ESNT workshop Recent advances on proton-neutron pairing and quartet correlations in nuclei, session II 2-6 September 2019

Interplay of pairing and quadrupole interactions in $N=Z$ nuclei

Chong Qi

Royal institute of Technology (KTH), Stockholm

(i) General properties of the effective interaction
 , ${ }^{3}$ och Konst

$>$ Isovector ($\mathrm{T}=1$): J=0,2,..,2J-1, J=0 term attractive (pairing), others close to zero
$>$ Isoscalar ($\mathrm{T}=0$): $\mathrm{J}=1,3, . ., 2 \mathrm{j}$, strongly attractive (mean field)
\diamond The $\mathrm{J}=1$ and $2 j$ terms are the most attractive ones.

FIG. 3. Comparison of data from various multiplets with j_{1} $=j_{2}$ and $T=1$. The values of the matrix elements are divided by $\bar{E} \equiv \sum_{J}[J] E_{J} / \sum_{J}[J]$ to display the similarities in the J dependence (or θ dependence) of the various multiplets.

FIG. 2. Comparison of data from various multiplets with $j_{1}=j_{2}$ and $T=0$. The values of the matrix elements are divided by $\bar{E} \equiv \sum_{J}[J] E_{J} / \sum_{J}[J]$ to display the similarities in the J dependence (or θ dependence) of the various multiplets.

$$
\cos _{12}=\frac{J(J+1)}{2 j(j+1)}
$$

J.P. Schiffer and W.W. True, Rev.Mod.Phys. 48,191 (1976)

The coupling of few neutrons and protons

In full configuration interaction 'shell model'

Or we can do like these

$$
\begin{aligned}
& \left|J_{1} \otimes J_{2} \ldots\right\rangle_{I} \\
& \left|\left[\left[J_{1} \otimes J_{2}\right]_{I_{12}} \otimes J_{3}\right]_{I_{123}} \ldots\right\rangle_{I} \\
& \left|\left[J_{1} \otimes J_{2}\right]_{I_{12}} \otimes\left[J_{3} \otimes J_{4}\right]_{I_{34}} \ldots\right\rangle_{I}
\end{aligned}
$$

Generate (all) components in uncoupled M or coupled schemes and diagonalize (exactly) the Hamiltonian

The challenge is to understand the complicated full wave function: How to filter out the relevant components

Monopole Hamiltonian

Determines average energy of eigenstates in a given configuration.

Important for binding energies, shell gaps

$$
H_{m}={ }_{a} n_{a}+{ }_{a b} \frac{1}{1++_{a b}} \frac{3 V_{a b}^{1}+V_{a b}^{0}}{4} n_{a}\left(n_{a} \quad a b\right)+\left(V_{a b}^{1} \quad V_{a b}^{0}\right)\left(T_{a} \times T_{b} \quad \frac{3}{4} n_{a a b}\right)
$$

$n_{a}, T_{a} \ldots$ number, isospin operators of orbit a
Monopole centroids
Angular-momentum averaged effects of two-body interaction
The monopole interaction itself does not induce mixing between different configurations.
Strong mixture of the wave function is mainly induced by the residual $\mathrm{J}=0$ pairing and $Q Q \mathrm{np}$ interaction

$$
V_{a b}^{T}=\frac{\sum_{J}(2 J+1) V_{a b a b}^{J T}}{\sum_{J}(2 J+1)}
$$

'Monopole’ truncation

$$
H=H_{m}+H_{M}
$$

$$
E^{\mathrm{SM}}=\left\langle\Psi_{I}\right| H\left|\Psi_{I}\right\rangle
$$

$$
=\sum_{\alpha} \varepsilon_{\alpha}<\hat{N}_{\alpha}>+\sum_{\alpha \leq \beta} V_{m ; \alpha \beta}\left\langle\frac{\hat{N}_{\alpha}\left(\hat{N}_{\beta}-\delta_{\alpha \beta}\right)}{1+\delta_{\alpha \beta}}\right\rangle
$$

$$
+\left\langle\Psi_{I}\right| H_{M}\left|\Psi_{I}\right\rangle
$$

$>$ Similar to 'npnh' and Nmax if no monopole considered.
$>$ But monopole interaction can change significantly the (effective) mean field and invalidate npnh.
$>$ Easy to implement and keeps the simplicity of the M-scheme algorithm
$>$ Possibility to include certain intruder configurations

Convergence for ${ }^{194} \mathrm{~Pb}$

$$
\begin{align*}
\end{align*}
$$

Seniority coupling as a result of strong J=0 pairing

$$
\begin{aligned}
& \mid \text { g.s. }\rangle=|\nu=0 ; J=0\rangle=\left(P_{j}^{+}\right)^{n / 2}\left|\Phi_{0}\right\rangle \\
& |\nu=2 ; J M\rangle=\left(P_{j}^{+}\right)^{(n-2) / 2} A^{+}\left(j^{2} J M\right)\left|\Phi_{0}\right\rangle
\end{aligned}
$$

Exact Diagonalization of the pairing in $\mathrm{v}=0$ subspace

One can readily solve a half-filled system with upto 36-38 doublydegenerate orbitals and 18-19 pairs (Dim: 9*10 ${ }^{9}-3.5^{*} 10^{10}$, shell-model dimension: $4 * 10^{20}-7 * 10^{21}$).

