Effective pn interactions in N=Z nuclei from a shell model perspective

Chong Qi
Royal institute of Technology (KTH), Stockholm

(i) The coupling of few nucleons

$>$ Neutron-proton correlation from the binding energy
The residual np interaction
>Systems with identical particles in single-j orbitals
$>$ Neutron-proton spin-aligned pair coupling

* J=1 pairs
* Quartet

The average proton-neutron interaction and Wigner enenrgy

$$
\begin{aligned}
V_{p n}(Z, N)= & \frac{1}{4}[B(Z, N)+B(Z-2, N-2) \\
& -B(Z-2, N)-B(Z, N-2)],
\end{aligned}
$$

J.-Y. Zhang, R.F. Casten, D.S. Brenner, Phys. Lett. B 227 (1989) 1.
(a) sd shell (even-even)

(b) SU(4) (even-even)

P. Van Isacker, D. D. Warner, and D. S. Brenner Phys. Rev. Lett. 74, 4607 (1995)

HFB-24 mass formula

The force used in the Hartree-Fock-Bogoliubov (HFB) mass model is an extended Skyrme force (containing t_{4} and t_{5} terms), along with a 4-parameter delta-function pairing force derived from realistic calculations of infinite nuclear and neutron matter (all details are given in Goriely et al., Phys. Rev. 88, 024308, 2013).
Pairing correlations are introduced in the framework of the Bogoliubov method. Deformations with axial and left-right symmetry are admitted.

The total binding energy is given by

$$
E_{\text {tot }}=E_{H F B}+E_{\text {wigner }}
$$

where

- $\mathrm{E}_{\text {HFB }}$ is the HFB binding energy including a cranking correction to the spurious rotational energy and a phenomenological vibration correction energy
- $\mathrm{E}_{\text {wigner }}=\mathrm{V}_{\mathrm{W}} \exp \left(-\lambda((\mathrm{N}-\mathrm{Z}) / \mathrm{A})^{2}\right)+\mathrm{V}^{\prime} \mathrm{w}|\mathrm{N}-\mathrm{Z}| \exp \left(-\left(\mathrm{A} / \mathrm{A}_{0}\right)^{2}\right)$ is a phenomenological correction for the Wigner energy.

Wigner energy from HF+QCM

$$
\begin{equation*}
E(N, Z)=E(N=Z)+a_{s} \frac{(N-Z)^{2}}{A}+a_{W} \frac{|N-Z|}{A}+\delta E_{\text {shell }}+\delta E_{P} \tag{noCoulomb}
\end{equation*}
$$

$$
E(N, Z)=E(N=Z)+\frac{T(T+X)}{2 \Theta} \quad T=T_{z} \quad \quad \mathrm{~T}=0,2,4
$$

D. Negrea and N. S, PRC (2014)
$\mathrm{T}=1$ pairing has a significant contribution to Wigner energy !

PHYSICAL REVIEW C 88, 014322 (2013)

Relation between Wigner energy and proton-neutron pairing

$$
\begin{array}{r}
\text { I. Bentley }{ }^{1,2} \text { and S. Frauendorf }{ }^{1} \\
H_{V}=\sum_{k} \epsilon_{k} \hat{N}_{k}-G_{V} \sum_{k k^{\prime}, \tau} \hat{P}_{k, \tau}^{+} \hat{P}_{k^{\prime}, \tau}+C \bar{T} \cdot \bar{T},
\end{array}
$$

- empirical s.p energies spliting!
- pairing is treated exactly by diagonalisation
(Extrapolated Masses)

Mac-mic calculation without np pairing

$E_{\mathrm{LDM}}=a_{v} A+a_{S} A^{2 / 3}+a_{\mathrm{sym}} T(T+1) / A$

$$
+a_{\text {syms }} T(T+1) / A^{4 / 3}+C \frac{Z^{2}}{A^{1 / 3}}+C_{4} \frac{Z^{2}}{A}
$$

The average proton-neutron interaction

$$
\begin{aligned}
V_{p n}(Z, N)= & \frac{1}{4}[B(Z, N)+B(Z-2, N-2) \\
& -B(Z-2, N)-B(Z, N-2)],
\end{aligned}
$$

J.-Y. Zhang, R.F. Casten, D.S. Brenner, Phys. Lett. B 227 (1989) 1.

