Symmetry broken\&restored MBPT

to deal with (near-)degenerate finite many-fermion systems, e.g. open-shell nuclei


```
T. Duguet, J. Phys. G: Nucl. Part. Phys. 42 (2015) 025107
T. Duguet, A. Signoracci, J. Phys. G: Nucl. Part. Phys. 44 (2016) 015103
```


Thomas DUGUET

```
CEA/SPhN, Saclay, France IKS, KU Leuven, Belgium NSCL, Michigan State University, USA
```

ESNT workshop, CEA-Saclay, France, March 26th $-30^{\text {th }} 2018$

Contents

O Introduction

- Nuclear chart and ab initio methods
- Why breaking symmetries?
- On-going developments and projects in this direction
© Symmetry broken\&restored Bogoliubov many-body perturbation theory
- Generalities
- Set up of the formalism
- Perturbation theory and diagrammatic representations

○ Conclusions

Contents

O Introduction

- Nuclear chart and ab initio methods
- Why breaking symmetries?
- On-going developments and projects in this direction
© Symmetry broken\&restored Bogoliubov many-body perturbation theory
- Generalities
- Set up of the formalism
- Perturbation theory and diagrammatic representations
© Conclusions

(Non) closed-shell character of nuclear ground states

Ab initio nuclear chart

© Approximate methods for doubly closed-shells - Since 2000's

- MBPT, SCGF, CC, IMSRG
- Polynomial scaling
© Approximate methods for singly open-shell - Since 2010's
- BMBPT, GGF, BCC, MR-IMSRG, MCPT
- Polynomial scaling

O Hybrid methods (ab initio shell model)

- Since 2014
- Effective interaction via CC/IMSRG
- Mixed scaling
© "Exact" methods
- Since 1980's
- Monte Carlo, CI, ...
- Factorial scaling

Contents

O Introduction

- Nuclear chart and ab initio methods
- Why breaking symmetries?
- On-going developments and projects in this direction
© Symmetry broken\&restored Bogoliubov many-body perturbation theory
- Generalities
- Set up of the formalism
- Perturbation theory and diagrammatic representations

O Conclusions

(Near-)degenerate systems via expansion methods

© Expansions around one determinant capture dynamical correlations via sums of ph excitations
© Open-shell (sub-closed shell) nuclei are (near-)degenerate with respect to ph excitations

open-shell
E.g. consider $\operatorname{MBPT}(2) \Delta E^{(2)}=-\frac{1}{4} \sum \frac{\left|\bar{v}_{a b i j}\right|^{2}}{e_{a}+e_{b}-e_{i}-e_{j}} \quad$ Expansion breaks down when $e_{a}+e_{b} \approx e_{i}+e_{j}$ Signals important non-dynamical correlations
© Possible ways out

E.g. consider $\operatorname{MBPT}(2) \Delta E=-\frac{1}{4} \sum_{a b i j} \frac{e_{a}+e_{b}-e_{i}-e_{j}}{e^{2}}$
e.g. superfluidity of open-shell nuclei
$>$ High-order non-perturbative single-determinant method if near-degeneracy = slow convergence
> Multi-reference/configuration methods, e.g. MR-MBPT, MR-CC, MR-IMSRG, MCPT ${ }^{\text {To be compared }}$
$>$ Expand around a symmetry-breaking determinantal reference state (non-perturbative)
$\stackrel{ }{ } \rightarrow$ Lifts the degeneracy, e.g. BMBPT(2) breaking $U(1)$

$$
\Delta E^{(2)}=-\frac{1}{4!} \sum_{k_{1} k_{2} k_{3} k_{4}} \frac{\left|\Omega_{k_{1} k_{2} k_{3} k_{4}}^{40}\right|^{2}}{E_{k_{1}}+E_{k_{2}}+E_{k_{3}}+E_{k_{4}}}>0
$$

Contents

O Introduction

- Nuclear chart and ab initio methods
- Why breaking symmetries?
- On-going developments and projects in this direction
© Symmetry broken\&restored Bogoliubov many-body perturbation theory
- Generalities
- Set up of the formalism
- Perturbation theory and diagrammatic representations
© Conclusions

Single-determinantal many-body methods and symmetries

Nuclear Many-Body Methods


```
Nonperturbative methods
```

Open shells Restored sym.\quadOpen shells Broken sym.\quadClosed shells Conserved sym.

Single-determinantal many-body methods and symmetries

Nuclear Many-Body Methods


```
Nonperturbative methods
```


\section*{

Recently -implemented -proposed
[Somà et al. 2011] [Signoracci et al. 2014]

Single-determinantal many-body methods and symmetries

Nuclear Many-Body Methods


```
Perturbation theory
```

Nonperturbative methods

Recently -implemented -proposed
[Somà et al. 2011] [Signoracci et al. 2014]

Recently proposed
[Duguet 2015] for SU(2)
[Duguet, Signoracci 2016] for U(1)
[Qiu et al. 2017] for SU(2)

On-going projects: deal with $U(1)$ symmetry in semi-magic nuclei

Nuclear Many-Body Methods

| Open shells
 Restored sym. | Open shells
 Broken sym. |
| :---: | :---: | | Closed shells |
| :---: |
| Conserved sym. |

Nonperturbative methods

- How does BMBPT performs in open-shell compares with MBPT [Tichai et al.] in closed-shell nuclei?
- How does BMBPT compares with MCPT [Tichai et al.] in mid-mass nuclei?
- How does BMBPT compares with BCC in mid-mass nuclei?
- How much the symmetry restoration impacts BMBPT and BCC?

Contents

O Introduction

- Nuclear chart and ab initio methods
- Why breaking symmetries?
- On-going developments and projects in this direction
© Symmetry broken\&restored Bogoliubov many-body perturbation theory
- Generalities
- Set up of the formalism
- Perturbation theory and diagrammatic representations
© Conclusions

Connection to Piotr's lecture - technical comments

MBPT within a (imaginary) time-dependent formalism

© Equivalent for stationary states to time-independent approach used by Piotr
-Time-dependence is fictitious and disappears through time-integration from 0 to ∞
-Interesting technical variant towards genuine time-dependent method
© Use of Feynman diagrams
-Explicit time variable that is integrated over
-Captures many time orderings at once corresponding to a whole set of Goldstone diagrams
-See talk by P. Arthuis on Thursday for in-depth considerations about that
© Time flows from bottom to top (as opposed to left-to-right in Piotr's Goldstone diagrams)

Generalization of standard MBPT

© Allows the reference state to break symmetry of $\mathrm{H}(\mathrm{U}(1)$ global gauge symmetry today)
-Symmetry-unrestricted algebra that cannot exploit symmetry degeneracy
© Further restores the broken symmetry at the same time
-Insertion of symmetry projection operator
-Generalizes the diagrammatics
-Provides a multi-reference character through N different single-reference calculations

$\mathrm{U}(1)$ global gauge symmetry

Unitary representation of Abelian compact Lie group on Fock space

$$
U(1) \equiv\left\{S(\varphi) \equiv e^{i A \varphi}, \varphi \in[0,2 \pi]\right\}
$$

Symmetry of the physical system

$$
[H, S(\varphi)]=[A, S(\varphi)]=0
$$

Definition of irreducible representations

$$
\left\langle\Psi_{\mu}^{\mathrm{A}}\right| S(\varphi)\left|\Psi_{\mu^{\prime}}^{\mathrm{A}^{\prime}}\right\rangle \equiv e^{i \mathrm{~A} \varphi} \delta_{\mathrm{AA}^{\prime}} \delta_{\mu \mu^{\prime}}
$$

Orthogonality of irreducible representations

$$
\frac{1}{2 \pi} \int_{0}^{2 \pi} d \varphi e^{-i \mathrm{~A} \varphi} e^{+i \mathrm{~A}^{\prime} \varphi}=\delta_{\mathrm{AA}^{\prime}}
$$

