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 Not a talk about perturbation theory

 Failure of the coupled cluster paradigm

 Understanding the role of symmetry

 Designing solutions based on symmetry restoration

Outline

 Alternatives to the exponential ansatz

 Polynomials of excitations that represent PHF

 Polynomial Product States

 Symmetry-projected UCCSD

 CCSD on PHF



Why is symmetry important ?
• Symmetry implies degeneracy and factorization

• Simplest example: Hydrogen atom spherical symmetry

• Symmetry degeneracy becomes “strong correlation” 
only when near the Fermi energy; this is flagged by SSB 
(e.g., UHF atoms down the periodic table)

• Exploiting factorization in electronic structure theory 
due to symmetry degeneracies (spin, number, point 
group,  etc.) is far from trivial

• This is what we are doing by merging coupled cluster 
theory with symmetry breaking and restoration ideas

• This talk: progress report on several fronts
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Weak vs Strong Correlation

• Weak correlation :   |H1| >> |H2| (in a loose sense)
• The mean-field Restricted Hartree-Fock (RHF) picture in the 

symmetry adapted basis is qualitatively correct.

• Perturbation theory works (Taylor expansion of the wavefunction).

• Strong correlation :  |H1| << |H2|
• Physics is determined by the interaction, not the mean-field.

• RHF is bad. Symmetries break spontaneously in HF.

• No good perturbation expansion in R basis. Degeneracy rules.

• Collective behavior becomes important !

• Range of weak & strong correlations are different
• In quantum chemistry, the Coulombic repulsive H cannot break 

number symmetry in mean-field; it does break spin symmetry



• Stationarity of the HF does not imply a local minimum
• The diagonal of the number conserving (ph-ph) HF 

instability hessian is instructive:

 For the hessian to have a negative eigenvalue, a negative 
diagonal element is sufficient (but not necessary)

 Symmetry breaking can occur with large gaps if J and K
are even larger -> strong correlation

 Good example: fullerenes and particularly C60

An important remark on HF 
symmetry breaking
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Sometimes referred to as the “gold standard”

CC works very 
well in weakly

correlated 
situations where 
symmetries do 
not break and 

(symmetry 
adapted) 

Restricted
Hartree-Fock

(RHF)
is a good 

approximation

Weak Correlation Paradigm:
Coupled Cluster Theory



• Coupled Cluster theory is based on an exponential ansatz of  
particle-hole excitations T out of a reference determinant |0>

• CC reparametrizes the exact solution (FCI) via an exponential

• The Hamiltonian is similarity transformed:
• CC yields a set of nonlinear algebraic equations:
• To decouple the equations, one neglects high-order connected

excitations Tn+1 and Tn+2 in Rn (T3 and T4 in CCSD)
• Truncated CC retains disconnected higher order excitations.

Coupled Cluster theory
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• By retaining disconnected terms, the CC ansatz yields size 
extensivity, adding terms absent in CI via exponential 
factorization

• CC computational cost is polynomial as a function of size

• By increasing n in Tn , CC yields a series of approximations 
that eventually gets the right answer for the right reason

• We must truncate Tn to avoid combinatorial cost and 
decouple the CC algebraic equations 

• Truncated CC is not variational

Coupled Cluster theory

An incredibly successful theory but…



RCC catastrophic failure
1D Hubbard ring

10 fermions on 10 sites
Large U/t  strongly correlated

RCCSDT, RCCSDTQ… all fail similarly, except for full CC.
Variational RCCSD undercorrelates (next slide;  combinatorial cost ! )

Attractive pairing (reduced BCS)
6 pairs on 12 sites

Large G/Gc  strongly correlated



Variational RCCSD
10x1 Hubbard chain; 10 electrons
Error per electron respect to FCI

Variational RCCSD undercorrelates badly.
The CC ansatz (traditional or variational) is not accurate 
in the strongly correlated regime.

RHF basis



The problem is to know what the 
problem is

Albert Einstein

The hard part of solving a problem 
is identifying the problem itself

Why does coupled cluster fail under strong correlation ?



RCC reverse-engineered from FCI

In the strongly correlated limit, RCC has no natural truncation.
Note huge size of Tn>2. RCCD assumes Tn>2 ≈ 0

10x1 Hubbard ring;  10 electrons

RHF orbitals, T1 = T9 = 0 by symmetry

Attractive pairing; N = 12 electrons

RHF orbitals, Todd = 0 by symmetry

All is well with the FCI coefficients !
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Why does coupled cluster fail under SC ?

• Given that the FCI coefficients are always small,          
could there be a better polynomial of excitations ?

Where could F come from?
• Symmetry collective states because :
• Broken symmetry UCCSD energy is fine
• Strong correlation => symmetry breaking and degeneracy
• Projected HF is exact in SC limit of these model H
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Because decoupling does not work if neglected Tn are large
Why are the Tn large ?

Because exp[truncated(T)] is a poor approximation to FCI



Why is symmetry important?

