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MBPT, and its Applications

Perturbation theory (PT) is a very common method in theoretical physics, where in general
exact solutions are unavailable; PT allows (if applicable) to derive systematically improvable
(up to a certain degree) approximations.

PT operates with splitting of Hamiltonian in (solvable 1body part) T and (2body/n-body
part)V; then the matrix elements of a given operator F give rise to series

〈ΨT+V |F |Ψ
′
T+V〉 ∼ 〈ΨT |F |Ψ

′
T
〉+ φ(1)[VF ; {Ψ i

T
}] + φ(2)[VVF ; {Ψ i

T
}] + . . .

where Ψ (′)
T

is an eigenstate and {Ψ i
T
} the spectrum of T , and similar for ΨT+V

MBPT: NΨ ∼ ∞Ψ

One can distinguish:

thermodynamic MBPT: perturbation theory for “EOS” (thermodynamic potentials)

time-dependent MBPT: perturbation theory for dynamical quantities, usually
considered in Fourier space (at finite T: discrete Fourier space (“Matsubara space”))

Using resummations or self-concistency methods, (MB)PT can provide also general
(qualitative) information.

Luttinger, PRC 1961: existence of a Fermi surface for (normal) interacting Fermi fluids
& the low-lying elementary excitations have quasiparticle form (approximately)

But: Luttinger, J.Math.Phys. 1963: “An exactly solvable model of a many-fermion system”;
model of electrons in a one-dimensional conductor, solution (Mattis&Lieb 1963) generally
has no Fermi surface (“Tomonaga-Luttinger liquid”).
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MBPT, and its Applications

Luttinger, PRC 1961: existence of a Fermi surface for (normal) interacting Fermi fluids
& the low-lying elementary excitations have quasiparticle form (approximately)

Σ(ζ`) = , ≡ Gr (ζ`′ ) =
∫

dω
2π

Ar (ω)
ζ`′−ω

Self-consistent perturbation series for the Matsubara self-energy Σr (ζ`)

Analytic continuation→ Fourier-space self-energy Σr (ω) = Kr (ω) + JR (ω), determines via
Fourier transform the Green’s function iG>

r (t − t ′) = 〈ar (t)a†r (t ′)〉t>t ′

Luttinger, PRC 1961: Jr (ω) vanishes at ω = µ, where µ = εkF + KkF (µ)

⇒ for Ek ' EkF : iG>
r (t) ∼ e−iEk t e−γt

Low-lying excitations are (asymptotically) quasiparticles (at short time scales)

{ Framework of (dynamical) Landau Fermi-liquid theory
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Nuclear Physics

Microscopic Nuclear Physics = Natural Phenomena with Nucleon/Pion Degrees of Freedom

= Low-Energy (. GeV) Manifestation of Underlying Theory QCD!

Main difficulty: at low energies QCD is strongly-coupled (i.e., nonperturbative)

→ need description of effective (residual) interactions of nucleons (and pions)

Secondary difficulty: tuned system! ∼ unnaturally large scattering lengths (shallow bound/nearly-bound
states)

Description of Effective Nuclear Interactions

Since 1960-1970: phenomenological models, ad hoc potentials fitted precisely to (scattering)
observables

Since 1990-2005: (chiral) effective field theory (EFT)
Main Benefits: systematically improvable (to a certain degree), uncertainty quantification
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Nuclear Physics

EFT of Nuclear Interactions (Weinberg, van Kolck, Kaplan, Savage, Wise, Epelbaum, Kaiser, Machleidt, Meilßner, Hammer, . . .)

Basic Assumption & Principles: low-energy symmetries of QCD determine effective low-energy theory:

LEFT(N, π, ∆, . . .), infinite hierarchy of interactions orded by power counting: ∼ (Q/M)n , with Q the
low-energy scale (∼ mπ) and M ∼ 1 GeV the breakdown scale

Efficiency of (standard) power counting decreased for tuned systems! (∼ adapt power counting?)