Exact solution of general pairing Hamiltonian
A bridge between DFT and CI->Self-consistent MF+EP

Self－consistent HF＋EP

EP on top of static HF ev8 and time dependent HF Sky3d

HF

GS／BCS

Single particle energy，density

EP

Configuration mixing，new density，correlation energy

HF

Approximation with generalized seniority

$$
\left|\phi_{N}\right\rangle=\frac{1}{\sqrt{\chi_{N}}}\left(P^{\dagger}\right)^{N}|0\rangle,
$$

$\mathrm{T}(\mathrm{T}+1)$ breaking terms in relation to the search for Wigner energy

For a single-j shell system

If one assumes $v=0$ for the ground state of even-even system and $v=1$ for that of the odd system, the expression above can be simplified as

$$
\begin{align*}
E(n) & =\frac{n(n-1)}{4} G-\left[\frac{n}{2}\right](j+1) G, \tag{9}\\
& =\left[\frac{n}{2}\right]\left(\left[\frac{n}{2}\right]-1\right) G+\delta_{v, 1}\left[\frac{n}{2}\right] G+\left[\frac{n}{2}\right] E_{2}
\end{align*}
$$

where $[n / 2]$ denotes the largest integer not exceeding $n / 2$ and corresponds to the total number of $v=0$ pairs. The

For a system involving equally-spaced doubly- degenerate orbital

$$
\begin{aligned}
E(n) \simeq & {\left[\frac{n}{2}\right]\left(\left[\frac{n}{2}\right]-1\right) \mathcal{G}+\delta_{v, 1}\left(\varepsilon_{b}+\delta\right) } \\
& +\left[\frac{n}{2}\right] E_{2}
\end{aligned}
$$

$$
\begin{aligned}
E= & \varepsilon n+\frac{2 a-G}{4} n(n-1) \\
& +\frac{b-2 G}{2}\left[\mathcal{T}(\mathcal{T}+1)-\frac{3 n}{4}\right] \\
& +(j+1) G(n-v)+G\left[\frac{v^{2}}{4}-v+s(s+1)\right]
\end{aligned}
$$

Vpn

Fig. 4. (Color online.) Experimental $V_{p n}$ values of even-even $N=Z$ nuclei (filled circles) and the adjacent odd-odd (squares) and odd-A nuclei (triangles). The filled and open triangles correspond to systems with one nucleon subtracted from and average behavior of $V_{p n}$ in even-even $N \neq Z$ nuclei from Fig. 1. 2^{*} and 3^{*} denotes its twice and three time values.

For even-even nuclei with $n_{\pi} \neq n_{\nu}$,

$$
V_{p n}=-\frac{4 V_{m ; T=1}+2\left(V_{m ; T=0}-V_{m ; T=1}\right)}{4}=\frac{b}{4}-a .
$$

in the case of $n_{\pi}=n_{v}$ (i.e., $N=Z$),

$$
V_{p n}=-\frac{4 V_{m ; T=1}+3\left(V_{m ; T=0}-V_{m ; T=1}\right)}{4}-\frac{G}{2}
$$

$$
=\frac{b}{2}-a-\frac{G}{2} .
$$

$$
\text { odd-odd } N=Z
$$

$$
\begin{aligned}
V_{p n}(Z-1, Z-1)= & B(Z-1, Z-1)+B(Z-2, Z-2) \\
& -B(Z-1, Z-2)-B(Z-2, Z-1) \\
= & \frac{3 b}{4}-a .
\end{aligned}
$$

