

Neutron-proton pairing and quartetting in selfconjugate unstable nuclei through transfer reactions : an update

- ▶ np pairing in nuclei
- ► sd / fp shell nuclei
- reaction mechanism
- Experimental set-up
- ▶ ⁵⁶Ni(p,d) : one-nucleon transfer
- ▶ ⁵⁶Ni,⁵²Fe (p,³He) : preliminary results

M. Assié, B. Le Crom, A. Georgiadou, Y. Blumenfeld, J. Guillot IPN Orsay, <u>assie@ipno.in2p3.fr</u>

Generalities about np pairing

- ► np pairing :
 - isovector -> defined from isospin symmetry
 - isoscalar -> a lot of uncertainties !
- np pairing mostly (only) in N=Z nuclei
- d only bound (J=1+,T=0) A=2 nuclei
 T=0 pairing stronger than T=1 ?
- Correlated state // pair phase of superfluid for T=0?
 --> collective modes ?

T=0 S=1 T=1, S=0

Does T=0 channel creates a correlated state in analogy with superfluids ?

Shell effects on np pairing

Binding Energies

adapted from O. Juillet

4

Possible experimental probes

Masses - BE differences

can be described by an appropriate combination of the symmetry energy and the isovector pairing energy.

 \rightarrow Evidence for full isovector pairing (nn,np,pp) - charge independence.

A.O. Macchiavelli PRC (2000), A.O. Macchiavelli PLB (2000)

Heavy nuclei accessible, "simple" observable

Rotational properties ("delayed alignments") consistent with T=1 cranking model. *Kaneko, Sun, de Angelis, Nuclear Physics A 957 (2017) 144*

🔶 Heavy nuclei accessible,== 🛛 model dependent, no clear evidence

Deuteron transfer reaction : $< A + 2|a^+a^+|A >$

Fröbrich (Phys. Lett. 1971) -> 2.5 enhancement factor Piet Van Isacker PRL (2005)

analogous to the transition probabilities BE2's fnr the quadrupole case.

The "smoking gun"? 🛛 👝 beam intensities >104pps

Rotational vs. vibrational pairing

(p,t) & (t,p) : R= σ_{rot}/σ_{qp} ~25

- Open shell nuclei -> static deformation of pair field
- "Superfluid" limit
- Rotational-like (parabolic)
 spectrum for even-N neighbors

(p,t) and (t,p) : R= $\sigma(gs(A) \rightarrow gs(A+2)) \sim \Omega$

- Closed shell : no static deformation of pair field
- "Normal"nuclei limit
- Vibrational-like spectrum
- Enhancement of pair addition/ pair removal cross section

Probing isoscalar pairing through transfer reactions

Deuteron-transfer intensities (IBM model)

Reaction	$C_{T=0}^{2}$	$C_{T=1}^{2}$
$EE \rightarrow OO_{T=0}$	3	0
$EE \rightarrow OO_{T=1}$	0	$N_{\rm b} + 3$
$OO_{T=1} \rightarrow EE$	0	$N_{\rm b} + 1$

P. van Isäcker, PRL (2005)

S Transfer is proportionnal to the number of pairs

 \bigcirc σ (0⁺)/ σ (1⁺)= gives the relative strength of T=0/T=1 pairing

Experimental aspects

reaction	beam E	direction	selectivity
(p,³He)	>20 MeV	forward	ΔT=0,1
(³ He,p)	low <5MeV	backward	ΔT=0,1
(d,α)(α, ⁶ Li)	>20 MeV	forward	ΔΤ=0
(α,d)(⁶ Li, α)	low <5MeV	backward	ΔΤ=0

\diamond Best nuclei to study :

. N=Z nuclei with high j orbitals to develop collectivity

 $g_{9/2}$ shell like ${}^{92}Pd$ not accessible experimentally

. only sd and fp shell nuclei available

Systematics of $d\sigma(0+)/d\sigma(1+)$

sd shell systematic

from litterature & ENSDF :

- max of cross-section at the lowest angle measured, no error bars
- first 0+ and first 1+ states taken into account (no centroid)
- → slight difference between $(p,^{3}He)$ and $(^{3}He,p)$ → effect of Q-value ? (Brink's conditions)
- ightarrow ¹⁶O and ⁴⁰Ca do not behave as « shell closure »

Systematics of $d\sigma(0+)/d\sigma(1+)$

sd shell systematic

from litterature & ENSDF :

- max of cross-section at the lowest angle measured, no error bars
- first 0+ and first 1+ states taken into account (no centroid)
- → slight difference between $(p,^{3}He)$ and $(^{3}He,p)$ → effect of Q-value ? (Brink's conditions)
- ightarrow ¹⁶O and ⁴⁰Ca do not behave as « shell closure »

remeasurement J. Lee @ Osaka RCNP @ 25 MeV -> Y. Ayyad *et al*, PRC96 (2017) Theory : J. Lay (INFN-Padova) 2nd order DWBA

Systematics of $d\sigma(0+)/d\sigma(1+)$

sd shell systematic remeasurement

consistent measurement by J. Lee & Y. Ayyad-Limonge at RCNP Osaka in direct kinematics

np transfer reactions

³He beam at 25 MeV: ²⁴Mg(³He,p), ³²S(³He,p)

```
Proton beam at 65 MeV: {}^{24}Mg(p,{}^{3}He), {}^{28}Si(p,{}^{3}He), {}^{40}Ca(p,{}^{3}He)
```

