Exploring pair natural orbitals for linear scaling MP2

Qianli Ma Hans-Joachim Werner, Max Schwilk, Christoph Köppl

> Institute for Theoretical Chemistry University of Stuttgart

ESNT Workshop on "Many-body perturbation theories in modern quantum chemistry and nuclear physics"

CEA-Saclay

March 30, 2018

Goals

- Chemical accuracy (1 kcal/mol) in relative energy for reactions and molecular clusters involving large molecules¹
 - 99.9% of the canonical correlation energy required
- To develop an explicitly correlated local coupled-cluster method PNO-LCCSD(T)-F12
 - Exploit the short-range nature of weak electron correlation
 - Base model: CCSD(T)-F12 → CCSD(T)/CBS
 - Starting from: second-order Møller–Plesset perturbation theory (MP2)
- Black box, efficient (minimize redundancies)
- Linear scaling
 - Cost (CPU time and resource usage) with the molecular size
 - Speedup with the number of CPU cores

¹Up to 200 atoms and 8000 of basis functions

Outline

Introduction

Benchmark system

Local treatment of electron correlation

Localization of occupied orbitals

Domain approximations

Pair approximations

Technical aspects

Further benchmark results

Introduction

Benchmark system

Local treatment of electron correlation

Localization of occupied orbitals Domain approximations Pair approximations

Technical aspects

Further benchmark results

Scalability problem in electron correlation methods

Scaling in CPU time

- ► MP2 $O(N_{\rm el}^5)$
- ightharpoonup CCSD(T) $O(N_{\rm el}^7)$
- ► Local MP2 ~ O(N_{el})

Scaling in storage requirements

- ▶ 2-electron integrals: $O(N_{AO}^4)$ scaling
- ~ 1000 basis functions (20–30 atoms with reliable basis sets) to fill a 1 TB hard drive
- Integral-direct methods introduce redundancies

Domain approximations

MP2 pair energy from $|\Phi_{ii}^{ab}\rangle$

$$E_{ij} \sim \sum_{ab} \left[2(ai|bj) - (aj|bi) \right] (ai|bj)$$

i, *j* – occupied orbitals; *a*, *b* – virtual orbitals

Exponential decay of the integrals

If orbitals are local

$$(ai|bj) = \langle ab|r_{12}^{-1}|ij\rangle = \int \underbrace{\phi_a(\mathbf{r}_1)\phi_i(\mathbf{r}_1)}_{\rho_{ai}(\mathbf{r}_1)} r_{12}^{-1} \underbrace{\phi_b(\mathbf{r}_2)\phi_j(\mathbf{r}_2)}_{\rho_{bi}(\mathbf{r}_2)} d\mathbf{r}_1 d\mathbf{r}_2$$

We only need to consider excitations to external orbitals close to either *i* or *j*

Pair approximations

MP2 pair energy

$$E_{ij} \sim \sum_{ab} \left[2(ai|bj) - (aj|bi) \right] (ai|bj)$$

i, *j* – occupied orbitals; *a*, *b* – virtual orbitals

For distant pairs ij

- ► a close to i, b close to j, $(aj|bi) \approx 0$
- $(ai|bj) = \int \rho_{ai}(\mathbf{r}_1) r_{12}^{-1} \rho_{bj}(\mathbf{r}_2) d\mathbf{r}_1 d\mathbf{r}_2$, approximate with a multipole expansion
- Effective charge $\int \rho_{ai}(\mathbf{r})d\mathbf{r} = \langle a|i\rangle = 0$
- (ai|bj) decays as R_{ij}^{-3} , pair energy as R_{ij}^{-6}

Explicit correlation: F12 methods

- Correlation energy converges very slowly with the basis set size due to the wave function cusp at $r_{12} = 0$
- The wave function cusps cannot be represented by expansions of Slater determinants
- Explicit correlation treatments introduce terms in the wave function that depend explicitly on r₁₂ (Hylleraas 1928, Kutzelnigg 1985, Kutzelnigg and Klopper 1990)
- Modern F12 methods (Ten-no 2004, Manby, Noga, Tew, Valeev, Werner...)

$$F_{12}(r_{12}) = -\frac{1}{\gamma}e^{-\gamma r_{12}} \approx -\frac{1}{\gamma}\sum_{i=1}^{6}c_ie^{-\alpha_i r_{12}^2}$$