Exact $\mathrm{T}=1$ pairing in the seniority-zero symmetric subspace

Equally spaced doubly degenerate system With constant $\mathrm{T}=1$ pairing 6 n/p levels, 4 np pairs

$$
A_{\mu}^{\dagger}=\sum_{i=1}^{p} A_{\mu}^{\dagger}\left(j_{i}\right)=
$$

$$
\begin{aligned}
& \qquad \sum_{i=1}^{p} \sum_{m_{i}>0}(-)^{j_{i}-m_{i}} a_{j_{i}, m_{i}, \mu / 2}^{\dagger} a_{j_{i},-m_{i}, \mu / 2}^{\dagger} \\
& \text { for } \mu=1 \text { or }-1, \\
& A_{0}^{\dagger}=\sum_{i=1}^{p} A_{0}^{\dagger}\left(j_{i}\right)= \\
& \sqrt{\frac{1}{2}} \sum_{i=1}^{p} \sum_{m_{i}>0}(-)^{j_{i}-m_{i}}\left(a_{j_{i}, m_{i}, 1 / 2}^{\dagger} a_{j_{i},-m_{i},-1 / 2}^{\dagger}+\right. \\
& \left.a_{j_{i}, m_{i},-1 / 2}^{\dagger} a_{j_{i},-m_{i}, 1 / 2}^{\dagger}\right)
\end{aligned}
$$

Exact isovector pairing in a shell-model framework: Role of proton-neutron correlations in isobaric analog states

M. E. Miora, ${ }^{1,2}$ K. D. Launey, ${ }^{2}$ D. Kekejian, ${ }^{2}$ F. Pan, ${ }^{2,3}$ and J. P. Draayer ${ }^{2}$
${ }^{1}$ Department of Physics, Rollins College, Winter Park, FL 32789, USA
${ }^{2}$ Department of Physics and Astronomy, Louisiana State University, Baton Rouge, LA 70803, USA
${ }^{3}$ Department of Physics, Liaoning Normal University, Dalian 116029, People's Republic of China (Dated: April 29, 2019)

We utilize a nuclear shell model Hamiltonian with only two adjustable parameters to generate, for the first time, exact solutions for pairing correlations for light to medium-mass nuclei, including the challenging proton-neutron pairs, while also identifying the primary physics involved. In addition to single-particle energy and Coulomb potential terms, the shell model Hamiltonian consists of an isovector $T=1$ pairing interaction and an average proton-neutron isoscalar $T=0$ interaction, where the $T=0$ term describes the average interaction between non-paired protons and neutrons. This Hamiltonian is exactly solvable, where, utilizing 3 to 7 single-particle energy levels, we reproduce experimental data for 0^{+}state energies for isotopes with mass $A=10$ through $A=62$ exceptionally well including isotopes from He to Ge. Additionally, we isolate effects due to like-particle and protonneutron pairing, provide estimates for the total and proton-neutron pairing gaps, and reproduce N (neutron) $=Z$ (proton) irregularity. These results provide a further understanding for the key role of proton-neutron pairing correlations in nuclei, which is especially important for waiting-point nuclei on the rp-path of nucleosynthesis.

$$
\begin{align*}
\hat{H}=\sum_{j} \varepsilon_{j} N_{j} & -G \sum_{j j^{\prime} \mu} A_{j, \mu}^{\dagger} A_{j^{\prime}, \mu} \tag{1}\\
& +\alpha\left(\hat{T}^{2}-\frac{N}{2}\left(\frac{N}{2}+1\right)\right)+V_{\mathrm{Coul}},
\end{align*}
$$

The coupling of few nucleons

The $\mathbf{v}=\mathbf{0}$ state is uniquely defined, but ...

$$
\begin{aligned}
& \mid \text { g.s. }\rangle=|\nu=0 ; J=0\rangle=\left(P_{j}^{+}\right)^{n / 2}\left|\Phi_{0}\right\rangle \\
& |\nu=2 ; J M\rangle=\left(P_{j}^{+}\right)^{(n-2) / 2} A^{+}\left(j^{2} J M\right)\left|\Phi_{0}\right\rangle
\end{aligned}
$$

Three identical particles

Eigen states of QQ for a single j system

FIG. 1. The spectrum of four particles in a single- j shell $\left(j=\frac{21}{2}, H=-Q \cdot Q\right.$, energies are in arbitrary units). Part a, the shellmodel calculation; b, the GPFM calculation.

Hsi-Tseng Chen, Da Hsuan Feng, and Cheng-Li

Wu Phys. Rev. Lett. 69, 418 (1992)

Single-j T=1/0 QQ interaction

The monopole average of QQ interaction is zero

$$
V_{a b}^{T}=\frac{\sum_{J}(2 J+1) V_{a b a b}^{T}}{\sum_{J}(2 J+1)}
$$

- What matter for the wave functions are the relative values between different two-body matrix elements within the same isospin (the multipole channel)
- The monopole interactions determine the relative positions of states with different total isospin (and the symmetry energy)