Perturbative EFT: strict application of power counting

order-by-order renormalization, low-energy constants (LECs) ci , singular (Λ→ ∞) terms
cancelled, remaining (regular) part of LECs creg

i scale O(1) + O(1/Λ)

for a given cutoff Λ and truncation n the LECs c̃reg
i (Λ) are fixed by

matching to low-energy expansion of fundamental theory (not avaiable here)
fitting to (two-, few- and many-body) data: low-energy bias, fit ambiguities!

creg
i should be of natural size (with respect to power counting), inhibited by tunings!

Problem: large scattering lengths, bound-states require nonperturbative treatment!

“Potential-EFT”: (non)perturbative two-, few- and many-body calculations with nuclear potentials
VNN(n, Λ, ci),V3N(n ≥ 3, Λ, ci),V4N(n ≥ 4, Λ, ci),. . .

Λ . ΛB (?); low-momentum potentials Λ . 500 MeV: TNN,med perturbative! { MBPT

LECs ci(n, Λ) should be of natural size

Chiral have been potentials applied with reasonable success in nuclear many-body physics!
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Back to MBPT: Perturbation Operator, Reference States

Σ(ζ`) = , ≡ Gr (ζ`′ ) =
∫

dω
2π

Ar (ω)
ζ`′−ω

Self-consistent perturbation series for the Matsubara self-energy Σr (ζ`)

Alternative Approach: use ‘bare’ propagators, but improve reference point

Re-Partitioning of H : H = Tkin +Vint = (Tkin +U)︸        ︷︷        ︸
reference system T
“mean-field theory”

+ (Vint −U)︸       ︷︷       ︸
perturbationV
“correlations”

withU =
∑

r Ur a
†
r ar , where Ur is a self-consistent single-particle potential (“mean field”)

expansion of ensemble-averages in termsV′ using as basis states ΨU , where
H = T +V′.

Suitable choice ofU improves perturbation series (‘perturbativeness’)

Usual choices: Ur = 0 or Ur =
∑

i V̄ ir ,ir ni = Σ1;r (Hartree-Fock)

Homogeneous fluid (nuclear matter): eigenstates of Tkin, T : plane waves in a box L3 in the
limit L → ∞, self-consistent equation for single-particle energies:

εr =
k2

2M
+ Ur [nr (εr )]

Σ(ζ`) = , ≡ G0
r (ζ`′ ) = 1

ζ`′−ω
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MBPT Application: Thermodynamics of Nuclear Matter

Isospin-symmetric nuclear matter: δ := (ρn − ρp)/ρ = 0, Y := ρp/ρ = 1/2
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MBPT: General Self-Consistent Single-Particle (SP) Potential

Self-consistent equation for single-particle energies

εr =
k2

2M
+ Ur [nr (εr )]

Usual choices: Ur = 0 or Ur =
∑

i V̄ ir ,ir ni = Σ1;r (Hartree-Fock)

[In the nuclear physics case, Σ1;r is sizeable, and the change from Ur = 0 or Ur = Σ1;r
leads to considerable changes in the perturbation series (this feature is more pronounced in
nuclear structure, cf. A. Tichai et al., Phys.Lett.B 756 (2016)).]

Generalization of self-consistent SP potential? → Ur :=
∑

n Ur;n

Σ(ζ`) = , ≡ Gr (ζ`′ ) =
∫

dω
2π

Ar (ω)
ζ`′−ω

{ Dynamical quasiparticles at the Fermi surface

Σ(ζ`) = , ≡ G0
r (ζ`′ ) = 1

ζ`′−ω

Keep dynamical quasiparticles at the Fermi surface: ⇒ Un;kF
!