Local MP2-F12 method

$$\Psi^{(1)} = \sum_{ij} \left[\sum_{a,b \in [ij]} |\Phi_{ij}^{ab}\rangle T_{ab}^{ij} + \sum_{\alpha\beta}^{\text{complete}} |\Phi_{ij}^{\alpha\beta}\rangle T_{\alpha\beta}^{ij} \right]$$

$$T_{\alpha\beta}^{ij} = \frac{3}{8} \langle \alpha\beta | \hat{Q}_{12}^{ij} F_{12} | ij \rangle + \frac{1}{8} \langle \alpha\beta | \hat{Q}_{12}^{ij} F_{12} | ji \rangle$$

$$\hat{Q}_{12}^{ij} = 1 + \sum_{\substack{m,n \in [ij]_{\text{LMO}}}} |mn\rangle \langle mn| - \sum_{\substack{a,b \in [ij]}} |ab\rangle \langle ab|$$

$$- \sum_{\substack{m \in [ij]_{\text{LMO}}}} \sum_{\alpha \in [ij]_{\text{RI}}} (|m\alpha\rangle \langle m\alpha| + \frac{|\alpha m\rangle \langle \alpha m|}{|am\rangle \langle \alpha m|F_{12} | ij \rangle \text{ in } E^{(2)}}$$

If F12 is combined with local methods, the domain error is reduced by an order of magnitude

PNO-LCCSD(T)-F12 methods

 Pair natural orbitals (PNOs) minimize the necessary domain size for a given accuracy (Meyer 1971, 1973; Neese et al. 2009)

Problems in large systems

- Very large number of PNOs, non-orthogonal between pairs
- Difficult integral transformations and complicated logic

Solutions: Local density fitting, projections, etc

- ▶ DLPNO-CCSD(T)-F12 (Orca): Riplinger, Neese, Valeev, et al.
- PNO-CCSD(T)[F12] (Turbomole): Schmitz, Hättig, Tew
- Our work: Parallel PNO-LCCSD(T)-F12 (Molpro)

Role of many-body perturbation theory

Domain approximations

 Provides a guess of pair density matrices from which natural orbitals are made

Pair approximations

- Provides pair selection criteria and approximate distant pair energies
- Provides a hierarchy of the terms in the CCSD equations

Perturbative triples correction

Significantly improve the accuracy of the CCSD method

Introduction

Benchmark system

Local treatment of electron correlation

Localization of occupied orbitals Domain approximations Pair approximations

Technical aspects

Further benchmark results

AuAmin reaction

- "AuAmin" is a gold(I)-aminonitrene complex which plays an important role in catalytic reactions²
- Experimental dissociation energy: 47.0 ± 2.6 kcal mol⁻¹
- ► HF/VTZ-F12 + CABS: 22.0 kcal mol⁻¹
- LMP2: 57.2 kcal mol⁻¹; LMP2-F12: 60.3 kcal mol⁻¹
- ► LCCSD(T)-F12: 47.5 kcal mol⁻¹

²Fedorov et al., ChemPhysChem, 11, 1002, (2010)

Isomer4 reaction

Most difficult reaction of the ISOL24 benchmark set³

E _r (kcal/mol)	local	canonical
HF + CABS:	18.7	18.7
LMP2-F12:	79.8	79.8
SCS-LMP2-F12:	65.0	64.7
LCCSD(T)-F12:	67.9	?

The accuracy of local methods has been established by studying the convergence with respect to all local approximations

³Huenerbein et al., PCCP 12, 6940 (2010)

Error cancellation

Extensivity of the error

- Errors in absolute energies are extensive for quantum chemistry methods, and grow with the molecule size
- We rely on systematic error compensations when computing relative energies

Avoid "random" error cancellations as much as possible, e.g.,

- Basis-set errors and the intrinsic error of the method
- Errors from pair approximations and domain approximations

Introduction

Benchmark system

Local treatment of electron correlation

Localization of occupied orbitals
Domain approximations
Pair approximations

Technical aspects

Further benchmark results

Orbital localization

Localized molecular orbitals are obtained from the canonical molecular orbitals (CMOs) by a unitary transformation

$$|i\rangle = \sum_{k}^{\text{val}} |\phi_{k}^{\text{can}}\rangle U_{ki}^{\text{loc}}$$

