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MBPT, and its Applications

Perturbation theory (PT) is a very common method in theoretical physics, where in general
exact solutions are unavailable; PT allows (if applicable) to derive systematically improvable
(up to a certain degree) approximations.

PT operates with splitting of Hamiltonian in (solvable 1body part) 7~ and (2body/n-body
part) V; then the matrix elements of a given operator ¥ give rise to series

(ProIFI¥g ) ~ PRFIE) + 6O [V (PR + 6P [VVF PR + ..

where Wr(,') is an eigenstate and {W}} the spectrum of 7-, and similar for Y7
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MBPT: NP ~ 0¥
One can distinguish:
@ thermodynamic MBPT: perturbation theory for “EOS” (thermodynamic potentials)

@ time-dependent MBPT: perturbation theory for dynamical quantities, usually
considered in Fourier space (at finite T: discrete Fourier space (“Matsubara space”))

Using resummations or self-concistency methods, (MB)PT can provide also general
(qualitative) information.
@ Luttinger, PRC 1961: existence of a Fermi surface for (normal) interacting Fermi fluids
& the low-lying elementary excitations have quasiparticle form (approximately)
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MBPT: NP ~ 0¥
One can distinguish:
@ thermodynamic MBPT: perturbation theory for “EOS” (thermodynamic potentials)

@ time-dependent MBPT: perturbation theory for dynamical quantities, usually
considered in Fourier space (at finite T: discrete Fourier space (“Matsubara space”))

Using resummations or self-concistency methods, (MB)PT can provide also general
(qualitative) information.

@ Luttinger, PRC 1961: existence of a Fermi surface for (normal) interacting Fermi fluids
& the low-lying elementary excitations have quasiparticle form (approximately)

But: Luttinger, J.Math.Phys. 1963: “An exactly solvable model of a many-fermion system”;
model of electrons in a one-dimensional conductor, solution (Mattis&Lieb 1963) generally
has no Fermi surface (“Tomonaga-Luttinger liquid”).
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Self-consistent perturbation series for the Matsubara self-energy 2, ()

Analytic continuation — Fourier-space self-energy 2 (w) = K;(w) + Jr(w), determines via
Fourier transform the Green’s function iG7 (t — t') = (ar(t)a; (t'))r
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@ Luttinger, PRC 1961: existence of a Fermi surface for (normal) interacting Fermi fluids
& the low-lying elementary excitations have quasiparticle form (approximately)

Z(C/):_,Q,_ + »—@—» +@+ + .= =G(lr)= %,“,’?[',(fu),

Self-consistent perturbation series for the Matsubara self-energy 2, ()

Analytic continuation — Fourier-space self-energy 2 (w) = K;(w) + Jr(w), determines via
Fourier transform the Green’s function iG7 (t — t') = (ar(t)a; (t'))r

Luttinger, PRC 1961: J,(w) vanishes at w = u, where u = &k + K (1)
= for Ex = Ep: G} (t) ~ e Exte™t

Low-lying excitations are (asymptotically) quasiparticles (at short time scales)
~> Framework of (dynamical) Landau Fermi-liquid theory




Nuclear Physics

Microscopic Nuclear Physics = Natural Phenomena with Nucleon/Pion Degrees of Freedom
= Low-Energy (< GeV) Manifestation of Underlying Theory QCD!
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Main difficulty: at low energies QCD is strongly-coupled (i.e., nonperturbative)

— need description of effective (residual) interactions of nucleons (and pions)

Secondary difficulty: tuned system! ~ unnaturally large scattering lengths (shallow bound/nearly-bound
states)
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Microscopic Nuclear Physics = Natural Phenomena with Nucleon/Pion Degrees of Freedom
= Low-Energy (< GeV) Manifestation of Underlying Theory QCD!