Stationary eigenstates

$$
\begin{aligned}
& A\left|\Psi_{\mu}^{\mathrm{A}}\right\rangle=\mathrm{A}\left|\Psi_{\mu}^{\mathrm{A}}\right\rangle \\
& H\left|\Psi_{\mu}^{\mathrm{A}}\right\rangle=\mathrm{E}_{\mu}^{\mathrm{A}}\left|\Psi_{\mu}^{\mathrm{A}}\right\rangle
\end{aligned}
$$

Tensor operators and eigenstates

$$
\begin{aligned}
S(\varphi) O S(\varphi)^{-1} & =e^{i \mathrm{~A} \varphi} O \\
S(\varphi)\left|\Psi_{\mu}^{A}\right\rangle & =e^{i \mathrm{~A} \varphi}\left|\Psi_{\mu}^{\mathrm{A}}\right\rangle
\end{aligned}
$$

$\mathrm{U}(1)$ breaking and projection

Particle-number conserving states, i.e. states belonging to \mathscr{H}_{A} Exact eigenstates of $\mathrm{H}:\left|\Psi_{\mu}^{\mathrm{A}}\right\rangle \quad$ Slater determinants: $\quad\left|\Phi^{\mathrm{A}}\right\rangle=\prod_{i=1}^{\mathrm{A}} a_{i}^{\dagger}|0\rangle$

Particle-number breaking states
General states on Fock space: $|\Phi\rangle \quad \lambda|\Phi\rangle \neq \mathrm{A}|\Phi\rangle \quad \int(\varphi)|\Phi\rangle \equiv|\Phi(\varphi)\rangle \neq e^{i \mathrm{~A} \varphi}|\Phi\rangle$
Particle-number projection operator

$$
P^{\mathrm{A}} \equiv \frac{1}{2 \pi} \int_{0}^{2 \pi} d \varphi e^{-i \mathrm{~A} \varphi} \underline{S(\varphi)}
$$

$$
\begin{aligned}
P^{\mathrm{A} \dagger} & =P^{\mathrm{A}} \\
\left(P^{\mathrm{A}}\right)^{2} & =P^{\mathrm{A}} \\
{\left[H, P^{\mathrm{A}}\right] } & =\left[A, P^{\mathrm{A}}\right]=0
\end{aligned}
$$

Particle number projection
$|\Phi\rangle \equiv \sum_{\mathrm{A}^{\prime} \in \mathbb{N}} c_{\mathrm{A}^{\prime}}\left|\Theta^{\mathrm{A}^{\prime}}\right\rangle \nabla P^{\mathrm{A}}|\Phi\rangle \equiv \sum_{\mathrm{A}^{\prime} \in \mathbb{N}} \frac{c_{\mathrm{A}^{\prime}}}{2 \pi}\left|\Theta^{\mathrm{A}^{\prime}}\right\rangle \underbrace{\int_{0}^{2 \pi} d \varphi e^{-i\left(\mathrm{~A}-\mathrm{A}^{\prime}\right) \varphi}}_{2 \pi \delta_{\mathrm{AA}^{\prime}}}=c_{\mathrm{A}} \overbrace{\left.\Theta^{\mathrm{A}}\right\rangle}^{\left.\mathrm{A}^{\mathrm{A}}\right\rangle}$

Contents

O Introduction

- Nuclear chart and ab initio methods
- Why breaking symmetries?
- On-going developments and projects in this direction
© Symmetry broken\&restored Bogoliubov many-body perturbation theory
- Generalities
- Set up of the formalism
- Perturbation theory and diagrammatic representations
© Conclusions

Bogoliubov reference state and rotated partner

Bogoliubov transformation

$$
\begin{aligned}
& \beta_{k}=\sum_{p} U_{p k}^{*} c_{p}+V_{p k}^{*} c_{p}^{\dagger} \\
& \beta_{k}^{\dagger}=\sum_{p} U_{p k} c_{p}^{\dagger}+V_{p k} c_{p}
\end{aligned}
$$

Bogoliubov state
$|\Phi\rangle \equiv C \prod_{k} \beta_{k}|0\rangle$
$\beta_{k}|\Phi\rangle=0 \quad \forall k$

$$
\left\{\beta_{k}, \beta_{k^{\prime}}\right\}=0 \quad \begin{aligned}
& \text { Vacuum state } \\
& \text { Reduces to } \mathrm{SD} \text { in } \mathscr{H}_{\mathrm{A}} \text { if } \mathrm{V}=0
\end{aligned}
$$

$\mathcal{W}=\left(\begin{array}{ll}U & V^{*} \\ V & U^{*}\end{array}\right)$ unitary, i.e. $\left\{\beta_{k}^{\dagger}, \beta_{k^{\prime}}^{\dagger}\right\}=0$

$$
\left\{\beta_{k}, \beta_{k^{\prime}}^{\dagger}\right\}=\delta_{k k^{\prime}}
$$

Gauge-rotated partner

$$
|\Phi(\varphi)\rangle \equiv\langle\Phi \mid \Phi(\varphi)\rangle e^{\left[\frac{1}{2} \sum_{k_{1} k_{2}} Z_{k_{1} k_{2}}^{20}(\varphi) \beta_{k_{1}}^{\dagger} \beta_{k_{2}}^{\dagger}\right]}|\Phi\rangle
$$

Thouless transformation

Thouless matrix $Z_{k_{1} k_{2}}^{20}(\varphi)=$ known function of $(\mathrm{U}, \mathrm{V}, \varphi)$

Breaks U(1) symmetry

$$
A|\Phi\rangle \neq \mathrm{A}|\Phi\rangle
$$

Quasi-particle excitations

$$
\left|\Phi^{\alpha \beta \ldots}\right\rangle \equiv \beta_{\alpha}^{\dagger} \beta_{\beta}^{\dagger} \ldots|\Phi\rangle
$$

Orthonormal basis of Fock space

Elementary offediaggnal_contractions ${ }_{\mathrm{f}}^{\mathrm{V}=0}$

$$
\begin{aligned}
\mathbf{R}(\varphi) & =\left(\begin{array}{cc}
\frac{\langle\Phi| \beta^{\dagger} \beta|\Phi(\varphi)\rangle}{\langle\mid \Phi(\varphi)\rangle} & \frac{\langle\Phi| \beta \beta|\Phi(\varphi)\rangle}{\langle\Phi \mid \Phi(\varphi)\rangle} \\
\frac{\langle\Phi| \beta^{\dagger} \beta^{\dagger}|\Phi(\varphi)\rangle}{\langle\Phi \mid \Phi(\varphi)\rangle} & \frac{\langle\Phi| \beta \beta^{\dagger}|\Phi(\varphi)\rangle}{\langle\Phi \mid \Phi(\varphi)\rangle}
\end{array}\right) \\
& \equiv\left(\begin{array}{ll}
R^{+-}(\varphi) & R^{--}(\varphi) \\
R^{++}(\varphi) & R^{-+}(\varphi)
\end{array}\right) \\
& =\left(\begin{array}{c}
0 \\
0
\end{array} \frac{-Z^{20}(\varphi)}{1}\right) \\
& Z^{20}(0)=0 \text {, i.e. when }|\Phi(0)\rangle=|\Phi\rangle
\end{aligned}
$$

One non-zero diagonal contraction

Key operators

Nuclear Hamiltonian

$$
\left.\begin{array}{rl}
H \equiv & \frac{1}{(1!)^{2}} \sum_{p q} t_{p q} c_{p}^{\dagger} c_{q} \\
& +\frac{1}{(2!)^{2}} \sum_{p q r s} \bar{v}_{p q r s} c_{p}^{\dagger} c_{q}^{\dagger} c_{s} c_{r} \\
& +\frac{1}{(3!)^{2}} \sum_{p q r s t u} \bar{w}_{p q r s t u} c_{p}^{\dagger} c_{q}^{\dagger} c_{r}^{\dagger} c_{u} c_{t} c_{s}
\end{array}\right]
$$