Foster and Boys (FB) localization

Minimize the sum of the orbital variances:

$$P^{\mathsf{fb}} = \sum_{p}^{x,y,z} \sum_{i}^{\mathsf{val}} \langle i | (\hat{p} - \langle i | \hat{p} | i \rangle)^{2} | i \rangle$$

Orbital localization

Pipek-Mezey (PM) localization

Maximize the sum of squared Mulliken partial charges on atoms:

$$P^{PM} = \sum_{A}^{\text{atoms}} \sum_{i}^{\text{val}} q_{iA}^{2}$$

$$q_{iA} = 2 \sum_{\mu \in A} L_{\mu i} \sum_{\nu} S_{\mu \nu} L_{\nu i}$$

Intrinsic bond orbitals (IBOs)

Create a molecule-intrinsic minimal basis of polarized AOs and compute q_{iA} for PM localization

Canonical orbitals

Local orbitals (IBO)

Projected atomic orbitals

PAOs (Pulay 1983)

Project the atomic orbitals against the occupied subspace

$$|r\rangle = \hat{P} |r^{\mathsf{AO}}\rangle$$

$$\hat{P} = 1 - \sum_{m}^{\text{occ}} |m\rangle \langle m|$$

- Centered on atoms but possess tails
- Nonorthogonal and forms a redundant set
- Domain truncation based on distance and connectivity criteria
- ▶ Pair domain: $[ij]_{PAO} = [i]_{PAO} \cup [j]_{PAO}$
- 500–800 orbitals per pair needed for chemical accuracy

Effect of PAO domain sizes on reaction energies

- ► F12 correction strongly reduces the domain error
- Domain errors re-introduced by (T) which is not explicitly correlated

Pair natural orbitals

Pair natural orbitals (PNOs)

Obtained by diagonalizing (approximate MP2) external pair density matrices:

$$[\mathbf{D}^{ij}]_{ab} = \frac{1}{1 + \delta_{ij}} [\tilde{\mathbf{T}}^{ij\dagger} \mathbf{T}^{ij} + \tilde{\mathbf{T}}^{ij} \mathbf{T}^{ij\dagger}]_{ab}, \qquad \tilde{\mathbf{T}}^{ij} = 2\mathbf{T}^{ij} - \mathbf{T}^{ji}$$
$$[\mathbf{Q}^{ij\dagger} \mathbf{D}^{ij} \mathbf{Q}^{ij}]_{rs} = n_r^{ij} \delta_{rs}$$

- Pair-specific, but typically only 50–80 orbitals per pair are needed for chemical accuracy
- ▶ Domains selection based on occupation number: $n_a^{ij} \ge T_{PNO}$

Orbital specific virtuals

- Orbital specific virtuals (OSVs) are PNOs for diagonal pairs
- ▶ Pair domain: $[ij]_{OSV} = [i]_{OSV} \cup [j]_{OSV}$
- 200–300 orbitals per pair needed for chemical accuracy
- Domain per pair: PNO < OSV < PAO</p>
- Total number of orbitals: PAO < OSV < PNO</p>

Stepwise transformations

- ► PAO→OSV→PNO leads to successively smaller domains and linear scaling
- The use of OSVs reduces the storage and communication cost of the orbital transformation matrices

Semi-canonical approximations

LMP2 amplitude equations

$$\begin{split} R_{ab}^{ij} = & (ai|bj) + (\varepsilon_a^{ij} + \varepsilon_b^{ij} - f_{ii} - f_{jj})T_{ab}^{ij} \\ & + \sum_{\substack{c \in [ij], c \neq a,b}} \left(f_{ac}T_{cb}^{ij} + T_{ac}^{ij}f_{cb}\right) & - \sum_{\substack{k \in [ij]_{\text{LMO}}, k \neq i,j}} \left(f_{ik}\bar{T}_{ab}^{kj} + \bar{T}_{ab}^{ik}f_{kj}\right) \\ & \text{o with pseudocanonical PNOs} & \text{ignored with semi-canonical approx.} \\ = & 0 & (\forall i,j;a,b \in [ij]) \end{split}$$

- ▶ Usually provide > 95% of the LMP2 electron correlation energy
- Sensitive to the orbital localization method
- Provide sufficiently good amplitudes for making PNOs

PNO domain size as a function of R_{ij}

Energy threshold

- $ightharpoonup E_{ij}^{PNO(SC)} \ge T_{en} \cdot E_{ij}^{OSV(SC)}$
- Improves the accuracy for more distant pairs at a rather small added cost

Domain corrections

The size of PNO domains strongly affects the computational cost in LCCSD.