Generic features of the neutron-proton interaction

 SU(3) model (1958) : exact solution to a QQ model

$$
\begin{aligned}
& -\hat{Q} \cdot \hat{Q}=-2 \hat{C}_{2}[\mathrm{SU}(3)]+3 \hat{C}_{2}[\mathrm{SO}(3)] . \\
& \hat{C}_{2}\left[\mathrm{SO}_{ \pm}(3)\right]=\frac{N(N+1)^{2}(N+2)}{{ }^{2}} \hat{\mathcal{G}}^{(1)} \cdot \hat{\mathcal{G}}^{(1)}, \\
& \hat{\mathcal{G}}_{\mu}^{(1)}=\hat{G}_{0 \mu}^{(01)} \pm \hat{G}_{\mu 0}^{(10)} . \\
& \hat{C}_{2}[\mathrm{SU}(3)]=3 \hat{C}_{2}[\mathrm{U}(3)]-\hat{n}^{2}=\frac{3}{2} \hat{L} \cdot \hat{L}+\frac{1}{2} \hat{Q} \cdot \hat{Q},
\end{aligned}
$$

Fig. 3: The eigenspectrum of the operator $-\hat{Q} \cdot \hat{Q}$ for two neutrons and two protons in the $s d$ shell. Only levels in the favoured supermultiplet $(0,0,0)$ are shown. Levels are labelled by the orbital angular momentum L and parity $\pi=+$, and by the $\mathrm{SU}(3)$ quantum numbers (λ, μ). All levels have $S=0$ and therefore the total angular momentum J equals the orbital angular momentum L.
J. P. Elliott, Proc. R. Soc. London, Ser. A 245, 128 (1958); 245, 562 (1958). J. P. Elliott and M. Harvey Proc. R. Soc. London, Ser. A 272, 557 (1963).
P. van Isacker, S. Pittel. Symmetries and deformations in the spherical shell model. Physica Scripta, 2016, 91 (2), 023009

Stretch Scheme, a Shell-Model Description of Deformed Nuclei

Michael Danos and Vincent Gillet

Service de Physique Théorique, Centre d'Etudes Nucléaires de Saclay, Gif-sur-Yvett, Seine et Oise, France and
u of Standards, Washington, D. C.

aligned np pair Full shell-model
\checkmark Aligned np pair to explain the rotational-like spectra in ${ }^{20} \mathrm{Ne}$ and ${ }^{44} \mathrm{Ti}$

P+QQ

$$
H=\alpha H_{1}+(1-\alpha) H_{2},
$$

$$
H_{1}=-\chi Q \cdot Q,
$$

$$
H_{2}=-G S_{+} S_{-},
$$

No analytic solution

FIG. 1. The upper figures show the excitation energies for the Hamiltonian of Eq. (1) for different values of κ and $N=2 \kappa$. The
lower figures show the expectations $\left\langle S_{+} S_{-}\right\rangle$and $\left\langle C_{2}\right)$ as functions of α for the corresponding κ values. wer
C_{2} is the $\mathrm{SU}(3)$ Casimir operator

$$
\hat{H}^{\prime}=-c\left(x S_{+} S_{-}+(1-x) \xi \widetilde{Q} \cdot \widetilde{Q}\right)
$$

FIG. 4. The overlaps $\left|\left\langle n J_{\zeta} ; x=x_{0} \mid n J_{\zeta} ; x\right\rangle\right|$ with $x_{0}=0$ and $x_{0}=1$ for several J_{1} values for $\mathrm{n}=4, \ldots, 8$ in the $j=15 / 2$ shell, where the solid line is the overlap $\left|\left\langle n J_{\zeta} ; x=0 \mid n J_{\zeta} ; x\right\rangle\right|$, and the dotted line is the overlap $\left|\left\langle n J_{\zeta} ; x=1 \mid n J_{\zeta} ; x\right\rangle\right|$.

FIG. 5. Properties of the system of six particles on $j=15 / 2$ orbital with the $\mathrm{P}+\mathrm{Q}$ interaction are studied as a function of the parameter G; the quadrupole strength is set at $\chi_{2}=1$. The upper plot shows the overlap of all six $J=0$ eigenstates in this system with the $s=0$ pairing state,

https://arxiv.org/abs/nucl-th/0110067

A. Volya, Phys.Rev.C65:044311,2002

2n-2p in a single j system

LARGE overlap between the np aligned pair wave functions and the eigen state of the singlej QQ interaction
 model calculation; b, the GPFM calculation.