$$
\begin{aligned}
V_{p n}(Z, N)= & \frac{1}{2}\left[S_{n}(Z, N-1)-S_{n}(Z-2, N-1)\right] \\
& +\frac{1}{4}\left[\Delta_{n}(Z, N)-\Delta_{n}(Z-2, N)\right]
\end{aligned}
$$

Seniority with isospin

$$
\begin{array}{r}
E=\varepsilon n+\frac{a}{2} n(n-1)+\frac{b}{2}\left[\mathcal{T}(\mathcal{T}+1)-\frac{3 n}{4}\right] \\
+G\left[\frac{n-v}{4}(4 j+8-n-v)-\mathcal{T}(\mathcal{T}+1)+s(s+1)\right],
\end{array}
$$

Odd-even staggering

$$
\begin{aligned}
E= & \varepsilon n+\frac{2 a-G}{4} n(n-1) \\
& +\frac{b-2 G}{2}\left[\mathcal{T}(\mathcal{T}+1)-\frac{3 n}{4}\right] \\
& +(j+1) G(n-v)+G\left[\frac{v^{2}}{4}-v+s(s+1)\right],
\end{aligned}
$$

Pairing energy in mass formula $E_{p} \propto 2-v$,

Fig. 2. (Color online.) Empirical proton-proton (squares) and neutron-neutron (circles) interactions in even-even nuclei extracted from experimental nuclear masses as a function of the mass number A [23]. The solid symbols denote those in the $N=Z$ nuclei.

Additional binding for $\mathrm{N}=\mathrm{Z}$ nuclei

Fig. 4. (Color online.) Experimental $V_{p n}$ values of even-even $N=Z$ nuclei (filled circles) and the adjacent odd-odd (squares) and odd- A nuclei (triangles). The filled and open triangles correspond to systems with one nucleon subtracted from and added to the even-even nuclei, respectively. The solid line labeled 1^{*} describes the average behavior of $V_{p n}$ in even-even $N \neq Z$ nuclei from Fig. 1. 2* and 3^{*} denotes its twice and three time values.

$$
\hat{V}=a+b \mathbf{t}_{1} \cdot \mathbf{t}_{2}+G P_{0}
$$

For even-even nuclei with $n_{\pi} \neq n_{\nu}$,
$V_{p n}=-\frac{4 V_{m ; T=1}+2\left(V_{m ; T=0}-V_{m ; T=1}\right)}{4}=\frac{b}{4}-a$.
in the case of $n_{\pi}=n_{\nu}$ (i.e., $N=Z$),

$$
V_{p n}=-\frac{4 V_{m ; T=1}+3\left(V_{m ; T=0}-V_{m ; T=1}\right)}{4}-\frac{G}{2}
$$

$$
=\frac{b}{2}-a-\frac{G}{2} .
$$

$$
\begin{aligned}
& \text { odd-odd } N=Z \\
& \begin{aligned}
V_{p n}(Z-1, Z-1)= & B(Z-1, Z-1)+B(Z-2, Z-2) \\
& -B(Z-1, Z-2)-B(Z-2, Z-1) \\
= & \frac{3 b}{4}-a .
\end{aligned}
\end{aligned}
$$

The residual np interaction in odd-odd nuclei from binding energy systematics: Two quasi-particles in the even-even sea

$\mid j_{1} j_{2}, l_{1} j_{1}$
$\delta_{n p}^{(1)}=\Delta_{n}^{(3)}(Z, N)-\Delta_{n}^{(3)}(Z-1, N)$
$\delta_{n p}^{(2)}=V_{o o}-V_{e e}$,
$\delta_{n p}^{(3)}=V_{o o}-V_{s m o o t h}$.
ZY Wu, S.A. Changizi, C Qi, Phys. Rev. C 93034334 (2016)

$\mathrm{N}=\mathrm{Z}$ odd-odd nuclei

Neutron-proton pairing

 correlation

Trivial examples:

The spin trap isomers:
The 12^{+}spin trap in ${ }^{52} \mathrm{Fe}$
$E_{12}\left({ }^{52} \mathrm{Fe}\right)=\frac{6}{13} \bar{V}_{5}+3 \bar{V}_{6}+\frac{33}{13} \bar{V}_{7}$,

$$
\begin{aligned}
\left.E_{10_{1}^{+}}{ }^{52} \mathrm{Fe}\right)= & 0.310 \bar{V}_{3}+1.429 \bar{V}_{4}+0.497 \bar{V}_{5} \\
& +1.571 \bar{V}_{6}+2.193 \bar{V}_{7},
\end{aligned}
$$

CQ, Phys. Rev. C 81, 034318 (2010).

