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(Non) closed-shell character of nuclear ground states 

Filling of nuclear shells 
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Doubly-magic nuclei 

Blue = doubly closed shell (+/-1) 

Pink = singly open shell (+/-1) 

Green = doubly open shell 



Ab initio nuclear chart 

2018 

⦿ “Exact” methods 

○ Since 1980’s 

○ Factorial scaling 

○ Monte Carlo, CI, … 

⦿ Hybrid methods (ab initio shell model) 

○ Since 2014 

○ Effective interaction via CC/IMSRG 

○ Mixed scaling 

⦿ Approximate methods for doubly closed-shells 

○ Since 2000’s 

○ MBPT, SCGF, CC, IMSRG 

○ Polynomial scaling 

⦿ Approximate methods for singly open-shell 

○ Since 2010’s 

○ BMBPT, GGF, BCC, MR-IMSRG, MCPT 

○ Polynomial scaling 
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(Near-)degenerate systems via expansion methods 

⦿ Expansions around one determinant capture dynamical correlations via sums of ph excitations 

⦿ Open-shell (sub-closed shell) nuclei are (near-)degenerate with respect to ph excitations 

E.g. consider MBPT(2) 

open-shell closed-shell 

i j 

a b 

i j a b 

Expansion breaks down when 

Signals important non-dynamical correlations 

     e.g. superfluidity of open-shell nuclei ⦿ Possible ways out 

➟ Lifts the degeneracy, e.g. BMBPT(2) breaking U(1) 

➟ Symmetries must be eventually restored in finite quantum systems… 

 Expand around a symmetry-breaking determinantal reference state (non-perturbative)  

 High-order non-perturbative single-determinant method if near-degeneracy = slow convergence 

 Multi-reference/configuration methods, e.g. MR-MBPT, MR-CC, MR-IMSRG, MCPT 

~0 

a b i-1 j-1 

k1 k2 k3 k4 

>0 

Breaking vacuum 

Conserving vacuum 

1) Lowest reference energy 2) Expansion well behaved again 

To be compared 

 Independent of the number of nucleons in open-shell 

 Particularly beneficial in heavy nuclei/high-j shells 
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Single-determinantal many-body methods and symmetries 



Recently -implemented 

   -proposed 

[Somà et al. 2011] 

[Signoracci et al. 2014]  

Single-determinantal many-body methods and symmetries 



Recently proposed  

Recently -implemented 

   -proposed 

[Duguet 2015] for SU(2) 

[Duguet, Signoracci 2016] for U(1) 

[Qiu et al. 2017] for SU(2) 

[Somà et al. 2011] 

[Signoracci et al. 2014]  

Single-determinantal many-body methods and symmetries 



On-going projects: deal with U(1) symmetry in semi-magic nuclei 

[Arthuis, Tichai et al.] 

[Tichai et al., 2016] 

o How does BMBPT performs in open-shell compares with MBPT [Tichai et al.] in closed-shell nuclei? 

o How does BMBPT compares with MCPT [Tichai et al.] in mid-mass nuclei? 

 Implemented withSRG-evolved H 

 Cheaper than CC, SCGF, IMSRG 

 Convincing results at MBPT(2,3) 

[Somà et al., since 2011] 

o Many applications already 

o Similar to MR-IMSRG 

[Tichai et al., unpublished]  

o U(1) first 

o SU(2) later on 

o How does BMBPT compares with BCC in mid-mass nuclei? 

o How much the symmetry restoration impacts BMBPT and BCC? 
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Connection to Piotr’s lecture – technical comments 

MBPT within a (imaginary) time-dependent formalism 

Generalization of standard MBPT 

⦿ Equivalent for stationary states to time-independent approach used by Piotr 

 -Time-dependence is fictitious and disappears through time-integration from 0 to ∞ 

 -Interesting technical variant towards genuine time-dependent method 

⦿ Use of Feynman diagrams 

 -Explicit time variable that is integrated over 

 -Captures many time orderings at once corresponding to a whole set of Goldstone diagrams 