Main difficulty: at low energies QCD is strongly-coupled (i.e., nonperturbative)

— need description of effective (residual) interactions of nucleons (and pions)

Secondary difficulty: tuned system! ~ unnaturally large scattering lengths (shallow bound/nearly-bound
states)

Description of Effective Nuclear Interactions

Since 1960-1970: phenomenological models, ad hoc potentials fitted precisely to (scattering)
observables

Since 1990-2005: (chiral) effective field theory (EFT)
Main Benefits: systematically improvable (to a certain degree), uncertainty quantification




EFT of Nuclear Interactions (Weinberg, van Kolck, Kaplan, Savage, Wise, Epelbaum, Kaiser, Machleidt, MeilBner, Hammel
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Basic Assumption & Principles: low-energy symmetries of QCD determine effective low-energy theory:

Zerr(N, 7,4, . ..), infinite hierarchy of interactions orded by power counting: ~ (Q/M)", with Q the
low-energy scale (~ m;) and M ~ 1 GeV the breakdown scale

Efficiency of (standard) power counting decreased for tuned systems! (~ adapt power counting?)
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Perturbative EFT: strict application of power counting
@ order-by-order renormalization, low-energy constants (LECs) c;, singular (A — o) terms
cancelled, remaining (regular) part of LECs cl.'eg scale O(1) + O(1/A)
@ for a given cutoff A and truncation n the LECs &°(A) are fixed by

@ matching to low-energy expansion of fundamental theory (not avaiable here)
@ fitting to (two-, few- and many-body) data: low-energy bias, fit ambiguities!
Creg

;- should be of natural size (with respect to power counting), inhibited by tunings!

Problem: large scattering lengths, bound-states require nonperturbative treatment!
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low-energy scale (~ m;) and M ~ 1 GeV the breakdown scale
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Perturbative EFT: strict application of power counting

@ order-by-order renormalization, low-energy constants (LECs) c;, singular (A — o) terms
cancelled, remaining (regular) part of LECs cl.reg scale O(1) + O(1/A)

@ for a given cutoff A and truncation n the LECs &°(A) are fixed by

@ matching to low-energy expansion of fundamental theory (not avaiable here)
@ fitting to (two-, few- and many-body) data: low-energy bias, fit ambiguities!
Creg

;- should be of natural size (with respect to power counting), inhibited by tunings!

Problem: large scattering lengths, bound-states require nonperturbative treatment!

“Potential-EFT”: (non)perturbative two-, few- and many-body calculations with nuclear potentials
Van(n, A, ci), Van(n = 38, A, i), Van(n = 4, A, Gi), ...

@ A < Ap (?); low-momentum potentials A < 500 MeV: Tyn,med pPerturbative! ~ MBPT
@ LEGs cj(n,A) should be of natural size
Chiral have been potentials applied with reasonable success in nuclear many-body physics!
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Self-consistent perturbation series for the Matsubara self-energy 2, ()

Alternative Approach: use ‘bare’ propagators, but improve reference point
@ Re-Partitioning of H:  H = Tyin + Vi = (Tkin +U) + (Vine - U)

—_— N .
reference system 7~ perturbation V
‘mean-field theory” “correlations”

with i =3, U,afa,, where U, is a self-consistent single-particle potential (“mean field”)
@ expansion of ensemble-averages in terms V’ using as basis states ¥, where
H=T +YV'.
Suitable choice of U improves perturbation series (‘perturbativeness’)

Usual choices: U, = 0 or U, = 3; VI""n; = 5., (Hartree-Fock)
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Self-consistent perturbation series for the Matsubara self-energy 2, ()

Alternative Approach: use ‘bare’ propagators, but improve reference point
@ Re-Partitioning of H:  H = Tyin + Vi = (Tkin +U) + (Vine - U)

—_— N .
reference system 7~ perturbation V
‘mean-field theory” “correlations”

with i =3, U,afa,, where U, is a self-consistent single-particle potential (“mean field”)

@ expansion of ensemble-averages in terms V’ using as basis states ¥, where
H=T +YV'.