${ }^{96} \mathrm{Cd}(2 n-2 p)$

Usually the wave function can be expanded as

$$
\left|\Psi_{I}\right\rangle=\sum_{J_{p}, J_{n}} X_{I}\left(J_{p} J_{n}\right)\left|j_{\pi}^{2}\left(J_{p}\right) j_{v}^{2}\left(J_{n}\right) ; I\right\rangle
$$

The thus obtained wave function is a mixture of many component as a result of the np interaction

$$
\begin{aligned}
& \left|\Psi_{o}\left(\mathrm{~g}^{3}\right)\right\rangle=0.76 \|\left[\pi^{2}(0) v^{2}(0)\right] h+0.57\left|\left[\pi^{2}(2) v^{2}(2)\right] n\right\rangle \\
& \left.\left.\left.+0.24 \| \pi^{2}(4) \nu^{2}(4)\right] h+0.13 \| \pi^{2}(6) v^{2}(6)\right]_{\nu}\right) \\
& +0.14\left[\pi^{2}(B) v^{2}(B) \| \lambda\right. \text {. }
\end{aligned}
$$

A striking feature is that if we project it on to np coupled terms, the wave function can be represented by a single term $(\nu \pi)_{9} \otimes(\nu \pi)_{9}$

$$
\left\langle\left[j_{p} j_{n}\left(J_{1}\right) j_{p} j_{n}\left(J_{2}\right)\right]_{J} \mid\left[j_{p}^{2}\left(J_{p}\right) j_{n}^{2}\left(J_{n}\right)\right]_{J}\right\rangle=-2 \hat{J}_{1} \hat{J}_{2} \hat{J}_{p} \hat{J}_{n}\left\{\begin{array}{ccc}
j & j & J_{p} \\
j & j & J_{n} \\
J_{1} & J_{2} & J
\end{array}\right\}
$$

${ }^{96} \mathrm{Cd}(2 n-2 p)$

Usually the wave function can be expanded as
$\left|\Psi_{I}\right\rangle=\sum_{J_{p}, J_{n}} X_{I}\left(J_{p} J_{n}\right)\left|j_{\pi}^{2}\left(J_{p}\right) j_{v}^{2}\left(J_{n}\right) ; I\right\rangle$,
The thus obtained wave function is a mixture of many component as a result of the np interaction

Wave function of ${ }^{96} \mathrm{Cd}$ calculated with a Hamiltonian containing $J=0$ and 9 terms only.

- The $J=9$ term V_{9} generates a states with pure aligned np coupling $\left|j_{9}^{2} \otimes j_{9}^{2}\right\rangle$
- The inclusion of normal pairing is crucially important for reproducing the group state spin
- The $\mathrm{J}=9$ term does not necessary to be stronger than the $J=0$ term. It should be relatively stronger than other $T=0$ terms. [For a simple single-j system, the relative position of $T=0$ and 1 monopole terms does not play any effect on the wave functions.]

Quartet-like coupling as a result of $\mathrm{T}=1 / 0$ pair coupling
e I. Cor ensorial

Nuclei around ${ }^{100} \mathrm{Sn}: \mathrm{N}=\mathrm{Z}=50$ shell closures survive

Nucleus produced with known half-life

Nucleus with known excited states

Stable nucleus

Superallowed Gamow-Teller decay of the doubly magic nucleus ${ }^{100}$ Sn

C. B. Hinke ${ }^{1}$, M. Böhmer ${ }^{1}$, P. Boutachkov ${ }^{2}$, T. Faestermann ${ }^{1}$, H. Geissel ${ }^{2}$, J. Gerl ${ }^{2}$, R. Gernhäuser ${ }^{1}$, M. Górska ${ }^{2}$, A. Gottardo ${ }^{3}$, H. Grawe ${ }^{2}$, J. L. Grębosz ${ }^{4}$, R. Krücken ${ }^{1,5}$, N. Kurz ${ }^{2}$, Z. Liu ${ }^{6}$, L. Maier ${ }^{1}$, F. Nowacki', S. Pietri², Zs. Podolyák ${ }^{8}$, K. Sieja ${ }^{7}$, K. Steiger ${ }^{1}$ K. Straub ${ }^{1}$, H. Weick ${ }^{2}$, H.-J. Wollersheim ${ }^{2}$, P. J. Woods ${ }^{6}$, N. Al-Dahan ${ }^{8}$, N. Alkhomashi ${ }^{8}$, A. Ataç ${ }^{9}$, A. Blazhev ${ }^{10}$, N. F. Braun ${ }^{10}$ I. T. Čelikovi ${ }^{11}$, T. Davinson ${ }^{6}$, I. Dillmann ${ }^{2}$, C. Domingo-Pard ${ }^{12}$, P. C. Doornenbal ${ }^{13}$, G. de France ${ }^{14}$, G. F. Farrelly ${ }^{8}$, F. Farinon ${ }^{2}$, N. Goel², T. C. Habermann ${ }^{2}$, R. Hoischen ${ }^{2}$, R. Janik ${ }^{15}$, M. Karny ${ }^{16}$, A. Kaşkaş ${ }^{9}$, I. M. Kojouharov ${ }^{2}$, Th. Kröl1 ${ }^{17}$, Y. Litvinov ${ }^{2}$, S. Myalski4 ${ }^{4}$, F. Nebel ${ }^{1}$, S. Nishimura ${ }^{13}$, C. Nociforo ${ }^{2}$, J. Nyberg 18, A. R. Parikh ${ }^{19}$, A. Procházka ${ }^{2}$, P. H. Regan ${ }^{8}$, C. Rigollet 20, H. Schaffner ${ }^{2}$, C. Scheidenberger ${ }^{2}$, S. Schwertel ${ }^{1}$, P.-A. Söderström ${ }^{13}$, S. J. Steer ${ }^{8}$, A. Stolz ${ }^{21}$ \& P. Strmeñ ${ }^{15}$