 -See talk by P. Arthuis on Thursday for in-depth considerations about that 

⦿ Time flows from bottom to top (as opposed to left-to-right in Piotr’s Goldstone diagrams) 

⦿ Allows the reference state to break symmetry of H (U(1) global gauge symmetry today) 

 -Symmetry-unrestricted algebra that cannot exploit symmetry degeneracy 

⦿ Further restores the broken symmetry at the same time 

 -Insertion of symmetry projection operator 

 -Generalizes the diagrammatics 

 -Provides a multi-reference character through N different single-reference calculations 



U(1) global gauge symmetry 

Unitary representation of Abelian compact Lie group on Fock space 

Stationary eigenstates 

Definition of irreducible representations 

Tensor operators and eigenstates 

Symmetry of the physical system 

Particle-number operator 

Infinitesimal generator of the group 

Orthogonality of irreducible representations 



U(1) breaking and projection 

Particle-number projection operator 

Particle-number conserving states, i.e. states belonging to HA 

Particle number projection 

Exact eigenstates of H: Slater determinants:  

Particle-number breaking states 

General states on Fock space: 

Extracts component in HA 
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Bogoliubov reference state and rotated partner 

Bogoliubov transformation Bogoliubov state 

Gauge-rotated partner 

Quasi-particle excitations  

Breaks U(1) symmetry 

Vacuum state 
Reduces to SD in HA if V=0 

unitary, i.e. 

Thouless transformation 

Elementary off-diagonal contractions 

Thouless matrix                  = known function of (U,V,j) 
, i.e. when 

One non-zero diagonal contraction 

Orthonormal basis of Fock space 

Reduces to npnh excit. in HA if V=0 



Key operators 

Nuclear Hamiltonian Particle number 

Grand potential 

Chemical potential 

Controls the average particle number in the system  

As we work in Fock space 

Genuine three-body interaction / six-legs vertex 

Makes diagrammatic more involved  



Normal-ordered operators 

Normal ordering w.r.t. Bogoliubov vacuum 

NO2B approximation 

1-3% error in closed shell 
[R. Roth et al., PRL 109 (2012) 052501] 

Each                is a fully anti-symmetric 
 

 

 

    function of  

 

Similarly for H and A 

2-body like operators only 

Captures essential of 3-body 

Diagrammatics with 2-body 



Symmetry-projected many-body method 

Project g.s. eigenvalue equations onto 

Standard many-body methods as sub-cases 

Expanded projector 

Bogoliubov state 

To be expanded around the same Bogoliubov state 

Off-diagonal kernels 

Rotated Bogoliubov state 

=collective transformation 

Encode fingerprint of gauge transformation 

PA superfluous in exact limit but not after expansion/truncation 

Integral over the group extracts 

component with correct A 

even after truncation 

Exact known result to be obtained 

at any truncation order 

1) Reference Slater determinant = PA altogether superfluous: MBPT, CC 

2) Only break but do not restore = PA omitted: BMBPT, BCC 

a) Diagonal kernels only 

b) Norm kernel easily dealt with (IN)  

(See BMBPT talk by P. Arthuis on Thursday) Non-trivial norm kernel to be dealt with 
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Time-dependent formalism 

Imaginary-time evolution operator Time-dependent state and ground state 

Ground-state off-diagonal kernels 

Time-dependent off-diagonal kernels 

in the numerators are the quantities to be expanded 

Many-body expansion 

in the denominators are particular cases of the above  

Intermediate normalization  



Set up of perturbation theory 

Partitioning of the grand potential 

Unperturbed basis ~0 

a b i-1 j-1 

k1 k2 k3 k4 

>0 

Bogoliubov vacuum 

Slater determinant 

Particle-number breaking Bogoliubov unpertubed reference state 

>0  Non-degenerate reference state 

Unperturbed grand potential 

How to pick 

 1) the Ek? 