Suitable choice of U improves perturbation series (‘perturbativeness’)
Usual choices: U, = 0 or U, = 3; VI""n; = 5., (Hartree-Fock)

Homogeneous fluid (nuclear matter): eigenstates of 7y, 7°: plane waves in a box L2 in the
limit L — oo, self-consistent equation for single-particle energies:

k2

M aF Ur[nr(gr)]
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MBPT Application: Thermodynamics of Nuclear Matter

Isospin-symmetric nuclear matter: 6 := (on —pp)/p =0, Y :=pp/p = 1/2
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@ “empirical” saturation point: n3lo414, n310450, 1316560, V24, VLK23
@ VLK21 & VLK23: pressure isotherm crossing (similar to water for T < 4°C)
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MBPT: General Self-Consistent Single-Particle (SP) Potential

Self-consistent equation for single-particle energies

2

k
&r=5m + Ur[ne(er)]

Usual choices: U, = 0 or U, = 3; V"I"n; = %y., (Hartree-Fock)

[In the nuclear physics case, 2., is sizeable, and the change from U, = 0 or U, = 2.,
leads to considerable changes in the perturbation series (this feature is more pronounced in
nuclear structure, cf. A. Tichai et al., Phys.Lett.B 756 (2016)).]

Generalization of self-consistent SP potential? — U, := Y, Ur.n
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Self-consistent equation for single-particle energies

2

k
& = oY + Ur[ne(&r)]

Usual choices: U, = 0 or U, = 3; V"I"n; = %y., (Hartree-Fock)

[In the nuclear physics case, 2., is sizeable, and the change from U, = 0 or U, = 2.,
leads to considerable changes in the perturbation series (this feature is more pronounced in
nuclear structure, cf. A. Tichai et al., Phys.Lett.B 756 (2016)).]

Generalization of self-consistent SP potential? — U, := Y, Ur.n

Z(Cﬁ):_,Q,_ + a—@—» ++@* + =G = %2,(52

~> Dynamical quasiparticles at the Fermi surface

[,):_,Q,_Jr O A + O + ..

+ Ak 4+ + T+

. 1_’_—gr((l)

[[; —w

Keep dynamical quasiparticles at the Fermi surface: = Un k. = Kok (1) at T = 0, where
K. is the diagrammatic contribution to the real part of the self-energy



MBPT: Anomalous Contributions, ‘Statistical’ Choice for U/

At fourth order and beyond, the perturbation series for the free energy F involves so-called
‘anomalous diagrams’:

~ @& @ oo

normal (¢ F) normal (€ F normal (€ F anomalous (e F

I

o U )] =

i I
), = Re[Z,,;,(s, —in N satisfies Up.k = Knke (1)
I rg{

articulation lines}



MBPT: Anomalous Contributions, ‘Statistical’ Choice for U/

At fourth order and beyond, the perturbation series for the free energy F involves so-called

anomalous diagrams’:

~ @& @ oo

normal (¢ F) normal (€ F) normal (€ F)

I ) S5F,
® Ur(7;)r = Re[f,n;,(s, - ’77)] = Tn
Ny r¢{articulation lines}

N _ 0%n

° US” = o,

where 2 given by (reduced & disentangled & regularized) normal part of F
Elimination of Anomalous Diagrams via U(”)

N
F=Fo+Fi+F+F+Ft. . +Fv=) > Unn

[Upyr = U

nr

_F0+F1+F2+F3+F4normal+ +FNnormal_ZZU$’r)nf
AN+ +D =

anomalous (€ F

satisfies Upke < Rn;kp (1)

does not satisfy Upk. = Ko (12)



MBPT: Dynamical vs. Statistical Quasiparticles

Elimination of Anomalous Diagrams:

@ first studied by Balian, Bloch, de Dominicis (var., 1958-1971), Kohn, Luttinger, Ward
(PR 118 (1960)) as well as Horwitz, Brout, Englert (PR 120 (1961), PR 130 (1963))

. . . —_— T—0
in particular: cancellation of anomalous contributionsto Fas T - 0 (= F e Eop)
(‘Kohn-Luttinger-Ward theorem’)
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Elimination of Anomalous Diagrams:

@ first studied by Balian, Bloch, de Dominicis (var., 1958-1971), Kohn, Luttinger, Ward
(PR 118 (1960)) as well as Horwitz, Brout, Englert (PR 120 (1961), PR 130 (1963))

. . . —_— T—0
in particular: cancellation of anomalous contributionsto Fas T - 0 (= F e Eop)
(‘Kohn-Luttinger-Ward theorem’)

@ with Uf,”,) the perturbation series truncated at order n leads to statistical
quasiparticle relations for N, S and dE/dn:

N:Zn, S:—Zn,lnn,+ﬁ,|nﬁ,
r
SE

OF _ free (11
ony e+ U

E=F+TS=)"&*n+92
r
— Sommerfeld expansion for interacting case (constantinou, Muccioli, Prakash, Lattimer; Ann. Phys. 363 (2015))

Two aspects of Landau Fermi-Liquid theory: dynamical (T = 0) vs statistical (VT), with
g?ynamical o 8?tatistical forn>4

cf. Carneiro & Pethick; PRB (1975), Pethick & Baym; “Landau Fermi-Liquid Theory”



MBPT Binary System: Asymmetry Expansion

Explicit parametrization via expansion about § = 0, where § = (on — pp)/p

>99% of literature
e e
F(6) ~F(6=0)+ A26% + Az 6* + Ag 6% + ...
‘Usual’ 62 approximation is good, but higher-order terms not negligible for neutron-rich

systems (~> neutron stars)
— compute higher-order coefficients A4, Ag
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‘Usual’ 62 approximation is good, but higher-order terms not negligible for neutron-rich
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v

Higher-order coefficients ,  are singular at zero temperature!

Fa(T = 0,p,8) = Ao(0,p) + A2(0,p) 6 + ) Anseg (p) 82"+ ) Aaniog(p) 62" In1o]

n=2 n=2

Kaiser; PRC 92 (2015)
Logarithmic terms also when ladders are resummed to all orders!
Kaiser; EPJA 48 (2014), Wellenhofer; arXiv:1707.09222

V.
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Logarithmic terms also when ladders are resummed to all orders!
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What is the origin of the logarithmic terms at T = 0? What happens at finite T?

— energy denominators in contributions beyond first order, e.g.,

e o 0707046
_ 1 ij,ab iyab,ij “i ¥j Ya%p
Eo2 = -7 Xjab Vin' Vi

I T ELTL Ziziz o
Fp— 1 o \7ij¢ab \-/ab,li fi f; faty i fj faty
£atep—ei=¢j 2 = T g Ziab YNN VNN £atep—ei—g)

integrand diverges at integral boundary smooth integrand
~ Egp € C® ~ F, € C*™, but not analytic (C) at low T/

Analvtic ctriintiire anA 2ara_toamnaratiire limit A nAat ~commiriial



MBPT Binary System: Asymmetry Expansion (Nuclear Matter Results)
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@ bottom-right: accuracy of quadratic approximation governed by Fgm — Az J




MBPT Binary System: Asymmetry Expansion (High Temperature)
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Main Plot: Exact F(T, p, §) vs different orders in the expansion Fz46(T, p, &)

Insets: Deviation 4F = F — Fo46




MBPT Binary System: Asymmetry Expansion (Low Temperature)
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Main Plot: Exact F(T, p, §) vs different orders in the expansion Fz46(T, p, &)

Inset: Deviation A4F = F — Fo 46




MBPT Binary System: Asymmetry Expansion (Summary)

convergent

T (MeV)

divergent
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p (fm'®)

Wellenhofer, Holt, Kaiser; PRC 93 (2016)

Question remains: is the nonanalyticity of the § dependence at low T/u a genuine
feature of the EOS or only a feature of MBPT?
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convergent

divergent
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Wellenhofer, Holt, Kaiser; PRC 93 (2016)

Question remains: is the nonanalyticity of the § dependence at low T/u a genuine
feature of the EOS or only a feature of MBPT?