PRL 110, 172501 (2013)
PHYSICAL REVIEW LETTERS
26 APRIL 2013

Coulomb Excitation of ${ }^{104} \mathrm{Sn}$ and the Strength of the ${ }^{100} \mathrm{Sn}$ Shell Closure

G. Guastalla, ${ }^{1}$ D. D. DiJulio, ${ }^{2}$ M. Górska, ${ }^{3}$ J. Cederkäll, ${ }^{2}$ P. Boutachkov, ${ }^{1,3}$ P. Golubev, ${ }^{2}$ S. Pietri, ${ }^{3}$ H. Grawe, ${ }^{3}$ F. Nowacki, ${ }^{4}$ K. Sieja, ${ }^{4}$ A. Algora, ${ }^{5,6}$ F. Ameil, ${ }^{3}$ T. Arici, ${ }^{7,3}$ A. Atac, ${ }^{8}$ M. A. Bentley, ${ }^{9}$ A. Blazhev, ${ }^{10}$ D. Bloor, ${ }^{9}$ S. Brambilla, ${ }^{11}$ N. Braun, ${ }^{10}$ F. Camera, ${ }^{11}$ Zs. Dombrádi, ${ }^{6}$ C. Domingo Pardo, ${ }^{5}$ A. Estrade, ${ }^{3}$ F. Farinon, ${ }^{3}$ J. Gerl, ${ }^{3}$ N. Goel,,${ }^{3,1}$ J. Grębosz, ${ }^{12}$ T. Habermann, ${ }^{3,13}$ R. Hoischen, ${ }^{2}$ K. Jansson, ${ }^{2}$ J. Jolie, ${ }^{10}$ A. Jungclaus, ${ }^{14}$ I. Kojouharov, ${ }^{3}$ R. Knoebel, ${ }^{3}$ R. Kumar, ${ }^{15}$
J. Kurcewicz ${ }^{16}$ N. Kurz, ${ }^{3}$ N. Lalović, ${ }^{3}$ E. Merchan, ${ }^{1,3}$ K. Moschner, ${ }^{10}$ F. Naqvi, ${ }^{3,10}$ B. S. Nara Singh, ${ }^{9}$ J. Nyberg, ${ }^{17}$
C. Nociforo, ${ }^{3}$ A. Obertelli, ${ }^{18}$ M. Pfützner, ${ }^{3,16}$ N. Pietralla, ${ }^{1}$ Z. Podolyák, ${ }^{19}$ A. Prochazka, ${ }^{3}$ D. Ralet, ${ }^{1,3}$ P. Reiter, ${ }^{10}$
D. Rudolph, ${ }^{2}$ H. Schaffner, ${ }^{3}$ F. Schirru, ${ }^{19}$ L. Scruton, ${ }^{9}$ D. Sohler, ${ }^{6}$ T. Swaleh, ${ }^{2}$ J. Taprogge, ${ }^{10,20}$ Zs. Vajta, ${ }^{6}$ R. Wadsworth, ${ }^{9}$ N. Warr, ${ }^{10}$ H. Weick, ${ }^{3}$ A. Wendt, ${ }^{10} \mathrm{O}$. Wieland, ${ }^{11}$ J.S. Winfield, ${ }^{3}$ and H. J. Wollersheim ${ }^{3}$

PHYSICAL REVIEW C 87, 031306(R) (2013)

Transition probabilities near ${ }^{100} \mathrm{Sn}$ and the stability of the $N, Z=50$ shell closure
T. Bäck, ${ }^{1, *}$ C. Qi, ${ }^{1}$ B. Cederwall, ${ }^{1}$ R. Liotta, ${ }^{1}$ F. Ghazi Moradi, ${ }^{1}$ A. Johnson, ${ }^{1}$ R. Wyss, ${ }^{1}$ and R. Wadsworth ${ }^{2}$

Fig. 1.1. Chart of the ${ }^{100} \mathrm{Sn}$ region showing the status of experimental observation.
T. Faestermann et al. / Prog. Part. Nucl. Phys. 69 (2013) 85-130

But many $\mathrm{N}=\mathrm{Z}$ nuclei are deformed

N. Mărginean et al., PRC 63, 031303(R) (2001)

QQ correlation induces deformation;
The np interaction also breaks the seniority in a major way
np QQ interaction between $\mathrm{f}_{7 / 2}$ and $\mathrm{p}_{3 / 2}$ is essential for reproducing ${ }^{48} \mathrm{Cr}$

In single-j calculations, ${ }^{44} \mathrm{Ti}$ and ${ }^{48} \mathrm{Cr}$, show vibrational like yrast specta with wave functions dominated the spin-aligned np coupling scheme.