 2) the bk ; i.e | F > or (U,V)?  



Hartree-Fock-Bogoliubov reference state 

Ritz variational problem with a Bogoliubov ansatz (extension of Hartree-Fock)  

HFB eigenvalue equation  

Minimize                                      while keeping 1) the Bogoliubov transformation unitary 

2) the particle number fixed on average  

with  

Quasi-particle energies > 0 Fully characterize 

Canonical diagrams only (extension of Moller-Plesset to (symmetry-projected) BMBPT)  



Unperturbed off-diagonal propagators 

Quasi-particle operators in interaction representation 

Four propagators in quasi-particle space 

Carries full j dependence 

Null for j=0  

Normal propagator 

Normal propagator 

Anomalous propagator 

Anomalous propagator No two qp-creation prop. 

Time-ordering operator 

Equal-time propagators 

1) Only non-zero equal-time propagator is anomalous 

2) No self-contraction onto a given vertex for j=0 



Perturbative expansion of N(t,j) = < F | U(t) | F(j) > 

Evolution operator with 

Off-diagonal norm kernel 

Off-diagonal matrix elements of strings of quasi-particle operators 

0th order 1st order 2nd order 

Off-diagonal Wick’s theorem [R. Balian and E. Brézin, Nuovo Cimento 64, 37 (1969)] 

Order-p matrix element 

Normal-ordered operator with i1 (j1) b
+ (b) operators 

W1 contains terms with 2/4 qp operators 

(only with 4 if HFB reference state) 



Diagrammatic representation of building blocks 

Canonical representation of normal-ordered operators 

Elementary propagators 

How to depart from canonical representation 

Example given for W 

Similarly for other operators, e.g. H or A, with different vertices 



Diagrammatic rules 

Norm kernel at order p 

1) All topologically distinct vacuum-to-vacuum Feynman diagrams with p operators Wikjk(tk) 

2) Normal and anomalous contractions allowed (only anomalous ones closed onto a vertex) 

3) Sign (-1)p+n
 with n = number of crossing lines in the diagram 

4) Factor 1/ne! for each group of ne equivalent lines (same type of propagators!) 

5) Factor 1/2 for each anomalous line closed onto a vertex 

6) Symmetry factor 1/ns for exchanges of time labels giving topologically equivalent diagrams 

7) Normal lines linking two vertices must propagate in the same direction 

8) As G++(j) = 0, the number of anomalous contractions is 

9)  Sum over all quasi-particle and all time labels from 0 to t 

na = 0 for diagonal kernels (j = 0) 



Diagrammatic expansion of N(t,j) 

Exponentiation of connected diagrams 

Symmetry factor 

Each diagram is decomposed into its connected parts 

Diagrams with any number of all possible connected parts exhaust the sum 

with                                            the connected diagrams 

The only ones that need to be computed 

Gauge-angle dependence 

The logarithm of the norm is size extensive 

Diagrams with no anomalous contraction 

Finite when t → ∞ 

Null for j = 0 =1 for j = 0 

Intermediate normalization for j = 0 



Diagrams of n(t,j) to second order 

1st order 

2nd order 

Only contributions to j = 0 

Carry the j dependence 

Null for HFB reference state 

18 diagrams 

  2 diagrams 

15 diagrams 

  8 diagrams 



Algebraic expression of n(t,j) to second order 

PN.6: example of diagram contributing to n(t,0) 

PN.8: example of diagram with genuine j dependence  

Two right lines are now anomalous (na=2) 

The lowest vertex has changed accordingly   

Null for j = 0 



Perturbative expansion of  W(t,j) = < F | U(t) W | F(j) > 

Off-diagonal operator kernel 
Difference with norm kernel: presence of the (time-independent) operator  

0th order 1st order 

Put at fixed time 0 to be inserted in time-ordering at no cost 

Factorization of disconnected pieces 
All vacuum-to-vacuum diagrams of order n 

Only vacuum-to-vacuum diagrams of order n linked to W(0) 

