 

 4) At low polynomial cost 
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Conclusions 

⦿ Particle-number projected Bogoliubov coupled cluster and many-body perturbation theories  

○ Extends single-reference CC/MBPT methods to open-shell nuclei via symmetry breaking&restoration 

○ First consistent formulation of symmetry restoration techniques beyond the mean-field 

⦿ Future 

○ Ab initio PBCC and PBMBPT calculations of singly open-shell nuclei 

○ Apply to SU(2) (already formulated) for ab initio calculations of doubly open-shell nuclei 

○ Combine with IT/TF techniques to go to heavier nuclei 

○ Results obtained for U(1) on the solvable Richardson Hamiltonian hold great promises 

○ Extend BCC and PBCC to excited states 

[Tichai, Ripoche, Duguet, EPJA 2019] 

[Tichai, Ripoche, Duguet, in progress] 

[Tichai, Hagen, Duguet, in progress] 

[Demol, Tichai, Duguet, planned] 
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