${ }^{44} \mathrm{Ti}$ and ${ }^{48} \mathrm{Cr}$ exhibit rotational-like ground state bands.

- For fp shell calculations, a transition from rotational-like to equidistant pattern is seen when the aligned pair getting more and more attractive

$$
\begin{aligned}
& V_{1}=\left\langle\left(0 f_{7 / 2}^{2}\right)_{J=1}\right| V\left|\left(0 f_{7 / 2}^{2}\right)_{J=1}\right\rangle \\
& V_{7}=\left\langle\left(0 f_{7 / 2}^{2}\right)_{J=7}\right| V\left|\left(0 f_{7 / 2}^{2}\right)_{J=7}\right\rangle
\end{aligned}
$$

Nilsson-SU3 selfconsistency in heavy $\mathrm{N}=\mathrm{Z}$ nuclei

A. P. Zuker ${ }^{1}$, A. Poves 2, F. Nowacki ${ }^{1}$ and S. M. Lenzi ${ }^{3}$

(1) Université de Strasbourg, IPHC, CNRS, UMR7178, 23 rue du Loess 67037 Strasbourg, France
(2) Departamento de Física Teórica e IFT-UAM/CSIC,

Universidad Autónoma de Madrid, 28049 Madrid, Spain and ISOLDE, CERN, CH-1211, Genève Suisse (3) Dipartimento di Fisica e Astronomia dell'Università and INFN, Sezione di Padova, I-35131 Padova, Italy (Dated: June 26, 2015)
It is argued that there exist natural shell model spaces optimally adapted to the operation of two variants of Elliott's SU3 symmetry that provide accurate predictions of quadrupole moments of deformed states. A selfconsistent Nilsson-like calculation describes the competition between the realistic quadrupole force and the central field, indicating a remarkable stability of the quadrupole moments - which remain close to their quasi and pseudo SU3 values - as the single particle splittings increase. A detailed study of the $N=Z$ even nuclei from ${ }^{56} \mathrm{Ni}$ to ${ }^{96} \mathrm{Cd}$ reveals that the region of prolate deformation is bounded by a pair of transitional nuclei ${ }^{72} \mathrm{Kr}$ and ${ }^{84} \mathrm{Mo}$ in which prolate ground state bands are predicted to dominate, though coexisting with oblate ones.

Phys. Rev. C 92, 024320 (2015)

FIG. 1. (color online) Evolution of model spaces from Spinorbit (SO) (around HO closures) to Extended ExtruderIntruder (EEI) made of Pseudo-SU3 and Quasi-SU3 subspaces

* Nuclei just below ${ }^{100}$ Sn are spherical
${ }^{92} \mathrm{Pd}$ and ${ }^{88} \mathrm{Ru}$ should be identical if $\mathrm{g} 9 / 2$ is well isolated
* Nuclei around ${ }^{80} \mathrm{Zr}$ are largely deformed and cannot be well reproduced within fpg space ($d_{5 / 2}$ is needed in SM but not possible for ${ }^{80} \mathrm{Zr}$)

FIG. 3. (Color online) Same as Fig. 1 but for calculations with WS3 from Ref. [36].

N=Z nuclei as a probe of np coupling scheme

Experimental status

Spectra of the heaviest even-even $\mathrm{N}=\mathrm{Z}$ nuclei ${ }^{88} \mathrm{Ru}$ and ${ }^{92} \mathrm{Pd}$ were reported in 2001 and 2011, respectively. N. Mărginean et al., PRC 63, 031303(R) (2001); B. Cederwall et al., Nature 469, 68 (2011).