Particle number

$$
A \equiv \sum_{p} c_{p}^{\dagger} c_{p}
$$

Genuine three-body interaction / six-legs vertex Makes diagrammatic more involved

Grand potential

$\Omega \equiv H-\underline{\lambda} A \longrightarrow$ As we work in Fock space
Chemical potential

Normal-ordered operators

Normal ordering w.r.t. Bogoliubov vacuum

$$
\begin{aligned}
\Omega & \equiv \Omega^{[0]}+\Omega^{[2]}+\Omega^{[4]}+\Omega^{[6]} \\
& =\Omega^{00}+\frac{1}{1!} \sum_{k_{1} k_{2}} \Omega_{k_{1} k_{2}}^{11} \beta_{k_{1}}^{\dagger} \beta_{k_{2}}
\end{aligned}
$$

$$
+\frac{1}{2!} \sum_{k_{1} k_{2}}\left\{\Omega_{k_{1} k_{2}}^{20} \beta_{k_{1}}^{\dagger} \beta_{k_{2}}^{\dagger}+\Omega_{k_{1} k_{2}}^{02} \beta_{k_{2}} \beta_{k_{1}}\right\}
$$

$$
+\frac{1}{(2!)^{2}} \sum_{k_{1} k_{2} k_{3} k_{4}} \Omega_{k_{1} k_{2} k_{3} k_{4}}^{22} \beta_{k_{1}}^{\dagger} \beta_{k_{2}}^{\dagger} \beta_{k_{4}} \beta_{k_{3}}
$$

$$
+\frac{1}{3!} \sum_{k_{1} k_{2} k_{3} k_{4}}\left\{\Omega_{k_{1} k_{2} k_{3} k_{4}}^{31} \beta_{k_{1}}^{\dagger} \beta_{k_{2}}^{\dagger} \beta_{k_{3}}^{\dagger} \beta_{k_{4}}+\Omega_{k_{1} k_{2} k_{3} k_{4}}^{13} \beta_{k_{1}}^{\dagger} \beta_{k_{4}} \beta_{k_{3}} \beta_{k_{2}}\right\}
$$

$$
\begin{equation*}
+\frac{1}{4!} \sum_{k_{1} k_{2} k_{3} k_{4}}\left\{\Omega_{k_{1} k_{2} k_{3} k_{4}}^{40} \beta_{k_{1}}^{\dagger} \beta_{k_{2}}^{\dagger} \beta_{k_{3}}^{\dagger} \beta_{k_{4}}^{\dagger}+\Omega_{k_{1} k_{2} k_{3} k_{4}}^{04} \beta_{k_{4}} \beta_{k_{3}} \beta_{k_{2}} \beta_{k_{1}}\right\} \tag{6}
\end{equation*}
$$

Symmetry-projected many-body method

Project g.s. eigenvalue equations onto $|\Theta\rangle \equiv P^{\mathrm{A}}|\Phi\rangle$
Expanded projector

$$
\begin{aligned}
\mathrm{A} & =\frac{\left\langle\Psi_{0}^{\mathrm{A}}\right| A P^{\mathrm{A}}|\Phi\rangle}{\left\langle\Psi_{0}^{\mathrm{A}}\right| P^{\mathrm{A}}|\Phi\rangle} \\
\mathrm{E}_{0}^{\mathrm{A}} & =\frac{\begin{array}{l}
\text { Exact known result to be obtained } \\
\text { at any truncation order }
\end{array}}{\left\langle\begin{array}{l}
\text { Integral over the group extracts }
\end{array}\right.}=\frac{\int_{0}^{2 \pi} d \varphi e^{-i \mathrm{~A} \varphi} \mathcal{A}(\varphi)}{\left\langle\Psi_{0}^{\mathrm{A}}\right| H P^{\mathrm{A}}|\Phi\rangle} \begin{array}{l}
\begin{array}{l}
\text { component with correct A } \\
\text { even after truncation }
\end{array} \\
\underbrace{2 \pi}_{\text {Bogoliubov state }} d \varphi e^{-i \mathrm{~A} \varphi} \mathcal{N}(\varphi)
\end{array} \mathrm{E}_{0}^{\mathrm{A}}=\frac{\int_{0}^{2 \pi} d \varphi e^{-i \mathrm{~A} \varphi} \mathcal{H}(\varphi)}{\int_{0}^{2 \pi} d \varphi e^{-i \mathrm{~A} \varphi} \mathcal{N}(\varphi)}
\end{aligned}
$$

To be expanded around the same Bogoliubov state
P^{A} superfluous in exact limit but not after expansion/truncation
Standard many-body methods as sub-cases

1) Reference Slater determinant $=P^{A}$ altogether superfluous: $M B P T, C C$

$$
\mathrm{E}_{0}^{\mathrm{A}}=\left\langle\Psi_{0}^{\mathrm{A}}\right| H\left|\Phi^{\mathrm{A}}\right\rangle
$$

2) Only break but do not restore $=\mathrm{P}^{\mathrm{A}}$ omitted: $\mathrm{BMBPT}, \mathrm{BCC}$

$$
\begin{aligned}
\mathrm{A} & =\left\langle\Psi_{0}^{\mathrm{A}}\right| A|\Phi\rangle \\
\mathrm{E}_{0}^{\mathrm{A}} & =\left\langle\Psi_{0}^{\mathrm{A}}\right| H|\Phi\rangle
\end{aligned}
$$

a) Diagonal kernels only
(See BMBPT talk by P. Arthuis on Thursday)

Off-diagonal kernels

$$
\mathcal{N}(\varphi) \equiv\left\langle\Psi_{0}^{\mathrm{A}} \mid \Phi(\varphi)\right\rangle
$$

$$
\mathcal{H}(\varphi) \equiv\left\langle\Psi_{0}^{\mathrm{A}}\right| H|\Phi(\varphi)\rangle
$$

$$
\mathcal{A}(\varphi) \equiv\left\langle\Psi_{0}^{\mathrm{A}}\right| A|\Phi(\varphi)\rangle
$$

Encode fingerprint of gauge transformation
Non-trivial norm kernel to be dealt with

Contents

O Introduction

- Nuclear chart and ab initio methods
- Why breaking symmetries?
- On-going developments and projects in this direction
© Symmetry broken\&restored Bogoliubov many-body perturbation theory
- Generalities
- Set up of the formalism
- Perturbation theory and diagrammatic representations
© Conclusions

Time-dependent formalism

Imaginary-time evolution operator

$$
\mathcal{U}(\tau) \equiv e^{-\tau \Omega}
$$

$$
\begin{aligned}
& |\Psi(\tau)\rangle \equiv \frac{\mathcal{U}(\tau)|\Phi\rangle}{\langle\Phi| \mathcal{U}(\tau)|\Phi\rangle} \\
& \text { Intermediate normalization }
\end{aligned}
$$

Time-dependent off-diagonal kernels

$$
\begin{array}{ll}
\mathcal{N}(\varphi)=\lim _{\tau \rightarrow \infty} \mathcal{N}(\tau, \varphi) & \\
\mathcal{H}(\varphi)=\lim _{\tau \rightarrow \infty} \mathcal{H}(\tau, \varphi) & \mathcal{N}(\tau, \varphi) \equiv\langle\Psi(\tau) \mid \Phi(\varphi)\rangle=\frac{\langle\Phi| \mathcal{U}(\tau)|\Phi(\varphi)\rangle}{\langle\Phi| \mathcal{U}(\tau)|\Phi\rangle} \equiv \frac{N(\tau, \varphi)}{N(\tau, 0)} \\
\mathcal{A}(\varphi)=\lim _{\tau \rightarrow \infty} \mathcal{A}(\tau, \varphi) & \mathcal{H}(\tau, \varphi) \equiv\langle\Psi(\tau)| H|\Phi(\varphi)\rangle=\frac{\langle\Phi| \mathcal{U}(\tau) H|\Phi(\varphi)\rangle}{\langle\Phi| \mathcal{U}(\tau)|\Phi\rangle} \equiv \frac{H(\tau, \varphi)}{N(\tau, 0)} \\
\text { Many-body expansion } & \mathcal{A}(\tau, \varphi) \equiv\langle\Psi(\tau)| A|\Phi(\varphi)\rangle=\frac{\langle\Phi| \mathcal{U}(\tau) A|\Phi(\varphi)\rangle}{\langle\Phi| \mathcal{U}(\tau)|\Phi\rangle} \equiv \frac{A(\tau, \varphi)}{N(\tau, 0)}
\end{array}
$$