The predicted $16{ }^{+}$spin trap in ${ }^{96} \mathrm{Cd}$

$$
E_{16}\left({ }^{96} \mathrm{Cd}\right)=\frac{8}{17} \bar{V}_{7}+3 \bar{V}_{8}+\frac{43}{17} \bar{V}_{9} .
$$

$$
E_{14_{1}^{+}}\left({ }^{96} \mathrm{Cd}\right)=0.307 \bar{V}_{5}+1.428 \bar{V}_{6}+0.493 \bar{V}_{7}
$$

$$
+1.572 \bar{V}_{8}+2.200 \bar{V}_{9}
$$

K. Ogawa, Phys. Rev. C 28, 958 (1983).

CQ, Phys. Rev. C 81, 034318 (2010).

C. A. Ur et al., Phys. Rev. C 58, 3163 (1998).

The relative positions of these spin traps are sensitive to the strength of the interaction $\mathrm{V}_{\mathrm{J}=2 \mathrm{j}}$

$$
\begin{gathered}
E_{I}=C_{J}^{I} V_{J}, \\
C_{J}^{I}=\frac{1}{2}\langle |\left[\left(a^{+} a^{+}\right)^{\prime}(a a)^{J}\right]^{0}| \rangle
\end{gathered}
$$

The total number of pairs with all spins J is given by

$$
\sum_{J} C_{J}^{I}=n(n-1) / 2
$$

and

$$
\sum_{J, \text { odd }} C_{J}^{I}=\frac{1}{2}\left[\frac{n}{2}\left(\frac{n}{2}+1\right)-T(T+1)\right]
$$

\triangleleft For systems with $\mathrm{n}=4$ and isospin $\mathrm{T}=0$, there are three isoscalar pairs and three isovecto pairs;
\diamond For those with $\mathrm{T}=2$ (four identical nucleons), we have six isovector pairs.

Average "number of pairs"

$\left\langle\Psi_{N}\left\|\left(\left(a_{i}^{\dagger} a_{j}^{\dagger}\right)_{J^{\pi}} \times\left(a_{i} a_{j}\right)_{J^{\pi}}\right)_{0}\right\| \Psi_{N}\right\rangle \quad E_{I}=C_{J}^{I} V_{J}$.

$$
C_{J=0}^{I}(n n)=C_{J=0}^{I}(p p)=C_{J=0}^{I}(n p)
$$

Off-diagonal long range order (ODLRO)

$$
\begin{equation*}
\lambda=\frac{1}{M(1-M / L)} \sum_{k, k^{\prime}=1}^{L}\left\langle c_{k}^{\dagger} c_{\bar{k}^{\prime}}^{\dagger} c_{\bar{k}^{\prime}} c_{k}\right\rangle-\left\langle c_{k}^{\dagger} c_{k}\right\rangle\left\langle c_{\bar{k}^{\prime}}^{\dagger} c_{\bar{k}^{\prime}}\right\rangle \tag{9}
\end{equation*}
$$

where L is the total number of doubly-degenerate, canonically conjugate pair states k, \bar{k}.

In BCS approximation, the modified Yang prescription leads to a condensate fraction

$$
\begin{equation*}
\lambda_{B C S}=\frac{1}{M(1-M / L)} \sum_{k=1}^{L} u_{k}^{2} v_{\bar{k}}^{2} \tag{10}
\end{equation*}
$$

General properties of the effective interaction

Isovector (T=1): J=0,2,..,2J-1, J=0 term attractive (pairing), others close to zero
> Isoscalar ($\mathrm{T}=0$): $\mathrm{J}=1,3, . ., 2 \mathrm{j}$, strongly attractive (mean field)
\diamond The $\mathrm{J=1}$ and $2 j$ terms are the most attractive ones.
$\diamond ~ L=0, J=1$ pairing
\diamond The aligned pair was not much studied

FIG. 3. Comparison of data from various multiplets with j_{1} $=j_{2}$ and $T=1$. The values of the matrix elements are divided by $\bar{E} \equiv \sum_{J}[J] E_{J} \sum_{J}[J]$ to display the similarities in the J dependence (or θ dependence) of the various multiplets.