= K̃n;kF (µ) at T = 0, where
K̃n;k is the diagrammatic contribution to the real part of the self-energy
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MBPT: Anomalous Contributions, ‘Statistical’ Choice forU

At fourth order and beyond, the perturbation series for the free energy F involves so-called
‘anomalous diagrams’:

normal (< F̃) normal (∈ F̃) normal (∈ F̃) anomalous (∈ F̃)

U(I)
n;r = Re

[
Σn;r (εr − iη)

]
=

δF̃n

δnr

∣∣∣∣∣∣
r<{articulation lines}

satisfies Un;kF
!

= K̃n;kF (µ)

U(II)
n;r =

δDn

δnr
does not satisfy Un;kF

!
= K̃n;kF (µ)

where D given by (reduced & disentangled & regularized) normal part of F̃

Elimination of Anomalous Diagrams via U(II)
n;r :

F =F0 + F̃1 + F̃2 + F̃3 + F̃4 + . . . + F̃N −

N∑
n=1

∑
r

Un;r nr

yUn;r = U(II)
n;r

= F0 + F̃1 + F̃2 + F̃3 + F̃4,normal + . . . + F̃N,normal︸                                                            ︷︷                                                            ︸
µN+Ω′+D

−

N∑
n=1

∑
r

U(II)
n;r nr



MBPT: Anomalous Contributions, ‘Statistical’ Choice forU

At fourth order and beyond, the perturbation series for the free energy F involves so-called
‘anomalous diagrams’:

normal (< F̃) normal (∈ F̃) normal (∈ F̃) anomalous (∈ F̃)

U(I)
n;r = Re

[
Σn;r (εr − iη)

]
=

δF̃n

δnr

∣∣∣∣∣∣
r<{articulation lines}

satisfies Un;kF
!

= K̃n;kF (µ)

U(II)
n;r =

δDn

δnr
does not satisfy Un;kF

!
= K̃n;kF (µ)

where D given by (reduced & disentangled & regularized) normal part of F̃

Elimination of Anomalous Diagrams via U(II)
n;r :

F =F0 + F̃1 + F̃2 + F̃3 + F̃4 + . . . + F̃N −

N∑
n=1

∑
r

Un;r nr

yUn;r = U(II)
n;r

= F0 + F̃1 + F̃2 + F̃3 + F̃4,normal + . . . + F̃N,normal︸                                                            ︷︷                                                            ︸
µN+Ω′+D

−

N∑
n=1

∑
r

U(II)
n;r nr



MBPT: Dynamical vs. Statistical Quasiparticles

Elimination of Anomalous Diagrams:

first studied by Balian, Bloch, de Dominicis (var., 1958-1971), Kohn, Luttinger, Ward
(PR 118 (1960)) as well as Horwitz, Brout, Englert (PR 120 (1961), PR 130 (1963))

in particular: cancellation of anomalous contributions to F as T → 0 (⇒ F
T→0
−−−−→ E0)

(‘Kohn-Luttinger-Ward theorem’)

with U(II)
n;r , the perturbation series truncated at order n leads to statistical

quasiparticle relations for N, S and ∂E/∂n:

N =
∑

r

nr S = −
∑

r

nr ln nr + n̄r ln n̄r

E = F + TS =
∑

r

εfree
r nr + D

δE
δnr

= εfree
r + U(II)

r

→ Sommerfeld expansion for interacting case (Constantinou, Muccioli, Prakash, Lattimer; Ann. Phys. 363 (2015))

Two aspects of Landau Fermi-Liquid theory: dynamical (T = 0) vs statistical (∀T ), with
ε

dynamical
r , εstatistical

r for n ≥ 4
cf. Carneiro & Pethick; PRB (1975), Pethick & Baym; “Landau Fermi-Liquid Theory”
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MBPT Binary System: Asymmetry Expansion

Explicit parametrization via expansion about δ = 0, where δ = (ρn − ρp)/ρ

F(δ) ∼

&99% of literature︷                 ︸︸                 ︷
F(δ = 0) + A2 δ

2 + A4 δ
4 + A6 δ

6 + . . .

‘Usual’ δ2 approximation is good, but higher-order terms not negligible for neutron-rich
systems ({ neutron stars)
→ compute higher-order coefficients A4, A6

Higher-order coefficients A4, A6 are singular at zero temperature!