$N(\tau, \varphi), H(\tau, \varphi), A(\tau, \varphi)$ in the numerators are the quantities to be expanded
$N(\tau, 0), H(\tau, 0), A(\tau, 0)$ in the denominators are particular cases of the above

Set up of perturbation theory

Partitioning of the grand potential

$\Omega=\Omega_{0}+\Omega_{1}$

$$
\left\{\begin{array}{c}
\Omega_{0} \equiv \Omega^{00}+\bar{\Omega}^{11} \xrightarrow[\text { Unperturbed grand potential }]{ } \Omega^{11} \equiv \sum_{k} \beta_{k} \text { with } E_{k}> \\
\Omega_{1} \equiv \Omega^{20}+\breve{\Omega}^{11}+\Omega^{02}+\Omega^{22}+\Omega^{31}+\Omega^{13}+\Omega^{40}+\Omega^{04} \\
\equiv \Omega^{11}-\bar{\Omega}^{11}
\end{array}\right.
$$

$\left[\Omega_{0}, S(\varphi)\right] \neq 0$ $\left[\Omega_{1}, S(\varphi)\right] \neq 0$

Unperturbed basis

$$
\Omega_{0}|\Phi\rangle=\Omega^{00}|\Phi\rangle
$$

$\Omega_{0}\left|\Phi^{k_{1} k_{2} \ldots}\right\rangle=[\Omega^{00}+\underbrace{E_{k_{1}}+E_{k_{2}}+\ldots}]\left|\Phi^{k_{1} k_{2} \ldots}\right\rangle$

```
How to pick
    1) the E}\mp@subsup{E}{k}{}\mathrm{ ?
    2) the }\mp@subsup{\beta}{\textrm{k}}{}\mathrm{ ; i.e | }\Phi>\mathrm{ or (U,V)?
```


Hartree-Fock-Bogoliubov reference state

Ritz variational problem with a Bogoliubov ansatz (extension of Hartree-Fock)
Minimize $\frac{\langle\Phi| \Omega|\Phi\rangle}{\langle\Phi \mid \Phi\rangle}=\Omega^{00}$ while keeping $\begin{aligned} & \text { 1) the Bogoliubov transformation unitary } \\ & \text { 2) the particle number fixed on average }\end{aligned}$
HFB eigenvalue equation
$\boldsymbol{\rightharpoonup}\left(\begin{array}{cc}h & \Delta \\ -\Delta^{*} & -h^{*}\end{array}\right) \underbrace{\binom{U_{k}}{V_{k}}}=E_{k}\binom{U_{k}}{V_{k}} \quad$ with $\quad \begin{aligned} & h_{p q} \equiv\langle\Phi|\left\{\left[c_{p}, \Omega\right], c_{q}^{\dagger}\right\}|\Phi\rangle \\ & \Delta_{p q} \equiv\langle\Phi|\left\{\left[c_{p}, \Omega\right], c_{q}\right\}|\Phi\rangle\end{aligned}$
Fully characterize $|\Phi\rangle \quad$ Quasi-particle energies > 0
$\boldsymbol{\rightharpoonup}\left(\begin{array}{cc}\Omega^{11} & \Omega^{20} \\ -\Omega^{20 *} & -\Omega^{11 *}\end{array}\right)=\mathcal{W}^{\dagger}\left(\begin{array}{cc}h & \Delta \\ -\Delta^{*} & -h^{*}\end{array}\right) \mathcal{W}=\left(\begin{array}{cc}E & 0 \\ 0 & -E\end{array}\right)$

$$
\begin{aligned}
& \Omega^{11}=\bar{\Omega}^{11}=\sum_{k} E_{k} \beta_{k}^{\dagger} \beta_{k} \\
& \breve{\Omega}^{11}=\Omega^{20}=\Omega^{02}=0
\end{aligned} \quad \square \begin{aligned}
& \Omega_{0} \equiv \Omega^{00}+\Omega^{11} \\
& \Omega_{1} \equiv \Omega^{22}+\Omega^{31}+\Omega^{13}+\Omega^{40}+\Omega^{04}
\end{aligned}
$$

Unperturbed off-diagonal propagators

Quasi-particle operators in interaction representation

$$
\beta_{k}(\tau) \equiv e^{+\tau \Omega_{0}} \beta_{k} e^{-\tau \Omega_{0}}=e^{-\tau E_{k}} \beta_{k}
$$

Four propagators in quasi-particle space

$$
\beta_{k}^{\dagger}(\tau) \equiv e^{+\tau \Omega_{0}} \beta_{k}^{\dagger} e^{-\tau \Omega_{0}}=e^{+\tau E_{k}} \beta_{k}^{\dagger}
$$

$$
\begin{aligned}
& \text { Time-ordering operator } \\
& G_{k_{1} k_{2}}^{+-(0)}\left(\tau_{1}, \tau_{2} ; \varphi\right) \equiv \frac{\langle\Phi| \mathrm{T}\left[\beta_{k_{1}}^{\dagger}\left(\tau_{1}\right) \beta_{k_{2}}\left(\tau_{2}\right)\right]|\Phi(\varphi)\rangle}{\langle\Phi \mid \Phi(\varphi)\rangle}=-e^{-\left(\tau_{2}-\tau_{1}\right) E_{k_{1}}} \theta\left(\tau_{2}-\tau_{1}\right) \delta_{k_{1} k_{2}} \quad \text { Normal propagator }
\end{aligned}
$$

$$
\begin{aligned}
& G_{k_{1} k_{2}}^{++(0)}\left(\tau_{1}, \tau_{2} ; \varphi\right) \equiv \frac{\langle\Phi| \mathrm{T}\left[\beta_{k_{1}}^{\dagger}\left(\tau_{1}\right) \beta_{k_{2}}^{\dagger}\left(\tau_{2}\right)\right]|\Phi(\varphi)\rangle}{\langle\Phi \mid \Phi(\varphi)\rangle}=0 \\
& G_{k_{1} k_{2}}^{-+(0)}\left(\tau_{1}, \tau_{2} ; \varphi\right) \equiv \frac{\langle\Phi| \mathrm{T}\left[\beta_{k_{1}}\left(\tau_{1}\right) \beta_{k_{2}}^{\dagger}\left(\tau_{2}\right)\right]|\Phi(\varphi)\rangle}{\langle\Phi \mid \Phi(\varphi)\rangle}=-G_{k_{2} k_{1}}^{+-(0)}\left(\tau_{2}, \tau_{1} ; \varphi\right) \\
& \text { NoAtwormpecreqtion qyapr }
\end{aligned}
$$

Equal-time propagators

$$
G_{k_{1} k_{2}}^{--(0)}(\tau, \tau ; \varphi) \equiv+e^{-\tau\left(E_{k_{1}}+E_{k_{2}}\right)} R_{k_{1} k_{2}}^{--}(\varphi)
$$

1) Only non-zero equal-time propagator is anomalous
2) No self-contraction onto a given vertex for $\varphi=0$

Perturbative expansion of $N(\tau, \varphi)=<\Phi|\mathscr{U}(\tau)| \Phi(\varphi)>$