FIG. 2. Comparison of data from various multiplets with $j_{1}=j_{2}$ and $T=0$. The values of the matrix elements are divided by $\bar{E} \equiv \sum_{J}[J] E_{J} / \sum_{J}[J]$ to display the similarities in the J dependence (or θ dependence) of the various multiplets.

$$
\cos \theta_{12}=\frac{J(J+1)}{2 j(j+1)}-1
$$

J.P. Schiffer and W.W. True, Rev.Mod.Phys. 48,191 (1976)

Monopole Hamiltonian

Determines average energy of eigenstates in a given configuration.

Important for binding energies, shell gaps

$$
H_{m}=\sum_{a} \varepsilon_{a} n_{a}+\sum_{a s b} \frac{1}{1+\delta_{a b}}\left[\frac{3 V_{a b}^{1}+V_{a b}^{0}}{4} n_{a}\left(n_{a}-\delta_{a b}\right)+\left(V_{a b}^{1}-V_{a b}^{0}\right)\left(T_{a} \cdot T_{b}-\frac{3}{4} n_{a} \delta_{a b}\right)\right]
$$

$n_{a}, T_{a} \ldots$ number, isospin operators of orbit a

Monopole centroids

Angular-momentum averaged effects of two-body interaction
The monopole interaction itself does not induce mixing between different configurations.
Strong mixture of the wave function is mainly induced by the residual $J=0$ pairing and QQ np interaction

$$
V_{a b}^{T}=\frac{\sum_{J}(2 J+1) V_{a b a b}^{J T}}{\sum_{J}(2 J+1)}
$$

- What matter for the wave functions are the relative values between different two-body matrix elements with same isospin (the multipole channel)
- The monopole interactions determine the relative positions of states with different total isospin (and the symmetry energy)

The coupling of few nucleons
The $\mathbf{v = 0}$ state is uniquely defined, but ...

$$
\begin{aligned}
& \mid \text { g.s. }\rangle=|\nu=0 ; J=0\rangle=\left(P_{j}^{+}\right)^{n / 2}\left|\Phi_{0}\right\rangle \\
& |\nu=2 ; J M\rangle=\left(P_{j}^{+}\right)^{(n-2) / 2} A^{+}\left(j^{2} J M\right)\left|\Phi_{0}\right\rangle
\end{aligned}
$$

The coupling of few nucleons

The $\mathbf{v = 0}$ state is uniquely defined, but ...

$$
\begin{aligned}
& \mid \text { g.s. }\rangle=|\nu=0 ; J=0\rangle=\left(P_{j}^{+}\right)^{n / 2}\left|\Phi_{0}\right\rangle \\
& |\nu=2 ; J M\rangle=\left(P_{j}^{+}\right)^{(n-2) / 2} A^{+}\left(j^{2} J M\right)\left|\Phi_{0}\right\rangle
\end{aligned}
$$

Three identical particles

This can be tested by knock out/pair transfer reactions

You may use any degrees of freedom you like to describe a physical system, but if you use the wrong ones, you'll be sorry. Weinberg's third law of progress in theoretical physics

$$
\left|J_{1} J_{2} J\right\rangle=-\sum_{J_{1}^{\prime} J_{2}^{\prime}} \hat{J}_{1} \hat{J}_{2} \hat{J}_{1}^{\prime} \hat{J}_{2}^{\prime} X\left(j j J_{1} ; j j J_{2} ; J_{1}^{\prime} J_{2}^{\prime} J\right)\left|J_{1}^{\prime} J_{2}^{\prime} J\right\rangle,
$$

FIG. 1. The spectrum of four particles in a single- j shell $\left(j=\frac{21}{2}, H=-Q \cdot Q\right.$, energies are in arbitrary units). Part a, the shellmodel calculation; b, the GPFM calculation.