Notable: analytic structure (sign of certain derivatives) of 6 dependence and

T — 0 limit do not commute

For the Y dependence, already in the EOS of a free Fermi gas: entropy-of-mixing
term, in classical limit: TYInY;

T =0:~Y'"?P for D=1,2the EOS is even analytic in Y!



Summary: Finite-Temperature MBPT

A. Analytic Structure of MBPT and Expansion in Asymmetry 6

@ in MBPT, the free energy is a nonanalytic smooth function of ¢ at low T/u

Question: is this only an artifact of MBPT?
@ analytic structure (behavior of higher-order derivatives) changed at T = 0




Summary: Finite-Temperature MBPT
A. Analytic Structure of MBPT and Expansion in Asymmetry 6

@ in MBPT, the free energy is a nonanalytic smooth function of ¢ at low T/u

Question: is this only an artifact of MBPT?
@ analytic structure (behavior of higher-order derivatives) changed at T = 0

B. Fermi-Liquid Theory and Self-Consistent SP Potential Beyond Hartree-Fock

General MBPT partitioning: H = Twn +V = (Tkn + U) +(V -U)
——— —

reference system perturbation
“mean-field theory”  “correlations”

@ Dynamical-Quasiparticle Constraint = U = U
@ Statistical Quasiparticles for U = /()

Corollary to B. Grand-Canonical vs. Canonical(>zero-temperature) MBPT

@ “ensemble equivalence” only if L") same order as perturbation series

@ ingeneral: Q(T,u) =< F(T,p) (asymptotic series)
canonical series has better convergence properties! (for nuclear matter,
grand-canonical MBPT fails qualitatively for U, = 0)




A. Grand-Canonical vs. Canonical Formulation

MBPT truncated at order n

@ Ensemble equivalence & U = ‘ZIE,’,’) with m =n

@ What happens for m # n?

”
Grand-Canonical Case: Q(T, u)

@ U = 0: Q(T,p) is single-valued for ¢ = 0 = no liquid-gas instability!

O U=0->U= ‘7,1,(,:'): renormalization of {g,} in distribution functions;
M* approximation: k2/(2M) — k2/(2M*) + 4e

k2

2M*

fi(T, )" :1+exp[T(2kTZ/I—y)]—>1+exp[T( +A£—p)]

Canonical Case: F(T,p)

|

@ ensemble averages evaluated via Legendre transform: F(T,p) — F(T, i), where
Xr fr(T,[l) =P

o U=0-U=UD:K2/(2M) > K2/(2M*) + 4c  and i — [ + e

2 k2 "
o )|

2M

k
(T =1+ exp[T(

—ﬁ)]—>1+exp

Effect of ‘renormalization’ of 7 has reduced effect in canonical case — better
convergence properties!



B. “Reduced & Disentangled & Regularized”

(a) (b)
These two diagrams are “entangled” (— cyclic permutations):
. —e1/T
Fcychc _ N v e (e1+e2)/T L8 1/ (—peqepteq—ep)
a+b Z boalimn [V] 2(F1 te) 2(*1 te2) *?’%

x/aklmn

No energy-denominator poles (good!), “double-indices” mix normal-anomalous (not so good)

@ “reduced”: normal diagrams similar to T = 0 formalism (note: Feduced — o for T # 0)
duced T—0
F;e uoed— — § Nxxja Nkimn [V] T — E;
(*1 +e2)
xjak/mn

@ “disentangled”: normal without “double-indices”, anomalous factorized!!

( but stil Freduced disentangled _ for T % 0)
reduced,disentangled 1 T—0 formally
F =2 > nxjank,mn[V]{ﬁ}—>Ea
£q+e:
Xjaklmn 17e2
reduced,disentangled __ 1 = OF
Fo =3 2 Manlgmn V] {55 |=—B T 2 e 2
Xjaklmn ~——

Us x

@ “regularized”: finite part # plus cyclic permutations of integration order (poles!)

i i 1 1 T-0
,_—reduced,dlsentang\ed‘regularlzed: ' _ N fi v P E
a 4 |C[xjakimn]| C[X;mn] baPimn [V - 2 (o1 +ep) @