Evolution operator $\mathcal{U}(\tau)=e^{-\tau \Omega_{0}} \mathrm{~T} e^{-\int_{0}^{\tau} d t \Omega_{1}(t)} \quad$ with $\quad \Omega_{1}(\tau) \equiv e^{\tau \Omega_{0}} \Omega_{1} e^{-\tau \Omega_{0}}$

Off-diagonal norm kernel

$$
\begin{aligned}
N(\tau, \varphi)= & \langle\Phi| e^{-\tau \Omega_{0}} \mathrm{~T} e^{-\int_{0}^{\tau} d t \Omega_{1}(t)}|\Phi(\varphi)\rangle \text { Off-diagonal matrix elements of strings of quasi-particle operators } \\
= & e^{-\tau \Omega^{00}}\left\{\langle\Phi \mid \Phi(\varphi)\rangle-\int_{0}^{\tau} d \tau_{1}\langle\Phi| \Omega_{1}\left(\tau_{1}\right)|\Phi(\varphi)\rangle+\frac{1}{2!} \int_{0}^{\tau} d \tau_{1} d \tau_{2}\langle\Phi| \mathrm{T}\left[\Omega_{1}\left(\tau_{1}\right) \Omega_{1}\left(\tau_{2}\right)\right]|\Phi(\varphi)\rangle+\ldots\right\} \\
0^{\text {th }} \text { order } & 1^{\text {st }} \text { order }
\end{aligned}
$$

Off-diagonal Wick's theorem [R. Balian and E. Brézin, Nuovo Cimento 64, 37 (1969)]

$$
\langle\Phi| \mathrm{T}\left[\ldots \beta_{k_{p}}^{(\dagger)}\left(\tau_{p}\right) \ldots \beta_{k_{q}}^{(\dagger)}\left(\tau_{q}\right) \ldots\right]|\Phi(\varphi)\rangle= \pm \sum_{\text {all sets of contractions }} \ldots G_{k_{p} k_{q}}^{ \pm \pm(0)}\left(\tau_{p}, \tau_{q} ; \varphi\right) \ldots \times\langle\Phi \mid \Phi(\varphi)\rangle
$$

Diagrammatic representation of building blocks

Canonical representation of normal-ordered operators

```
\Omega
```

Example given for Ω
Similarly for other operators, e.g. H or A, with different vertices

Ω^{40}

Elementary propagators

$G_{k_{1} k_{2}}^{+-(0)}\left(\tau_{1}, \tau_{2} ; \varphi\right)$
$G_{k_{1} k_{2}}^{--(0)}\left(\tau_{1}, \tau_{2} ; \varphi\right)$

$G_{k_{1} k_{2}}^{++(0)}\left(\tau_{1}, \tau_{2} ; \varphi\right)$
$G_{k_{1} k_{2}}^{-+(0)}\left(\tau_{1}, \tau_{2} ; \varphi\right)$

Diagrammatic rules

Norm kernel at order p

1) All topologically distinct vacuum-to-vacuum Feynman diagrams with p operators $\Omega^{i k j k}\left(\tau_{k}\right)$
2) Normal and anomalous contractions allowed (only anomalous ones closed onto a vertex)
3) Sign $(-1)^{p+n}$ with $n=$ number of crossing lines in the diagram
4) Factor $1 / n_{e}$! for each group of n_{e} equivalent lines (same type of propagators!)
5) Factor $1 / 2$ for each anomalous line closed onto a vertex
6) Symmetry factor $1 / n_{s}$ for exchanges of time labels giving topologically equivalent diagrams
7) Normal lines linking two vertices must propagate in the same direction
8) As $\mathrm{G}^{++}(\varphi)=0$, the number of anomalous contractions is $0 \leq n_{a}=\sum_{k=1}^{p}\left(j_{k}-i_{k}\right) \leq 2 p$
9) Sum over all quasi-particle and all time labels from 0 to τ

Diagrammatic expansion of $\mathrm{N}(\tau, \varphi)$

Exponentiation of connected diagrams

$$
\begin{aligned}
N(\tau, \varphi) & =e^{-\tau \Omega^{00}}\langle\Phi \mid \Phi(\varphi)\rangle \sum_{\Gamma} \Gamma_{\Gamma} \frac{\text { Each diagram is decomposed into its connected parts }}{} \quad \\
& =e^{-\tau \Omega^{00}}\langle\Phi \mid \Phi(\varphi)\rangle \sum_{n_{1} n_{2} . .} \frac{\left[\Gamma_{1}(\tau, \varphi)\right]^{n_{1}}}{n_{1}!} \frac{\left[\Gamma_{2}(\tau, \varphi)\right]^{n_{2}}}{n_{2}!} \text { Symmetry factor } \\
& =e^{-\tau \Omega^{00}}\langle\Phi \mid \Phi(\varphi)\rangle e^{\Gamma_{1}(\tau, \varphi)+\Gamma_{2}(\tau, \varphi)+\ldots}
\end{aligned}
$$

$$
=e^{-\tau \Omega^{00}+n(\tau, \varphi)}\langle\Phi \mid \Phi(\varphi)\rangle \quad \text { Diagrams with any number of all possible connected parts exhaust th }
$$

with $n(\tau, \varphi) \equiv \sum_{p=1}^{\infty} n^{(p)}(\tau, \varphi)$ the connected diagrams

The only ones that need to be computed The logarithm of the norm is size extensive

Diagrams with no anomalous contraction

$$
n(\tau, \varphi) \equiv n\left(\tau ; n_{a}=0\right)+n\left(\tau, \varphi ; n_{a}>0\right)
$$

Finite when $\tau \rightarrow \infty$
Null for $\varphi=0 \quad=1$ for $\varphi=0$
$\mathcal{N}(\tau, \varphi)=\frac{N(\tau, \varphi)}{N(\tau, 0)}=e^{\sqrt{n\left(\tau, \varphi ; n_{a}>0\right)}}\langle\Phi \mid \Phi(\varphi)\rangle$
Intermediate normalization for $\varphi=0$

Diagrams of $\mathrm{n}(\tau, \varphi)$ to second order

Algebraic expression of $\mathrm{n}(\tau, \varphi)$ to second order

PN.6: example of diagram contributing to $\mathbf{n}(\tau, 0)$

$$
\begin{aligned}
\text { PN. } 6 & =\frac{1}{4!} \sum_{k_{1} k_{2} k_{3} k_{4}} \frac{\Omega_{k_{1} k_{2} k_{3} k_{4}}^{04} \Omega_{k_{1} k_{2} k_{3} k_{4}}^{40}}{E_{k_{1}}+E_{k_{2}}+E_{k_{3}}+E_{k_{4}}}\left[\tau-\frac{1-e^{-\tau\left(E_{k_{1}}+E_{k_{2}}+E_{k_{3}}+E_{k_{4}}\right)}}{E_{k_{1}}+E_{k_{2}}+E_{k_{3}}+E_{k_{4}}}\right] \\
& =\frac{1}{\tau \rightarrow \infty} \frac{1}{4!} \sum_{k_{1} k_{2} k_{3} k_{4}} \frac{\Omega_{k_{1} k_{2} k_{3} k_{4}}^{04} \Omega_{k_{1} k_{2} k_{3} k_{4}}^{40}}{E_{k_{1}}+E_{k_{2}}+E_{k_{3}}+E_{k_{4}}}\left[\tau-\frac{1}{E_{k_{1}}+E_{k_{2}}+E_{k_{3}}+E_{k_{4}}}\right]
\end{aligned}
$$