Norm kernel factorizes in operator kernel 



Diagrams of w(t,j) to first order 

0th order 

1st order 

Only contributions to j = 0 

Carry the j dependence 

Null for HFB reference state 

20 diagrams 

  3 diagrams 

17 diagrams 

  9 diagrams 

Bottom vertex is here at fixed time 0 



Algebraic expression of w(t,j) to first order 

PE.7: example of diagram contributing to w(t,0) 

PE.9: example of diagram with genuine j dependence  

Null for j = 0 

Lowest vertex at fixed time 0 

Standard « second »-order MBPT correction based on a Bogoliubov reference state 



Relation between N(t,j) and A(t,j) 

First-order differential equation for N(t,j)  

Ensures exact restoration of good particle number  

Direct expansion 

Vacuum-to-vacuum diagrams linked to operator A 

Connected vacuum-to-vacuum diagrams of the norm 

Perturbation theory 

Indeed valid order by order 

Closed-form solution 

Independently of truncation of a(t,j)! 



Summing up 

Particle-number restored quantities 

1) Compute at order p via off-diagonal BMBPT at each angle j 

2) Compute from a(j) at order p (first equation valid by construction) 

3) Integrate over (discretized) j 

Symmetry-broken BMBPT at j = 0 

Projected HFB recovered at lowest order 

Subset of diagrams at j = 0 

(See BMBPT talk by P. Arthuis on Thursday) 

where 

PHFB 



Summing up 

Particle-number restored quantities 

[T. Duguet, J. Phys. G: Nucl. Part. Phys. 42 (2015) 025107] 

[T. Duguet, A. Signoracci, J. Phys. G: Nucl. Part. Phys. 44 (2016) 015103] 

[Y. Qiu, T. M. Henderson, J. Zhao, G. E. Scuseria, J. Chem. Phys. 147, 064111 (2017)] 

[T. Duguet, Y. Qiu, T. M. Henderson, J. Zhao, G. E. Scuseria, unpublished] 

Coupled-cluster formulation also available 

with 

ODE for j dependence of amplitudes 

CC expansion of operator kernels 

where 

1) Compute at order p via off-diagonal BMBPT at each angle j 

2) Compute from a(j) at order p (first equation valid by construction) 

3) Integrate over (discretized) j 
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○ How many bound (w.r.t strong force) nuclei exist; 9000?  ○ Heaviest possible element?  

○ How have heavier elements been produced? 

○ Where is the neutron drip-line beyond Z=8? 

○ Are magic numbers the same for unstable nuclei? 

[figure from Bazin 2012] 

○ 254 stable isotopes, ~3100 synthesised in the lab ○ Heaviest synthesized element Z=118 

○ Over-stable "magic" nuclei (2, 8, 20, 28, 50, 82, …) 

○ Neutron drip-line known up to Z=8 (16 neutrons) 

○ Elements up to Fe produced in stellar fusion 

○ Enhanced stability near Z=120? 

○ Are there more exotic decay modes? 

○ Modes of instability (a, b, g decays, fission) 



Ab initio many-body problem 

A-body Hamiltonian 
A-body wave-function 

5 variables x A nucleons  

⦿ A structure-less nucleons 
⦿ All nucleons active in full Hilbert space HA 

⦿ Elementary interactions between them 

⦿ Solve A-body Schroedinger equation (SE) 

⦿ Thorough estimate of error 

Do we know the form of V2N, V3N etc 

Do we know how to derive them from QCD? 

Why would there be forces beyond pairwise? 

Do we need all the terms up to AN forces? 

Can we solve the SE with relevant accuracy? 

Can we do it for any A=N+Z? 

Is it even reasonable for A=200 to proceed this way? 

More effective approaches needed? 