MP2 domain correction

$$E_{LCCSD-F12}(large) \approx E_{LCCSD-F12}(small) - E_{LMP2-F12}(small) + E_{LMP2-F12}(large)$$

This approach improves the convergence with respect to the PNO domain size.

Effect of PNO domain sizes on reaction energies

► For the "AuAmin" reaction, the domain errors in PNO-LCCSD(T)-F12 calculations can be reduced to less than 0.5 kcal mol⁻¹.

R_{ii}^{-6} decay of pair energies

For distant pairs
$$ij$$
, $E_{ij} \sim \left[2(ai|bj) - \underbrace{(aj|bi)}_{\approx 0} \right] \underbrace{(ai|bj)}_{\text{dipole-dipole interaction,} \sim R_{ij}^{-3}}$

Approximations for close and weak pairs

Close-pair approximation

- Neglect slowly decaying terms in the LCCSD amplitude equations which cancel at long-range
- ▶ Truncation of summations over occupied indices according to the decay properties of individual terms (exponential or R⁻⁶) and the order in MPPT

Weak approximation

Neglect all non-linear terms (CEPA)

Distant pairs

Iterative PNO-LMP2 with multipole approximation

Effect of pair approximations on reaction energies

- "Isomer4" reaction
- Large long-range effects, strongly overestimated by LMP2
- Approximate LCCSD is very accurate

(T) correction

$$R_{abc}^{ijk} = (\varepsilon_a^{ijk} + \varepsilon_b^{ijk} + \varepsilon_c^{ijk} - f_{ii} - f_{jj} - f_{kk})T_{abc}^{ijk} + W_{abc}^{ijk} - Z_{abc}^{ijk} = 0$$

$$W_{abc}^{ijk} = \hat{P}_{abc}^{ijk} \left[\sum_{d} (ia|bd) \bar{T}_{dc}^{jk} - \sum_{l} (ia|jl) \bar{T}_{bc}^{lk} \right]$$

$$Z_{abc}^{ijk} = \sum_{l \neq k} f_{kl} \bar{T}_{abc}^{ijl} + \sum_{l \neq j} f_{jl} \bar{T}_{abc}^{ilk} + \sum_{l \neq i} f_{il} \bar{T}_{abc}^{ljk} + \sum_{0 \text{ with pseudocanonical orbitals}} 0$$
ignored in (T0) approximation

Triple-list truncation

► Include only triples *ijk* where at least one of the pairs *ij*, *ik*, *jk* is strong

Domain approximation in the (T) treatment

Triples natural orbitals

 Similar to PNOs, but the external density matrices are approximated (Riplinger et al. 2013)

$$\mathbf{D}^{ijk} = \frac{1}{3}(\mathbf{D}^{ij} + \mathbf{D}^{ik} + \mathbf{D}^{jk})$$

► (T0) domain correction

$$E^{(T)}(large) \approx E^{(T)}(small) - E^{(T0)}(small) + E^{(T0)}(large)$$

Typically 80–100 TNOs needed for (T0) and 30–50 TNOs for the iterative (T)

Introduction

Benchmark system

Local treatment of electron correlation

Localization of occupied orbitals Domain approximations Pair approximations

Technical aspects

Further benchmark results

Robust local density fitting⁴

Integral transformation

$$(A|\mu i) = \sum_{\nu} (A|\mu \nu) L_{\nu i}, \qquad (A|ri) = \sum_{\mu} (A|\mu i) P_{\mu r}. \label{eq:energy}$$