Two right lines are now anomalous ($\mathrm{n}_{\mathrm{a}}=2$)
The lowest vertex has changed accordingly
PN.8: example of diagram with genuine φ dependence

$$
\begin{aligned}
& \text { PN. } 8=\frac{1}{4} \sum_{\substack{k_{1} k_{1} k_{3} k_{3} k_{4} \\
k_{5} k_{6}}} \frac{\Omega_{k_{1}}^{22} k_{k_{1}}+E_{k_{2}}-E_{k_{3}}-E_{k_{4}}^{04} \Omega_{k_{5} k_{6} k_{1} k_{2}}}{E_{k_{1}}}\left[\frac{1-e^{-\tau\left(E_{k_{3}}+E_{k_{4}}+E_{k_{5}}+E_{k_{6}}\right)}}{E_{k_{3}}+E_{k_{4}}+E_{k_{5}}+E_{k_{6}}}\right. \\
& \left.-\frac{1-e^{-\tau\left(E_{k_{1}}+E_{k_{2}}+E_{k_{5}}+E_{k_{6}}\right)}}{E_{k_{1}}+E_{k_{2}}+E_{k_{5}}+E_{k_{6}}}\right] R_{k_{3} k_{6}}^{--}(\varphi) R_{k_{4} k_{5}}^{--}(\varphi) \\
& \underset{\tau \rightarrow \infty}{=} \frac{1}{4} \sum_{\substack{k_{1} k_{1} k_{k} k_{4} k_{4} \\
k_{5} k_{6}}} \frac{\Omega_{k_{1} k_{2} k_{3} k_{4}}^{22} \Omega_{k_{5} k_{6} k_{1} k_{2}}^{04}}{\left(E_{k_{3}}+E_{k_{4}}+E_{k_{5}}+E_{k_{6}}\right)\left(E_{k_{1}}+E_{k_{2}}+E_{k_{5}}+E_{k_{6}}\right.} \frac{R_{k_{3} k_{6}}^{--}(\varphi) R_{k_{4} k_{5}}^{--}(\varphi)}{\text { Null for } \varphi=0}
\end{aligned}
$$

Perturbative expansion of $\Omega(\tau, \varphi)=<\Phi|\mathscr{H}(\tau) \Omega| \Phi(\varphi)>$

Off-diagonal operator kernel

Difference with norm kernel: presence of the (time-independent) operator

$$
\begin{aligned}
\Omega(\tau, \varphi) & =\langle\Phi| e^{-\tau \Omega_{0}} \mathrm{~T} e^{-\int_{0}^{\tau} d t \Omega_{1}(t)} \Omega|\Phi(\varphi)\rangle \\
& =e^{-\tau \Omega^{00}}\left\{\langle\Phi| \Omega(0)|\Phi(\varphi)\rangle-\int_{0}^{\tau} d \tau_{1}\langle\Phi| \mathrm{T}\left[\Omega_{1}\left(\tau_{1}\right) \Omega(0)\right]|\Phi(\varphi)\rangle+\ldots\right\} \\
0^{\text {th }} \text { order } & 1^{\text {st }} \text { order }
\end{aligned}
$$

Factorization of disconnected pieces

$\equiv \sum_{n=0}^{\infty} \overbrace{\text { Norm kernel factorizes in operator kernel }}^{\omega^{(n)}(\tau, \varphi)}$ Only vacuum-to-vacuum diagrams of order n linked to $\Omega(0)$

Diagrams of $\omega(\tau, \varphi)$ to first order

Algebraic expression of $\omega(\tau, \varphi)$ to first order

PE.7: example of diagram contributing to $\omega(\tau, 0)$

$$
\begin{aligned}
\text { PE. } 7 & =-\frac{1}{4!} \sum_{k_{1} k_{2} k_{3} k_{4}} \frac{\Omega_{k_{1} k_{2} k_{3} k_{4}}^{04} \Omega_{k_{1} k_{2} k_{3} k_{4}}^{40}}{E_{k_{1}}+E_{k_{2}}+E_{k_{3}}+E_{k_{4}}}\left[1-e^{-\tau\left(E_{k_{1}}+E_{k_{2}}+E_{k_{3}}+E_{k_{4}}\right)}\right] \\
& =-\frac{1}{\tau \rightarrow \infty} \sum_{k_{1} k_{2} k_{3} k_{4}} \frac{\Omega_{k_{1} k_{2} k_{3} k_{4}}^{04} \Omega_{k_{1} k_{2} k_{3} k_{4}}^{40}}{E_{k_{1}}+E_{k_{2}}+E_{k_{3}}+E_{k_{4}}}
\end{aligned}
$$

Standard « second »-order MBPT correction based on a Bogoliubov reference state
Lowest vertex at fixed time 0
PE.9: example of diagram with genuine φ dependence

$$
\begin{aligned}
\text { PE. } 9 & =-\frac{1}{4} \sum_{\substack{k_{1} k_{2} k_{3} k_{4} \\
k_{5} k_{6}}} \frac{\Omega_{k_{1} k_{2} k_{3} k_{4}}^{04} \Omega_{k_{1} k_{2} k_{5} k_{6}}^{22}}{E_{k_{1}}+E_{k_{2}}+E_{k_{3}}+E_{k_{4}}}\left[1-e^{-\tau\left(E_{k_{1}}+E_{k_{2}}+E_{k_{3}}+E_{k_{4}}\right)}\right] R_{k_{3} k_{6}}^{--}(\varphi) R_{k_{4} k_{5}}^{--}(\varphi) \\
& =-\frac{1}{4} \sum_{\substack{k_{1} k_{2} k_{3} k_{4} \\
k_{5} k_{6}}} \frac{\Omega_{k_{1} k_{2} k_{3} k_{4}}^{04} \Omega_{k_{1} k_{2} k_{5} k_{6}}^{22}}{E_{k_{1}}+E_{k_{2}}+E_{k_{3}}+E_{k_{4}}} \frac{R_{k_{3} k_{6}}^{--}(\varphi) R_{k_{4} k_{5}}^{--}(\varphi)}{\text { Null for } \varphi=0}
\end{aligned}
$$

Relation between $\mathrm{N}(\tau, \varphi)$ and $\mathrm{A}(\tau, \varphi)$

First-order differential equation for $\mathcal{\mathcal { N }}(\tau, \varphi)$

Connected vacuum-to-vacuum diagrams of the norm

Ensures exact restoration of good particle number

Perturbation theory

$$
\begin{aligned}
\frac{\int_{0}^{2 \pi} d \varphi e^{-i \mathrm{~A} \varphi} \mathcal{A}(\tau, \varphi)}{\int_{0}^{2 \pi} d \varphi e^{-i \mathrm{~A} \varphi} \mathcal{N}(\tau, \varphi)} & =-i \frac{\int_{0}^{2 \pi} d \varphi e^{-i \mathrm{~A} \varphi} \frac{d}{d \varphi} \mathcal{N}(\tau, \varphi)}{\int_{0}^{2 \pi} d \varphi e^{-i \mathrm{~A} \varphi} \mathcal{N}(\tau, \varphi)} \\
& =+i \frac{\int_{0}^{2 \pi} d \varphi \frac{d}{d \varphi}\left[e^{-i \mathrm{~A} \varphi}\right] \mathcal{N}(\tau, \varphi)}{\int_{0}^{2 \pi} d \varphi e^{-i \mathrm{~A} \varphi} \mathcal{N}(\tau, \varphi)}
\end{aligned}
$$

$$
n^{(p)}\left(\tau, \varphi ; n_{a}>0\right)=i \int_{0}^{\varphi} d \phi a^{(p)}(\tau, \phi)
$$