(c)

From Bo Cederwall

PHYSICAL REVIEW C, VOLUME 65, 051303(R)

Delayed alignments in the $N=Z$ nuclei ${ }^{84} \mathrm{Mo}$ and ${ }^{88} \mathrm{Ru}$

N. Mărginean, ${ }^{1,2}$ D. Bucurescu, ${ }^{2}$ C. Rossi Alvarez, ${ }^{3}$ C. A. Ur, ${ }^{3,2}$ Y. Sun, ${ }^{4,5}$ D. Bazzacco, ${ }^{3}$ S. Lunardi, ${ }^{3}$ G. de Angelis, ${ }^{1}$ M. Axiotis, ${ }^{1}$ E. Farnea, ${ }^{3}$ A. Gadea, ${ }^{1}$ M. Ionescu-Bujor, ${ }^{2}$ A. Iordăchescu, ${ }^{2}$ W. Krolas, ${ }^{6}$ Th. Kröll, ${ }^{1,3}$ S. M. Lenzi, ${ }^{3}$ T. Martinez, ${ }^{1}$ R. Menegazzo, ${ }^{3}$ D. R. Napoli, ${ }^{1}$ P. Pavan, ${ }^{3}$ Zs. Podolyak, ${ }^{7}$ M. De Poli, ${ }^{1}$ B. Quintana, ${ }^{8}$ and P. Spolaore ${ }^{1}$

The Hamiltonian employed in the PSM calculation can be expressed as $\hat{H}=\hat{H}_{\nu}+\hat{H}_{\pi}+\hat{H}_{\nu \pi}$, where $H_{\tau}(\tau=\nu, \pi)$ is the like-particle pairing plus quadrupole Hamiltonian, with the inclusion of quadrupole pairing,

$$
\begin{equation*}
\hat{H}_{\tau}=\hat{H}_{\tau}^{0}-\frac{\chi_{\tau \tau}}{2} \sum_{\mu} \hat{Q}_{\tau}^{\dagger \mu} \hat{Q}_{\tau}^{\mu}-G_{M}^{\tau} \hat{P}_{\tau}^{\dagger} \hat{P}_{\tau}-G_{Q}^{\tau} \sum_{\mu} \hat{P}_{\tau}^{\dagger \mu} \hat{P}_{\tau}^{\mu}, \tag{2}
\end{equation*}
$$

and $\hat{H}_{\nu \pi}$ is the $n p$ quadrupole-quadrupole residual interaction,

$$
\begin{equation*}
\hat{H}_{\nu \pi}=-\chi_{\nu \pi} \sum_{\mu} \hat{Q}_{\nu}^{\dagger \mu} \hat{Q}_{\pi}^{\mu} . \tag{3}
\end{equation*}
$$

FIG. 3. Comparison of experimental data (dots) and projected shell model calculations. The experimental data are as follows: ${ }^{84} \mathrm{Mo}$ (present data), ${ }^{86} \mathrm{Mo}$ [17], ${ }^{88} \mathrm{Ru}$ [11], ${ }^{90} \mathrm{Ru}$ [20]. For continuity with the study of the $N=Z$ nuclei presented in Ref. [9], ${ }^{80} \mathrm{Zr}$ [2] and ${ }^{82} \mathrm{Zr}$ [21] are also shown. The full lines are the PSM calculn tions with a standard interaction, the dashed ones w th an enhanced neutron-proton residual interaction (see text for det

ELSEVIER

Enhancement of high-spin collectivity in $N=Z$ nuclei by the isoscalar neutron-proton pairing

K. Kaneko ${ }^{\text {a }}$, Y. Sun ${ }^{\text {b,c,d,* }}$, G. de Angelis ${ }^{\text {e }}$

(1it) Shell model calculations for 88 Ru

SM1: Kaneko
SM2: fpg shell model calculation with JUN45
SM3: Extension to d5/2 with a QQ

Summary

* General feature of T=1/0 interaction

Strong $\mathrm{T}=1, \mathrm{~J}=0$ pairing, Exact diagonalization of isovector pairing

* Competition between $T=1$ pairing and ' $Q Q$ '

Not necessarily leading to deformation

Aligned np pair and QQ lead to same configuration for single-j

systems

* Large QQ leads to strong quadrupole correlation and scatters the wave function

Pairing theory of the symmetry energy

K. Neergård

Fjordtoften 17, 4700 Nestved, Denmark*

$$
\begin{gathered}
E-E_{T=0}=\frac{1}{2}(D+\kappa) T(T+1) \\
-D\left(\sqrt{(a T)^{2}+b^{2}}-\sqrt{\left(\frac{T}{2}\right)^{2}+\left(\frac{\Delta}{D}\right)^{2}}-b+\frac{\Delta}{D}\right) .
\end{gathered}
$$

Computer 'likes’ uncoupled scheme

Is ' $\mathrm{M}=0$ ' pair a relevant degree of freedom (for truncation in M-scheme)

$$
\begin{aligned}
& \mathrm{j} \\
& \left|j_{J}^{2}=0\right\rangle=\sum_{m} f_{m}|j m ; j-m\rangle
\end{aligned}
$$

CQ, N. Shimizu