Modeling SE Data 

Feedback 

Definition 

Hamiltonian Schroedinger equation 

1 2 3 

4 

Ab initio (= “from scratch”) many-body scheme 



⦿ “Exact” ab initio approaches 

○ Since 1980’s 

○ GFMC, NCSM, … 

○ Factorial scaling 

2005 

Evolution of ab initio nuclear chart 

Filling of nuclear shells 
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132Sn 

Average potential 

Doubly-magic nuclei 



2010 

Evolution of ab initio nuclear chart 

⦿ “Exact” methods 

○ Since 1980’s 

○ Factorial scaling 

○ Monte Carlo, CI, … 

⦿ Approximate methods for doubly closed-shells 

○ Since 2000’s 

○ MBPT, SCGF, CC, IMSRG 

○ Polynomial scaling 



Evolution of ab initio nuclear chart 

2013 

⦿ “Exact” methods 

○ Since 1980’s 

○ Factorial scaling 

○ Monte Carlo, CI, … 

⦿ Approximate methods for doubly closed-shells 

○ Since 2000’s 

○ MBPT, SCGF, CC, IMSRG 

○ Polynomial scaling 

⦿ Approximate methods for singly open-shell 

○ Since 2010’s 

○ BMBPT, GGF, BCC, MR-IMSRG, MCPT 

○ Polynomial scaling 



Coupled cluster, (self consistent Green’s function), In-medium similarity renormalization group 

Two strategies to deal with symmetries of H (e.g. SU(2)) 

B. Allowed to break at low order before being restored = symmetry-broken and -restored methods 

Symmetry-conserving wave operator 

⦿ Diagonalization methods 

⦿ Imaginary time propagation 

⦿ Expansion methods 

⦿ Expansion methods 

A. Enforced throughout = symmetry-conserving methods 

No core shell model (CI) 

Green’s function monte carlo 

Coupled cluster, self consistent Green’s function, In-medium similarity renormalization group 

Symmetry-conserving basis expansion 

Symmetry-conserving reference state 

Symmetry-broken wave operator 

Symmetry-breaking reference state 

Explicit symmetry restoration 

But why breaking (+ restoring) symmetries, e.g. SU(2) and/or U(1)? (focus on U(1), i.e. singly open shell, today)   
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Emergent symmetry breaking in quantum finite systems 

Invariance Group | YX > 

Gauge rotation U(1) N,Z 

Spatial rotation SU(2) J,M 

Correlations DE Excitation All nuclei… 

Pairing <2MeV Gap …but doubly magic 

Angular local. <20MeV Rot. band …but singly magic 

Symmetries of H Symmetry breaking mean-field (HFB) 

Order 

parameter 

Symmetry-restored mean-field (HFB) 

| YX > DE Excitations 

N,Z ~1MeV Pair rot. 

J,M ~2MeV Rot. band 

[M. Bender, private communication] 

SU(2) 

But missing correlations beyond mean field here, i.e. from wave operator W 

Emergent 

o Cannot be anticipated from dof + H 

o Is not fully realized 

Spontaneous breaking 

o GS has lower symmetry than H  

o GS = wave packet mixing IRREPs 

o Goldstone boson = rotations 

o Higgs modes = vibrations 

Finite system = breaking only emergent 

o Symmetry is actually enforced 

o Lower symmetry imprints excitations 

1) 

2) 

DE 

DE 



Projective method Expectation-value method 

Time-independent eigenvalue equations 

Projective and symmetric many-body methods 

Fully correlated state itself  Simple, e.g. uncorrelated, state 
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Equivalent in exact limit 

Not after truncation 

Ex: MBPT, CC… Ex: SCGF, LCC… 

Real for E at each MBPT order 

Not (necessarily) true for A 

Can be symmetrized prior to expansion 



… and for SU(2) 

Correspondence table 

[T. Duguet, J. Phys. G: Nucl. Part. Phys. 42 (2015) 025107] 

[Y. Qiu, T. M. Henderson, J. Zhao, and G. E. Scuseria, J. Chem. Phys. 147, 064111 (2017)] 