Hsi-Tseng Chen, Da Hsuan Feng, and Cheng-Li

Wu Phys. Rev. Lett. 69, 418 (1992)

The coupling of few neutrons and protons

In 'shell model'

$$
\left|\Psi_{\pi} \otimes \Psi_{v}\right\rangle
$$

Or we can do like these

$$
\begin{aligned}
& \left|J_{1} \otimes J_{2} \ldots\right\rangle_{I} \\
& \left.\left[\left[J_{1} \otimes J_{2}\right]_{I_{12}} \otimes J_{3}\right]_{L_{123}} \ldots\right\rangle_{I} \\
& \left.\left[J_{1} \otimes J_{2}\right]_{I_{12}} \otimes\left[J_{3} \otimes J_{4}\right]_{I_{34}} \cdots\right\rangle_{I}
\end{aligned}
$$

${ }^{96} \mathrm{Cd}(2 n-2 p):$ A simple example to show the pair content

Usually the wave function can be expanded as

$$
\left|\Psi_{I}\right\rangle=\sum_{J_{p}, J_{n}} X_{I}\left(J_{p} J_{n}\right)\left|j_{\pi}^{2}\left(J_{p}\right) j_{v}^{2}\left(J_{n}\right) ; I\right\rangle,
$$

The thus obtained wave function is a mixture of many component as a result of the np interaction

$$
\begin{aligned}
\left|\Psi_{o}(\mathrm{gs})\right\rangle & =0.76\left[\left[\pi^{2}(0) \nu^{2}(0)|\lambda\rangle+0.57\left|\left[\pi^{2}(2) \nu^{2}(2)\right] l_{t}\right\rangle\right.\right. \\
& +0.24\left[\pi^{2}(4) \nu^{2}(4)|\lambda\rangle+0.13\left|\left[\pi^{2}(6) \nu^{2}(6)\right]_{t}\right\rangle\right. \\
& +0.14\left[\left[\pi^{2}(8) \nu^{2}(8)\right] \gamma\right\rangle .
\end{aligned}
$$

The striking feature is that if we project it on to np coupled terms, the wave function can be represented by a single term $(\nu \pi)_{9} \otimes(\nu \pi)_{9}$

$$
\left\langle\left[j_{p} j_{n}\left(J_{1}\right) j_{p} j_{n}\left(J_{2}\right)\right]_{J} \mid\left[j_{p}^{2}\left(J_{p}\right) j_{n}^{2}\left(J_{n}\right)\right]_{J}\right\rangle=-2 \hat{J}_{1} \hat{J}_{2} \hat{J}_{p} \hat{J}_{n}\left\{\begin{array}{ccc}
j & j & J_{p} \\
j & j & J_{n} \\
J_{1} & J_{2} & J
\end{array}\right\}
$$

$96 \mathrm{Cd}(2 n-2 p):$ A simple example to show the pair content

The calculated spectrum show a equidistant pattern along the yrast line up to $1=6$; A naive picture is that the angular momenta of the states are generated by the rearrangement of the angular momentum vectors of the aligned $n p$ pairs.

Interacting Boson models with aligned np pair

TABLE IV. Overlaps of the $\left(1 g_{9 / 2}\right)^{4}$ yrast eigenstates of the SLGT0 interaction with angular momentum J and isospin $T=0$ with various two-pair states, expressed in percentages.

J	B^{2}	$S P_{J}$	D^{2}	$D G$	$D I$	$D K$	G^{2}	I^{2}	K^{2}
0	91	80	35				18	7.4	1.9
2	97	85	17	22			1.5	0.0	0.4
4	89	64	42	11	11		0.2	0.2	0.0
6	55	70		43	0.2	4.3	0.0	0.2	0.0
8	5.3	83			7.4	24	1.8	0.2	0.1
10	42					58		6.1	0.5
12	88							57	1.5
14	96								31.4
16	100								100

S. Zerguine and P. Van Isacker, Phys. Rev. C 83, 064314 (2011).

Pair truncation shell model approaches

G. J. Fu, J. J. Shen, Y. M. Zhao, and A. Arima Phys. Rev. C 87, 044312 (2013)

Wave function of ${ }^{96} \mathrm{Cd}$ calculated with a Hamiltonian containing $J=0$ and 9 terms only.

- The $\mathrm{J}=9$ term V_{9} generates a states with pure aligned np coupling $\left|j_{9}^{2} \otimes j_{9}^{2}\right\rangle$
- The inclusion of normal pairing is crucially important for reproducing the group state spin
- The $J=9$ term does not necessary to be stronger than the $J=0$ term. It should be relatively stronger than other $T=0$ terms. [For a simple single-j system, the relative position of $T=0$ and 1 monopole terms does not play any effect on the wave functions.]