Fitting and assembly

Density fitting: Whitten 1973, Dunlap 1977

$$\int \rho_{ri}(\mathbf{r}_{1}) r_{12}^{-1} \rho_{sj}(\mathbf{r}_{2}) d\mathbf{r}_{1} d\mathbf{r}_{2} \approx \sum_{A \in [ij]_{fit}} d_{ri}^{A} \int \phi_{A}(\mathbf{r}_{1}) r_{12}^{-1} \rho_{sj}(\mathbf{r}_{2}) d\mathbf{r}_{1} d\mathbf{r}_{2}$$

$$(ri|B) \approx \sum_{A \in [ij]_{fit}} d_{ri}^{A} \int \phi_{A}(\mathbf{r}_{1}) r_{12}^{-1} \phi_{B}(\mathbf{r}_{2}) d\mathbf{r}_{1} d\mathbf{r}_{2}$$

$$(A|B)$$

⁴*i*, *j*: occupied orbitals; *r*, *s*: PAOs

Parallelization in LMP2

Fundamental Strategy

- Dynamic task distribution in integral transformation
 - Store all integrals in distributed memory
- Static pair distribution in CCSD iterations
 - Keep a copy of required amplitudes in local memory
 - Load integrals to local memory before the iterations
 - Synchronize the amplitudes after each iteration

2-Electron integrals

- Evaluate and transform (to MOs/PAOs) 2, 3-index integrals
 - Parallelize over fitting basis
- Assembly and transform (to PNOs) 4-index integrals
 - Parallelize over pairs of LMOs
 - Algorithms to reduce duplicated communication/computation

Introduction

Benchmark system

Local treatment of electron correlation

Localization of occupied orbitals Domain approximations Pair approximations

Technical aspects

Further benchmark results

Comparison with canonical CCSD(T)-F12 results

Friedrich and Hänchen test set⁵

- 55 reactions of medium-sized molecules
- RMS error from canonical CCSD(T)-F12: 0.18 kcal mol⁻¹ (default); 0.09 kcal mol⁻¹ (large domains), using cc-pVTZ-F12 basis

S22 test set⁶ of weak intermolecular interaction

- ▶ Binding energy of molecular dimers up to 30 atoms
- ► F12-scaled triples necessary to reduce the basis-set errors in (T)
- RMS error from the best available CCSD(T)/CBS estimations:
 0.22 kcal mol⁻¹ (default), 0.06 kcal mol⁻¹ (large domains),
 using aug-cc-pVTZ basis

⁵Friedrich and Hänchen, JCTC, 9, 5381 (2013) ⁶Jurečka et al., PCCP, 8, 1985 (2006)

Benzene dimer (counterpoise corrected)

Method	Canonical	Local	
		default	large domains
HF	5.36	5.36 (0.00)	5.36 (0.00)
MP2	-4.70	-4.46 (0.24)	-4.63 (0.07)
MP2-F12	-4.95	-4.88 (0.07)	-4.95 (0.00)
CCSD-F12	-1.12	-1.06 (0.06)	-1.12 (0.00)
CCSD(T)-F12	-2.50	-2.27 (0.23)	-2.43 (0.07)
CCSD(T*)-F12	-2.63	-2.47 (0.26)	-2.56 (0.07)
S22B ⁷		-2.65	

 Domain errors are largely eliminated with the F12 treatment, but reintroduced in (T)

⁷Marshall, Burns, and Sherrill, JCP, 135, 194102 (2011)

WCCR10 test set⁸

- ▶ Dissociation of transition metal complexes of 42–174 atoms
- ► Large theory–experiment discrepancies

⁸Weymuth et al., JCTC, 10, 3092 (2014)

Theory-experiment discrepancies

Electronic structure theory

- Local errors, basis-set convergence
- Breakdown of the CCSD(T) model
- Structure optimization

"Experiment"

- Uncertain dissociation product
- Multiple conformation of the molecule
- Kinetic model in post-processing protocol

Scaling with the number of processors

- Canonical DF-HF: 1.7 h with 20 cores
- ► PNO-LMP2: < 5 min with 80 cores

Summary

- An efficient parallel PNO-LCCSD(T)-F12 method has been implemented
- All approximations can be well controlled and converged, so that errors become negligible
- F12 terms strongly reduce basis set and domain errors
- PNO-LCCSD(T)-F12 needs only 10% more computational power than PNO-LCCSD(T)
- Open-shell methods are under development

Acknowledgements

Prof. Hans-Joachim Werner Max Schwilk Dr. Christoph Köppl

Funding: ERC

Thanks for your attention