F2(T = 0, ρ, δ) = A0(0, ρ) + A2(0, ρ) δ2 +
∞∑

n=2

A2n,reg(ρ) δ2n+
∞∑

n=2

A2n,log(ρ) δ2n ln |δ|

Kaiser; PRC 92 (2015)

Logarithmic terms also when ladders are resummed to all orders!
Kaiser; EPJA 48 (2014), Wellenhofer; arXiv:1707.09222

What is the origin of the logarithmic terms at T = 0? What happens at finite T?

→ energy denominators in contributions beyond first order, e.g.,

E0;2 = − 1
4
∑

ijab V̄ ij,ab
NN V̄ab ,ij

NN

Θ−i Θ
−
j Θ

+
a Θ

+
b

εa +εb−εi−εj
F2 = − 1

8
∑

ijab V̄ ij,ab
NN V̄ab ,ij

NN

f̃−i f̃−j f̃+
a f̃+

b −f̃+
i f̃+

j f̃−a f̃−b
εa +εb−εi−εj

integrand diverges at integral boundary smooth integrand
{ E0;2 ∈ C3 { F2 ∈ C∞, but not analytic (Cω) at low T/µ

Analytic structure and zero-temperature limit do not commute!
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MBPT Binary System: Asymmetry Expansion (Nuclear Matter Results)

A2 > A4 > A6 > . . . at high Tµ, A2 � A4 � A6 � . . . at low Tµ

(A2n≥4
T→0
−−−→ ±∞)

0

10

20

30

40

 0  0.05  0.1  0.15  0.2  0.25  0.3

A_

2
 (

M
e

V
)

ρ (fm
-3

)

n3lo414

n3lo450

-6

-4

-2

0

2

 0  0.05  0.1  0.15  0.2  0.25  0.3

A_

4
 (

M
e

V
)

ρ (fm
-3

)

10
-1

10
0

10
1

10
2

10
3

10
4

 0  0.05  0.1  0.15  0.2  0.25  0.3

A_

6
 (

M
e

V
)

ρ (fm
-3

)

T=0 MeV

T=2 MeV

T=3 MeV

T=4 MeV

T=5 MeV

T=7 MeV

T=15 MeV

T=25 MeV

 0  0.05  0.1  0.15  0.2  0.25  0.3

-2

0

2

4

F_

s
y
m

-A_

2
 (

M
e

V
)

ρ (fm
-3

)

noninteracting

Wellenhofer, Holt, Kaiser; PRC 93 (2016)

bottom-right: accuracy of quadratic approximation governed by Fsym − A2



MBPT Binary System: Asymmetry Expansion (High Temperature)
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Main Plot: Exact F(T , ρ, δ) vs different orders in the expansion F2,4,6(T , ρ, δ)

Insets: Deviation ∆F = F − F2,4,6



MBPT Binary System: Asymmetry Expansion (Low Temperature)
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MBPT Binary System: Asymmetry Expansion (Summary)

T
 (

M
e
V

)

ρ (fm
-3

)

 

 0

 2

 4

 6

 0  0.05  0.1  0.15  0.2  0.25  0.3

divergent

convergent

Wellenhofer, Holt, Kaiser; PRC 93 (2016)

Question remains: is the nonanalyticity of the δ dependence at low T/µ a genuine
feature of the EOS or only a feature of MBPT?