The spin-aligned pair plays a crucial role
It is strongly attractive since this maximally aligned configuration has maximal overlap between the proton and neutron wave functions

Competition between the np aligned coupling and like nucleon aligned coupling?

Seniority-like
δ
Equidistant pattern

Non-unique ways to define a many-pair state

- The four $J=9 n p$ pairs in ${ }^{92} \mathrm{Pd}$ can couple in various ways. With the help of two-particle cfp one may express the wave function in terms of $\left(\left(\left((\nu \pi)_{9} \otimes(\nu \pi)_{9}\right)_{I^{\prime}} \otimes(\nu \pi)_{9}\right)_{I^{\prime \prime}} \otimes(\nu \pi)_{9}\right)_{I}$.
- It is thus found that, among the various aligned np pair configurations, the dominating components can be well represented by a single configuration $\left(\left(\left((\nu \pi)_{9} \otimes(\nu \pi)_{9}\right)_{I^{\prime}=16} \otimes(\nu \pi)_{9}\right)_{I^{\prime \prime}=9} \otimes(\nu \pi)_{9}\right)_{I}$. In the $0 g_{9 / 2}$ shell, this configuration is calculated to occupy around 66% of the ground state wave function of ${ }^{92} \mathrm{Pd}$, i.e., with amplitude $X\left(0_{1}^{+}\right)=0.81$.
- The $J=9$ term is not the generator for the full aligned np coupling. It generates the stretch configuration. The stretch component increase along the yrast line. The maximal $I=24$ state corresponds to a pure stretch configuration.

CQ et al, PRC 84, 021301(R) (2011)

Z.X. Xu, C. Qi, J. Blomqvist, R.J. Liotta, R. Wyss Nucl. Phys. A 877, 51 (2012).
C. Qi, Prog. Theor. Suppl. 196, 414 (2012).

Quartet-like coupling

The four $J=9 n p$ pairs in ${ }^{92} \mathrm{Pd}$ can couple in various ways. With the help of two-particle cfp one may express the wave function in terms of $\left(\left(\left((\nu \pi)_{9} \otimes(\nu \pi)_{9}\right)_{I^{\prime}} \otimes(\nu \pi)_{9}\right)_{I^{\prime \prime}} \otimes(\nu \pi)_{9}\right)_{I}$.
e I. Configurations with the largest probabilities for the state ${ }^{92} \mathrm{Pd}\left(0_{1}^{+}\right)$corresponding to the ensorial products of different two-particle states (upper) and four-particle states (lower).

Configuration	x^{2}
$\left\|\gamma_{2}=9^{+} \gamma_{2}^{\prime}=9^{+} \gamma_{2}^{\prime \prime}=9^{+} \gamma_{2}^{\prime \prime \prime}=9^{+}\right\rangle$	0.85
$\left\|\gamma_{2}=9^{+} \gamma_{2}^{\prime}=9^{+} \alpha_{2}=0^{+} \beta_{2}=0^{+}\right\rangle$	0.76
$\left\|\gamma_{2}=8^{+} \gamma_{2}^{\prime}=1^{+} \alpha_{2}=0^{+} \beta_{2}=8^{+}\right\rangle$	0.56
$\left\|\gamma_{2}=8^{+} \gamma_{2}^{\prime}=1^{+} \alpha_{2}=8^{+} \beta_{2}=0^{+}\right\rangle$	0.56
$\left\|\gamma_{2}=1^{+} \gamma_{2}^{\prime}=1^{+} \alpha_{2}=0^{+} \beta_{2}=0^{+}\right\rangle$	0.52
$\left\|\gamma_{4}=0_{1}^{+} \gamma_{4}^{\prime}=0_{1}^{+}\right\rangle$	0.98
$\left\|\gamma_{4}=8_{1}^{+} \gamma_{4}^{\prime}=8_{1}^{+}\right\rangle$	0.94
$\left\|\gamma_{4}=8_{2}^{+} \gamma_{4}^{\prime}=8_{2}^{+}\right\rangle$	0.92
$\left\|\gamma_{4}=16_{1}^{+} \gamma_{4}^{\prime}=16_{1}^{+}\right\rangle$	0.81

Quartet-like coupling

Extending to a space with several orbitals

'Superallowed' alpha decay around N=Z nuclei

Discovery of ${ }^{109} \mathrm{Xe}$ and ${ }^{105} \mathrm{Te}$: Superallowed α Decay near Doubly Magic ${ }^{100}$ Sn