Indeed valid order by order

$$
\begin{aligned}
& \begin{array}{l}
\mathcal{N}(\tau, \varphi) \equiv\langle\Psi(\tau) \mid \Phi(\varphi)\rangle \\
\mathcal{A}(\tau, \varphi) \equiv\langle\Psi(\tau)| A|\Phi(\varphi)\rangle
\end{array}, \quad \begin{array}{l}
|\Phi(\varphi)\rangle=e^{i A \varphi}|\Phi(\varphi)\rangle \\
\mathcal{A}(\tau, \varphi)=a(\tau, \varphi) \mathcal{N}(\tau, \varphi)
\end{array} \quad \begin{array}{l}
\frac{d}{d \varphi} \mathcal{N}(\tau, \varphi)-i a(\tau, \varphi) \mathcal{N}(\tau, \varphi)=0 \\
\hline
\end{array} \\
& \text { Vacuum-to-vacuum diagrams linked to operator A } \\
& \text { Closed-form solution } \\
& \mathcal{N}(\tau, \varphi)=e^{n\left(\tau, \varphi ; n_{a}>0\right)}\langle\Phi \mid \Phi(\varphi)\rangle \\
& \mathcal{N}(\tau, \varphi)=e^{i \int_{0}^{\varphi} d \phi a(\tau, \phi)} \\
& =e_{i \int_{0}^{\varphi} d \phi\left[a(\tau, \phi)-a^{(0)}(\tau, \phi)\right]}\langle\Phi \mid \Phi(\varphi)\rangle
\end{aligned}
$$

Summing up

Particle-number restored quantities

$$
\begin{aligned}
\mathrm{A} & =\frac{\int_{0}^{2 \pi} d \varphi e^{-i \mathrm{~A} \varphi} a(\varphi) \mathcal{N}(\varphi)}{\int_{0}^{2 \pi} d \varphi e^{-i \mathrm{~A} \varphi} \mathcal{N}(\varphi)} \\
\mathrm{E}_{0}^{\mathrm{A}} & =\frac{\int_{0}^{2 \pi} d \varphi e^{-i \mathrm{~A} \varphi} h(\varphi) \mathcal{N}(\varphi)}{\int_{0}^{2 \pi} d \varphi e^{-i \mathrm{~A} \varphi} \mathcal{N}(\varphi)}
\end{aligned}
$$

1) Compute at order p via off-diagonal BMBPT at each angle φ
2) Compute from $a(\varphi)$ at order p (first equation valid by construction)
3) Integrate over (discretized) φ

Projected HFB recovered at lowest order

$$
\begin{aligned}
h^{(0)}(\tau, \varphi) & =\frac{\langle\Phi| H|\Phi(\varphi)\rangle}{\langle\Phi \mid \Phi(\varphi)\rangle} \\
\mathcal{N}^{(0)}(\tau, \varphi) & =\langle\Phi \mid \Phi(\varphi)\rangle
\end{aligned}
$$

Symmetry-broken BMBPT at $\varphi=0$

$$
\mathrm{E}_{0}^{\mathrm{A}}=h(0)
$$

Subset of diagrams at $\varphi=0$
(See BMBPT talk by P. Arthuis on Thursday)

$$
\begin{aligned}
& \mathrm{E}_{0}^{\mathrm{A}(0)}=\frac{\int_{0}^{2 \pi} d \varphi e^{-i \mathrm{~A} \varphi}\langle\Phi| H|\Phi(\varphi)\rangle}{\int_{0}^{2 \pi} d \varphi e^{-i \mathrm{~A} \varphi}\langle\Phi \mid \Phi(\varphi)\rangle} \\
&=\frac{\langle\Phi| H P^{\mathrm{A}}|\Phi\rangle}{\langle\Phi| P^{\mathrm{A}}|\Phi\rangle} \\
&=\frac{\left\langle\Theta^{\mathrm{A}}\right| H\left|\Theta^{\mathrm{A}}\right\rangle}{\left\langle\Theta^{\mathrm{A}} \mid \Theta^{\mathrm{A}}\right\rangle} \\
& \quad \text { where }\left|\Theta^{\mathrm{A}}\right\rangle \equiv P^{\mathrm{A}}|\Phi\rangle
\end{aligned}
$$

Summing up

Particle-number restored quantities

$$
\begin{aligned}
\mathrm{A} & =\frac{\int_{0}^{2 \pi} d \varphi e^{-i \mathrm{~A} \varphi} a(\varphi) \mathcal{N}(\varphi)}{\int_{0}^{2 \pi} d \varphi e^{-i \mathrm{~A} \varphi} \mathcal{N}(\varphi)} \\
\mathrm{E}_{0}^{\mathrm{A}} & =\frac{\int_{0}^{2 \pi} d \varphi e^{-i \mathrm{~A} \varphi}(\varphi(\varphi) \mathcal{N}(\varphi)}{\int_{0}^{2 \pi} d \varphi e^{-i \mathrm{~A} \varphi \mathcal{N}(\varphi)}}
\end{aligned}
$$

CC expansion of operator kernels

$$
\begin{aligned}
& h(\varphi) \equiv \frac{\mathcal{H}(\varphi)}{\mathcal{N}(\varphi)}=\langle\Phi| \tilde{H}(\varphi) e^{\mathcal{T}(\varphi)}|\Phi\rangle \\
& a(\varphi) \equiv \frac{\mathcal{A}(\varphi)}{\mathcal{N}(\varphi)}=\langle\Phi| \tilde{A}(\varphi) e^{\mathcal{T}(\varphi)}|\Phi\rangle
\end{aligned}
$$

1) Compute at order p via off-diagonal BMBPT at each angle φ
2) Compute from $a(\varphi)$ at order p (first equation valid by construction)
3) Integrate over (discretized) φ

Coupled-cluster formulation also available

$$
\left|\Psi_{0}^{\mathrm{A}}\right\rangle \equiv e^{U}|\Phi\rangle \quad-\quad \begin{aligned}
& \mathcal{N}(\varphi) \equiv\langle\Phi(\varphi)| e^{U}|\Phi\rangle, \\
& \mathcal{H}(\varphi) \equiv\langle\Phi(\varphi)| H e^{U}|\Phi\rangle \\
& \mathcal{A}(\varphi) \equiv\langle\Phi(\varphi)| A e^{U}|\Phi\rangle
\end{aligned}
$$

$$
\tilde{H}(\varphi) \equiv e^{Z^{\dagger}(\varphi)} H e^{-Z^{\dagger}(\varphi)}
$$

with

$$
\tilde{A}(\varphi) \equiv e^{Z^{\dagger}(\varphi)} A e^{-Z^{\dagger}(\varphi)}
$$

ODE for φ dependence of amplitudes

$$
\frac{d}{d \varphi} \mathcal{T}_{k_{1} \ldots k_{2 n}}(\varphi)=-i a_{k_{1} \ldots k_{2 n}}^{02}(\varphi) \text { with } \mathcal{T}(0)=U
$$

Contents

O Introduction

- Nuclear chart and ab initio methods
- Why breaking symmetries?
- On-going developments and projects in this direction
© Symmetry broken\&restored Bogoliubov many-body perturbation theory
- Generalities
- Set up of the formalism
- Perturbation theory and diagrammatic representations

O Conclusions

Collaborators on ab initio many-body calculations

P. Arthuis
M. Drissi
J. P. Ebran
J. Ripoche
V. Somà
A. Tichai

UNIVERSITY OF SURREY
J. Ripoche
V. Somà
A. Tichai
C. Barbieri
D. Lacroix
P. Navratil
G. Hagen
T. Papenbrock

TECHNISCHE
UNIVERSITAT
DARMSTADT
R. Roth

Appendix

Elementary facts and questions about nuclei

- 254 stable isotopes, ~ 3100 synthesised in the lab
- How many bound (w.r.t strong force) nuclei exist; 9000?
- Heaviest synthesized element $Z=118$
- Heaviest possible element?
- Enhanced stability near $Z=120$?

- Neutron drip-line known up to $Z=8$ (16 neutrons)
- Where is the neutron drip-line beyond $Z=8$?
- Over-stable "magic" nuclei ($2,8,20,28,50,82, \ldots$)
\circ Are magic numbers the same for unstable nuclei?