Notable: analytic structure (sign of certain derivatives) of δ dependence and
T → 0 limit do not commute
For the Y dependence, already in the EOS of a free Fermi gas: entropy-of-mixing
term, in classical limit: TY ln Y ;
T = 0: ∼ Y1−2/D , for D = 1, 2 the EOS is even analytic in Y!
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Summary: Finite-Temperature MBPT

A. Analytic Structure of MBPT and Expansion in Asymmetry δ

in MBPT, the free energy is a nonanalytic smooth function of δ at low T/µ

Question: is this only an artifact of MBPT?

analytic structure (behavior of higher-order derivatives) changed at T = 0

B. Fermi-Liquid Theory and Self-Consistent SP Potential Beyond Hartree-Fock

General MBPT partitioning: H = Tkin +V = (Tkin +U)︸       ︷︷       ︸
reference system

“mean-field theory”

+(V −U)︸     ︷︷     ︸
perturbation
“correlations”

Dynamical-Quasiparticle Constraint⇒U = U(I)

Statistical Quasiparticles forU = U(II)

Corollary to B. Grand-Canonical vs. Canonical(3zero-temperature) MBPT

“ensemble equivalence” only ifU(II) same order as perturbation series

in general: Ω(T , µ) ��XX←→ F(T , ρ) (asymptotic series)
canonical series has better convergence properties! (for nuclear matter,
grand-canonical MBPT fails qualitatively for Ur = 0)
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A. Grand-Canonical vs. Canonical Formulation

MBPT truncated at order n

Ensemble equivalence ⇔ U = U
(II)
m with m = n

What happens for m , n?

Grand-Canonical Case: Ω(T , µ)

U = 0: Ω(T , µ) is single-valued forU = 0⇒ no liquid-gas instability!

U = 0→U = U
(II)
m : renormalization of {εr } in distribution functions;

M∗ approximation: k2/(2M)→ k2/(2M∗) + ∆ε

fk (T , µ)−1 = 1 + exp
[
T
( k2

2M
− µ

)]
→ 1 + exp

[
T
( k2

2M∗
+ ∆ε − µ

)]

Canonical Case: F(T , ρ)

ensemble averages evaluated via Legendre transform: F(T , ρ)→ F(T , µ̃), where∑
r fr (T , µ̃) = ρ

U = 0→U = U
(II)
m : k2/(2M)→ k2/(2M∗) + ∆ε and µ̃→ µ̃′ + ∆ε

fr (T , µ̃)−1 = 1 + exp
[
T
( k2

2M
− µ̃

)]
→ 1 + exp

[
T
( k2

2M∗
− µ̃′

)]
Effect of ‘renormalization’ of T has reduced effect in canonical case→ better
convergence properties!



B. “Reduced & Disentangled & Regularized”

(a) (b)

These two diagrams are “entangled” (→ cyclic permutations):

Fcyclic
a+b = −

1
4

∑
xjaklmn

nxxja n̄klmn [V ]

 1
ε21(ε1+ε2)

− e−(ε1+ε2)/T

ε22(ε1+ε2)
+

e−ε1/T (−βε1ε2+ε1−ε2)

ε21ε
2
2


No energy-denominator poles (good!), “double-indices” mix normal-anomalous (not so good)

“reduced”: normal diagrams similar to T = 0 formalism (note: Freduced
a = ∞ for T , 0)

F reduced
a = −

1
4

∑
xjaklmn

nxxja n̄klmn [V ]

 1
ε21(ε1+ε2)

 T→0
−−−−→ Ea

“disentangled”: normal without “double-indices”, anomalous factorized!!
( but still Freduced,disentangled

a = ∞ for T , 0)

F reduced,disentangled
a = −

1
4

∑
xjaklmn

nxja n̄klmn [V ]

 1
ε21(ε1+ε2)

 T→0 formally
−−−−−−−−−−→ Ea

F reduced,disentangled
b = −

1
4

∑
xjaklmn

nxakl n̄xjmn [V ]
{
−β
ε1ε2

}
=−β

∑
x
δF2
δnx

nx n̄x
δF2
δnx︸︷︷︸
U2,x

“regularized”: finite part P plus cyclic permutations of integration order (poles!)

F reduced,disentangled,regularized
a = −

1
4

1
|C[xjaklmn]|

∑
C[xjaklmn]

nxja n̄klmn [V ]

 P

ε21(ε1+ε2)

 T→0
−−−−→ Ea