2n transfer reactions (comparison to np transfer) ²⁴Mg(p,t), ²⁸Si(p,t)

Reaction mechanism effect : some aspects

Beam energy

⁴⁰Ca(³He,p)

Sherr, Ann. Phys. 66 (1971) 548 → 8.9 - 26 MeV Pülhhofer, NPA 116 (1968) 516 → 18 MeV Zurmulhe Nucl. Phys. 80 (1966) 259 → 10-12-15 MeV

²⁰Ne(³He,p)

Meynadier, NPA 161 (1971) 305 → 3 MeV Garett, NPA 164 (1971) 449 → 15 MeV

Experiment at GANIL : ⁵⁶Ni, ⁵²Fe (p,³He)

- Beam produced by fragmentation with the LISE spectrometer ⁵⁶Ni, ⁵²Fe @ 30A MeV
- Reactions measured : ⁵⁶Ni (p,³He) ⁵⁴Co ⁵⁶Ni (d,⁴He) ⁵⁴Co ⁵²Fe (p,³He) ⁵⁰Mn
- thick targets : 7 mg/cm²
- Odd-Odd nucleus level Scheme
 - 1821 keV, 3+, T=0 1445 keV, 2+, T=1 936 keV, 1+, T=0
 - 197keV, 7+, T=0 (isomeric)
 0+, T=1

⁵⁴Co

Experimental set-up

The (p,³He) reaction on ⁵⁶Ni & ⁵²Fe

⁵⁶Ni(p,³He)⁵⁴Co

⁵²Fe(p,³He)⁵⁰Mn

The (p,³He) reaction on ⁵⁶Ni & ⁵²Fe

Excitation energy spectra

Excitation energy spectra

Direct vs. sequential ?

correlations kept in the sequential transfer ? Potel, Rep. Prog. Phys. 76 (2013) 106301

DWBA calculation

with form factors from Sagawa-san including other shells than $f_{7/2}$

potential set from ⁵⁶Ni(p,d) measurement

Also measured :

- elastic scattering
- ⁵⁵Co(p,d)⁵⁴Co (intermediate reaction)

Angular distribution for g.s.

Angular distribution + DWBA comparison

56Ni(p,h)54Co 30 MeV/u 0+ -> 0+ gxpf1j

Results for ⁵²Fe and ⁵⁶Ni

 Theoretical calculations in agreement with T=0 channel weak in ⁵⁶Ni & ⁵²Fe

- ► T=0 states sparsely populated
- ▶ ⁵⁶Ni not following single-particle
- T=0 pairing seems weaker in fp shell than sd shell
- Cross-section for T=0 ~10 ub

Comparison with DWBA

Quartetting

Probing quartetting through α-transfer

In the same way as for np pairing or nn pairing, we can study the ratios of crosssection

- Data obtained from 26 to 76 MeV in different experiments
- no error bar
- consistency of the systematic ?
- Systematic very similar to (t,p)
 --> protons spectator ?

Accepted experiment @ALTO : (⁶Li,d) & (⁶Li,α) on sd-shell nuclei

(⁶Li,d) & (⁶Li, α) on ¹⁶O, ²⁴Mg, ²⁸Si, ⁴⁰Ca in inverse kinematics with MUGAST

Both reactions are selective in $\Delta T=0$, so we will only populate T=0 states

- → Aim for (⁶Li,d) : study quartetting effects (ratios of cross-sections)
- Aim for (⁶Li, α) :study the reaction mechanism for L=0, T=0 transfer on ⁴⁰Ca & ²⁸Si at energies from 1 to 4 MeV/u

E* resolution= 250 keV (from simulations with 0.5 mg/cm² ⁶LiF)

Alpha Clustering in the ground state of alpha-conjugate nuclei

- Alpha clustering in the nuclei predicted close to the emission thresholds (Ikeda diagram)
 <u>BUT</u> coexistence and competition between clustering and mean-field to be studied
 <u>and</u> detailed mechanism of clustering to be understood
- Pronounced localization in the g.s. of alpha-conjugate nuclei : ⁸Be, ¹²C , ¹⁶O, ²⁰Ne reproduced by RMF & THSR models

How is the cluster structure affected by adding neutrons?

- ²⁰Ne : strong admixture of cluster configuration in the ground state.
- EDF calculations : g.s. of ²²Ne and ²⁴Ne exhibit a π -bonding,
- Quartet Model : good reproduction of ²⁴Ne level scheme with ¹⁶O core+ Quartet=alpha+ Quartet=4n
- Alpha spectroscopic factor in the ground state of ²⁰Ne and ²⁴Ne, to unravel the clustering phenomenon and study the effect of excess neutrons.

Quartet model M. Sambataro, N. Sandulescu PRC (2015)

²⁴Ne g.s. from RMF (P. Marevic et al PRC 2017)

^{20,24}Ne(d,⁶Li)^{16,20}O : investigation of alpha cluster

²⁰O level scheme

The alpha clustering in the ground state of ²⁰Ne and ²⁴Ne will be studied through ^{20,24}Ne (d,⁶Li) ^{16,20}O alpha transfer reaction at 10A MeV.

Experiment proposed to the forthcoming GANIL PAC (Oct 2019).