Ab initio many-body problem

Ab initio (= "from scratch") many-body scheme

$$
\begin{gathered}
\text { A-body Hamiltonian } \\
H=T+V^{2 \mathrm{~N}}+V^{3 \mathrm{~N}}+V^{4 \mathrm{~N}}+\ldots+V^{\mathrm{AN}}
\end{gathered} \quad \begin{aligned}
& H\left|\Psi_{k}^{\mathrm{A}}\right\rangle=E_{k}^{\mathrm{A}}\left|\Psi_{k}^{\mathrm{A}}\right\rangle
\end{aligned}
$$

A-body wave-function
5 variables x A nucleons

Definition

© A structure-less nucleons
(O) All nucleons active in full Hilbert space \mathscr{H}_{A}
(O Elementary interactions between them
© Solve A-body Schroedinger equation (SE)
© Thorough estimate of error

Hamiltonian

Do we know the form of $\mathrm{V}^{2 N}$, $\mathrm{V}^{3 N}$ etc Do we know how to derive them from QCD? Why would there be forces beyond pairwise? Do we need all the terms up to AN forces?

SE

Modeling

Feedback
Schroedinger equation
Can we solve the SE with relevant accuracy? Can we do it for any $\mathrm{A}=\mathrm{N}+\mathrm{Z}$?
Is it even reasonable for $A=200$ to proceed this way? More effective approaches needed?

Evolution of ab initio nuclear chart

Evolution of ab initio nuclear chart

© Approximate methods for doubly closed-shells

- Since 2000's
- MBPT, SCGF, CC, IMSRG
- Polynomial scaling

Evolution of ab initio nuclear chart

© Approximate methods for doubly closed-shells - Since 2000's

- MBPT, SCGF, CC, IMSRG
- Polynomial scaling
© Approximate methods for singly open-shell - Since 2010's
- BMBPT, GGF, BCC, MR-IMSRG, MCPT
- Polynomial scaling

Two strategies to deal with symmetries of H (e.g. SU(2))

$$
H\left|\Psi_{n}^{J M}\right\rangle=E_{n}^{J}\left|\Psi_{n}^{J M}\right\rangle
$$

A. Enforced throughout = symmetry-conserving methods
A! cost

Diagonalization methods
No core shell model (CI)

$$
\left|\Psi_{n}^{J M}\right\rangle=\sum_{i} c_{n}^{i}\left|\Phi_{i}^{J M}\right\rangle
$$

Symmetry-conserving basis expansion
© Imaginary time propagation

$$
\left|\Psi_{n}^{J M}\right\rangle=\lim _{\tau \rightarrow \infty} e^{-\tau H}\left|\Phi_{n}^{J M}\right\rangle
$$

Green's function monte carlo
Expansion methods

$$
\left|\Psi_{n}^{J M}\right\rangle=\Omega_{n}^{J M}\left|\Phi_{0}^{00}\right\rangle
$$

Coupled cluster, self consistent Green's function, In-medium similarity renormalization group
B. Allowed to break at low order before being restored = symmetry-broken and -restored methods

$$
\left|\Psi_{n}^{J M}\right\rangle=\left(P^{J M}\right) \Omega_{n}\left|\Phi_{0}\right\rangle
$$

Emergent symmetry breaking in quantum finite systems

Symmetries of \mathbf{H}

Invariance	Group	$\left\|\Psi^{X}\right\rangle$
Gauge rotation	$U(1)$	N, Z
Spatial rotation	$\mathrm{SU}(2)$	J, M

Symmetry breaking mean-field (HFB)

Correlations	$\Delta \mathbf{E}$	Excitation	All nuclei...
Pairing	$<2 \mathrm{MeV}$	Gap	...but doubly magic
Angular local.	$<20 \mathrm{MeV}$	Rot. band	...but singly magic

[M. Bender, private communication]

Symmetry-restored mean-field (HFB)

[M. Bender, private communication]		
Symmetry-restored mean-field (HFB)		
$\mid \Psi^{X}>$	$\Delta \mathrm{E}$	Excitations
N,Z	$\sim 1 \mathrm{MeV}$	Pair rot.
J,M	$\sim 2 \mathrm{MeV}$	Rot. band

But missing correlations beyond mean field here, i.e. from wave operator Ω

Projective and symmetric many-body methods

Time-independent eigenvalue equations

$$
\begin{aligned}
& A\left|\Psi_{\mu}^{\mathrm{A}}\right\rangle=\mathrm{A}\left|\Psi_{\mu}^{\mathrm{A}}\right\rangle \\
& H\left|\Psi_{\mu}^{\mathrm{A}}\right\rangle=\mathrm{E}_{\mu}^{\mathrm{A}}\left|\Psi_{\mu}^{\mathrm{A}}\right\rangle
\end{aligned}
$$

Projective method

$$
\begin{aligned}
\langle\Theta| A\left|\Psi_{\mu}^{\mathrm{A}}\right\rangle & =\mathrm{A}\left\langle\Theta \mid \Psi_{\mu}^{\mathrm{A}}\right\rangle \\
\langle\Theta| H\left|\Psi_{\mu}^{\mathrm{A}}\right\rangle & =\mathrm{E}_{\mu}^{\mathrm{A}}\left\langle\Theta \mid \Psi_{\mu}^{\mathrm{A}}\right\rangle
\end{aligned}
$$

Simple, e.g. uncorrelated, state

Expectation-value method

$$
\begin{aligned}
& \left\langle\Psi_{\mu}^{\mathrm{A}}\right| A\left|\Psi_{\mu}^{\mathrm{A}}\right\rangle=\mathrm{A}\left\langle\Psi_{\mu}^{\mathrm{A}} \mid \Psi_{\mu}^{\mathrm{A}}\right\rangle \\
& \left\langle\Psi_{\mu}^{\mathrm{A}}\right| H\left|\Psi_{\mu}^{\mathrm{A}}\right\rangle=\mathrm{E}_{\mu}^{\mathrm{A}}\left\langle\Psi_{\mu}^{\mathrm{A}} \mid \Psi_{\mu}^{\mathrm{A}}\right\rangle
\end{aligned}
$$

Fully correlated state itself
Equivalent in exact limit

Not after truncation

Real for E at each MBPT order Not (necessarily) true for A

$$
\begin{aligned}
\mathrm{A} & =\frac{\left\langle\Psi_{\mu}^{\mathrm{A}}\right| A\left|\Psi_{\mu}^{\mathrm{A}}\right\rangle}{\left\langle\Psi_{\mu}^{\mathrm{A}} \mid \Psi_{\mu}^{\mathrm{A}}\right\rangle} \\
\mathrm{E}_{\mu}^{\mathrm{A}} & =\frac{\left\langle\Psi_{\mu}^{\mathrm{A}}\right| H\left|\Psi_{\mu}^{\mathrm{A}}\right\rangle}{\left\langle\Psi_{\mu}^{\mathrm{A}} \mid \Psi_{\mu}^{\mathrm{A}}\right\rangle}
\end{aligned}
$$

... and for $\operatorname{SU}(2)$

Correspondence table

Group	$U(1)$	$S U(2)$
Infinitesimal generator	A	$S_{y}\left(J_{y}\right)$
Rotation angle	φ	β
Mesure	$d \varphi$	$\sin \beta d \beta$
Rotation operator	$e^{i A \varphi}$	$e^{-i S_{y} \beta}\left(e^{-i J_{y} \beta}\right)$
Quantum number	A	$\mathrm{S}(\mathrm{J})$
IRREP	$e^{i \mathrm{~A} \varphi}$	$d^{\mathrm{S}}(\beta)_{00}\left(d^{J}(\beta)_{00}\right)$
QP creation operator	β_{k}^{\dagger}	a_{a}^{\dagger} or a_{i}
QP annihilation operator	β_{k}	a_{a} or a_{i}^{\dagger}
Vacuum $\|\Phi\rangle$	Bogoliubov state	SU-HF state