• Symmetry implies degeneracy and factorization

• Exploiting factorization from symmetry (spin, number, 
point group, etc.) in electronic structure is non trivial

• This is what we are doing via collective states

• In the language of p-h excitations, we have discovered 
polynomials associated with symmetry projection



Reduced BCS Hamiltonian

• In large G limit, PBCS is exact
• Full CC is of course exact but truncated CCD blows up
• The FCI eigenfunction can be rewritten as a non-exp

polynomial of only doubles, with factorized amplitudes

M. Degroote, T. M. Henderson, J. Zhao, J. Dukelsky, and G. E. Scuseria, Phys. Rev. B 93,125124 (2016)
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Spin S2 symmetry factorization

|ϕ> is broken symmetry,  |0> is symmetry adapted     
Q1S breaks spin symmetry and transforms RHF into UHF
Symmetry projection is here done analytically
K2S factorizes.   Ea

i are symmetry adapted (totally symmetric)

SUHF has a2 = 3/10, PBCS has a2 = ¼, CC has a2 = ½ (fails under SC)
The change in a2 with interaction regime is a renormalization effect.
These results can be used to merge CC with Projected HF
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Hubbard 10x1 ½ filled

SUHF (≠ FCI)FCI

FCC



• SPoST is an interpolation between CCSD and SUHF

• Hamiltonian is similarity transformed

• a2 and T2 are optimized using CC-like equations

Spin Polynomial Similarity Transformation
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Attenuated Coupled Cluster Theory
• aCCSD identifies collective mode(s) by diagonalizing T2 = K2 + S2
• The largest eigenvalue mode (K2) is treated with the symmetry 

polynomial F(K2) while the rest of the modes uses exp(S2)



Merging spin collective states with CCSD
10x1 Hubbard ring; 10 electrons

Proof of Principle: aCCSD and SPoST are qualitatively correct
(and symmetry adapted)



• Consider an ansatz composed of products of polynomials of particle-
hole excitations that preserve (T) or break (Q) symmetries

• Symmetry-project  broken-symmetry terms

• Similarity-transform

• Solve via CC-like equations

• More general than attenuated CC or PoST

Polynomial Product States
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The thermodynamic limit
• PPS are size extensive and different from CC
• In TDL only linked diagrams (CC) survive but the CC weight 

gets renormalized by F(K)
• PPS carry “rank-n extensivity” associated with the ‘n’ in Qn
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• Smoking gun:
If we allow spin symmetry to break (RHF  UHF) the  
UHF energy is fine and even better at the UCC level .

• But the wave function has wrong quantum numbers !

• Symmetry dilemma:
Symmetries can be broken to improve the energy but 
the road to eigenfunctions can be full of obstacles

• Close connection among symmetry breaking, degeneracy 
& strong correlation

• Let’s see what happens in the broken symmetry basis

Take II: broken symmetry



UHF and UCCSD energies are fine but we lose good quantum numbers
Inspection of U3, U4, etc., shows that they are small

Broken spin symmetry picture



• Spin restoration is done imposing rotational invariance in spin space 
using a projection operator    acting over broken symmetry 
determinants

• This leads to numerical integration with ~ HF computational cost

• SUHF  non-orthogonal determinants in the broken symmetry basis 
 collective excitations in symmetry adapted basis.

• Spin projection has a long history (Löwdin 1955) but never took off
• Our work on symmetry breaking and restoration :

 Number and Spin (both S2 and Sz)  (continuous)
 Complex Conjugation and Point Group (discrete)
 Linear Momentum and Space Group in periodic systems 
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S2 projection: SUHF
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J. Chem. Phys. 135, 124108 (2011), J. Chem. Phys. 136, 164109 (2012), J. Chem. Phys. 139, 204102 (2013).
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S2 projection: SUHF

SUHF is a spin eigenfunction (like RCCSD) but does not fail

10x1 Hubbard ring; 10 electrons



Spin Projected UCCSD
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is a constant.  The           are purely excitation operators.
They restore symmetry. 
They afford truncation in the spirit of UCC theory.
At

are obtained solving differential equations in su(2)

( )nW 

Main result of our work:  disentangled cluster formalism
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T. Duguet, J. Phys. G 42, 025107 (2015)
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The merge seems simple but there is a fundamental language barrier:
• CC is built from orthogonal p-h excitations
• Symmetry projection uses non-orthogonal determinants

( )nW 



Spin Projected UCCSD
10x1 Hubbard ring; 10 electrons

SUCCSD is a spin eigenfunction and very close to FCI
Y. Qiu, T. M. Henderson, J. Zhao & G. E Scuseria, J. Chem. Phys. 147, 064111 (2017)



N2 dissociation cc-pvdz

Y. Qiu, T. M. Henderson & GES, work in progress



N2 dissociation cc-pvdz

Y. Qiu, T. M. Henderson & GES, work in progress



• SUHF is done variationally and CCSD non-variationally

• Conceptually the simplest model but SUHF 6-rdm is scary!

• Requires grid integration over rotated states

• Not implemented until recently, after drudge was born

Take III: CCSD on PHF
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CCSD on PHF 
by drudge*

When robots do the 
algebra and write the 
code,  the 6-rdm is no 
longer intimidating.

Algebraic manipulators  
can be instrumental in 
implementing algebraic 
involved theories.

* Jinmo Zhao & GES    
(unpublished)



CCSD on PHF

cf. spin-orbital CCD equations in JCP 139, 104113 (2013) 
(three quadratic channels: ladders, rings & xrings) 

Two interesting limits:  nocc= 1, nunocc= 0 (RCCSD),      
nocc= nunocc = ½  (maximum entanglement)



CCSD on PHF
PHF = S2 projected UHF = SUHF

Similarity transformed CCSD on PHF with N6 cost 
accurately reproduces the PHF+VCCD variational model

T. M. Henderson & GES, work in progress



 Using tensor hypercontraction and canonical polyadic
decomposition, we break down both the interaction (V)
and CCSD amplitudes (T) into matrices

 We next demand energy stationarity with respect to T
decomposition factors :

 Solving for the factors above yields an O(N4) procedure 
with sub-millihartree accuracy

Tensor Decomposition

Details: Tensor-structured coupled cluster theory, R. Schutski, J. Zhao, 
T. M. Henderson, and G. E. Scuseria, J. Chem. Phys. 147, 184113 (2017).
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