S. N. Liddick, ${ }^{1}$ R. Grzywacz, ${ }^{2,3}$ C. Mazzocchi, ${ }^{2}$ R. D. Page, ${ }^{4}$ K. P. Rykaczewski, ${ }^{3}$ J. C. Batchelder, ${ }^{1}$ C. R. Bingham, ${ }^{2,3}$ I. G. Darby, ${ }^{4}$ G. Drafta, ${ }^{2}$ C. Goodin, ${ }^{5}$ C. J. Gross, ${ }^{3}$ J. H. Hamilton, ${ }^{5}$ A. A. Hecht, ${ }^{6}$ J. K. Hwang, ${ }^{5}$ S. Ilyushkin, ${ }^{7}$ D. T. Joss, ${ }^{4}$ A. Korgul,,${ }^{2,5,8,9}$ W. Królas, ${ }^{9,10}$ K. Lagergren, ${ }^{9}$ K. Li, ${ }^{5}$ M. N. Tantawy, ${ }^{2}$ J. Thomson, ${ }^{4}$ and J. A. Winger ${ }^{1,7,9}$

The four-body (alpha) wave function can be written as

Shell model calculations on the alpha formation amplitude in $\mathrm{N}=\mathrm{Z}$ nuclei.

Relative angular distribution of four-particle wave function with (solid lines) and without (dashed line) neutron-proton interactions.

Four particle spatial correlation vs alpha

FIG．10．（Color online）Comparison of the α formation am－ plitude $R F_{\alpha}(R)$ of ${ }^{212}$ Po calculated from the δ function ap－ proximation and the Gaussian form of the α intrinsic wave function．

The J=1 pair

Overlap between the full wave function and that generated by the $\mathrm{J}=1$ pair Hamiltonian
$2 \mathrm{n}-2 \mathrm{p}\left({ }^{44} \mathrm{Ti}\right)$ outside ${ }^{40} \mathrm{Ca}$

Experimental and calculated 1+ and 0+ in odd-odd $\mathrm{N}=\mathrm{Z}$

Calculated low-lying 0^{+}states

Summary

-The np pair correlation from the binding energy difference
-Neutron-proton spin-aligned pair coupling in $\mathrm{N}=\mathrm{Z}$ nuclei
*Crucial building blocks of the nuclear many-body wave function.
*Important part of the effective two-body interaction.
*Exhibiting regular low-lying spectra and E2 transition probabilities.

Calculations in different spaces for ${ }^{94} \mathrm{Ag}(3 p-3 n)$

$9^{+} \quad 976$
$8^{7} 925$

$7^{+} \quad 614$

The ground state spin is calculated to be 0^{+}.
The lowest $T=0$ state is 7^{+}.
The wave function is dominated by
$\left|\left[\left(j^{2}\right)_{9}\left(j^{2}\right)_{9}\right]_{16}\left(j^{2}\right)_{9}\right\rangle_{I=7}$.
A stretch isomer?

$0 g_{9 / 2}$-shell description of ${ }^{94} \mathbf{A g}(3 p-3 n): 7_{1}^{7}$

For simplicity, the Hamiltonian only contain the two matrix elements V_{0} and V_{9}. The wave function is dominated by the configuration of $\left|\left[\left(j^{2}\right) 9\left(j^{2}\right)_{9}\right]_{16}\left(j^{2}\right)_{9}\right\rangle_{I=7}$. Calculation with a realistic Hamiltonian gives a even larger value.

| ${ }^{94} \mathrm{Ag}$
 $\mathrm{fpg}^{94} \mathrm{Ag}$
 0^{+} 0 $0^{+} \quad 0$ |
| :---: | :---: | :---: |

The odd system of ${ }^{9 r} \mathrm{Cd}\left({ }^{9 r} / \mathrm{In}\right)$

- The odd system ($2 \mathrm{p}-1 \mathrm{n}$) exhibits similarity with the correspondingly $2 \mathrm{p}-2 \mathrm{n}$ system
- A natural outcome of the aligned coupling scheme is that the $9 / 2_{1}^{+}$(The calculated ground state) is dominated by the coupling $\left|\left(j^{2}\right)_{9} \otimes j\right\rangle$.

