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Divergence and Dyson’s argument

Asymptotic series and perturbation expansions are almost invariably divergent
in practice, understood as zero radius of convergence. E.g. in Stirling’s formula,
as n→ ∞, (2πn)−1enn−nΓ(n+ 1) ∼ ∑∞

k=0 ckn−k, {cj}j = {1, 1
12 , 1

288 ,−,−,+,+, ...},
where |cj| ∼ j!/(2π)j. Factorial divergence occurs in virtually all special functions
asymptotics.

Two more examples: Ai(x) ∼ e−
2
3 x

3
2 ∑ ckx−

3k
2 −

1
4 (a transseries) as x→ +∞ and

Ai(x) ∼ e−
2
3 x

3
2 ∑ ckx−

3k
2 −

1
4 − ie

2
3 x

3
2 ∑ ckx−

3k
2 −

1
4 , x→ −∞

Finally, take e−xEi(x) = PV
∫ ∞

0
e−xp

1−p dp. As x → +∞, e−xEi(x) ∼ ∑ k!x−k−1. A

calculation shows that e−xEi(x) ∼ πiex +
∞

∑
k=0

k!x−k−1, x→ +∞e2πi.

What do these examples have in common? Qualitative changes in behavior as
∞ is approached from different directions, Stokes phenomena (Dyson’s argu-
ment). Convergent series at infinity clearly cannot exhibit Stokes phenomena, hence
the asymptotic series most special functions must have zero radius of convergence: infin-
ity is an essential singularity.
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When do we get essential singularities?

Such singularities result from perturbative expansions when, to leading order, the
highest derivative is small, and would be eliminated in leading approximation:

−h̄2∆ψ−Vψ = λψ (h̄→ 0)

meaning, in a first approximation we discard the highest derivative, as above, or,

y′ + y = 1/x (t→ ∞)

(leading approximation y ∼ 1/x) or when removing the perturbed term changes
the nature of the problem,

i
∂ψ

∂t
= −∆ψ + V(x, t)ψ(x, t)

O Costin, R D Costin, G Dunne Convergence from divergence 3 / 36



Essential singularities

or even renders the physical quantity meaningless, s.a. in a path integral∫ ∞

−1
cos

(
ε−

3
2 ( 1

3 t3 + t2 − 2
3 )
)

dt

and of course in all realistic path integrals.

In specific mathematical problems, such as ODEs, PDEs, integrals depending on
parameters etc, there exist specific conditions that guarantee convergence/divergence.
In ODEs for instance, Frobenius theory draws the line regular/essential singular-
ity.
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So, what happens if we need to go ahead,
nonetheless?

y′ + y =
1
x
→ y =

1
x
− y′ → y

[0]
≈ 1

x
[1]
≈ 1

x
−

[0]
y′ =

1
x
+

1
x2

→ 1
x
+

1
x2 +

2
x3 → · · · →

∞

∑
k=0

k!
xk+1

Divergence! (Mathematically, we are iterating on an unbounded operator, and

such iteration leads to factorial divergence.
(
− d

dx

)n 1
x = n!

xn+1 ) In all examples I
mentioned before, we would get roughly the same phenomenon. We can check
that the divergent series is a formal solution of the equation, nevertheless.
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But is this the whole perturbation expansion?

It can’t be. The ODE y′ + y = 1
x must have a one-parameter family of solutions.

The general solution is a particular one plus the general solution of the homoge-
neous equation:

∞

∑
k≥0

k!
xk+1 + Ce−x

a transseries. All essential singularities resulting from perturbation expansions
of otherwise mostly analytic problems are described by transseries, combinations
of power series (divergent, in general) exponentials, and logs (sometimes). In
theory, but almost never in practice, iterated exponentials occur e−ex

...
Transseries were discovered in the late 70’s by J. Écalle (Orsay!), who also found
the way to resum them (accelero-summability) and independenly (for decades
so) and simultaneously by Polyakov-Polyakov & t’Hooft who called them multi-
instanton expansions. The resummation methods in physics were pioneered by
Bogomolny & Zinn-Justin. These two branches of what we now know as resur-
gence theory made contact around 2005, and since then there has been intense
activity, and many workshops and programmes to exploit these points of contact.
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Two examples of transseries

The transseries expansion for the N-th energy level in the anharmonic oscillator
as a function of the coupling:

E(N)(g) =
∞

∑
n=0

n−1

∑
l=1

∞

∑
m=0

cn,l,m

(
e−S/gg−(N+1/2)

)n
(

ln
[

a
g

])l
gm , (1)

with coefficients cn,l,m and constants a, S.

The general transseries of a generic system of nonlinear ODEs, with meromorphic
coefficients, brought to normal form:

y′ = Λy + 1
x B + g(x, y); y ∈ Cd

is
∞

∑
k∈Nd

Cke−k·λxk·β(ln x)|k|ỹk(x) (2)

where ỹk(x) are divergent power series in 1/x.
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Least term truncation

The Stirling series is alternating; Γ(x) is between successive truncates of the series.
For x not too small, the terms j!/(2πx)j decrease to a minimum (the least term)
before growing again. Truncating to get at the least term we get

1! ≈ 0.9997, 2! = 2± 10−6, 3! = 6(1± 10−9), ...

Truncation to the least term goes back to Cauchy, and is quite accurate for this
and many other functions.

Less known, least term truncation gives an accuracy of the order of the least term
even for non-alternating series (say, all coefficients are positive). The require-
ments are resurgence2 and that the terms beyond all orders (instanton corrections)
vanish, as is often the case; and even if not the error is still exponentially small[3].

Using correction terms, there are ways to obtain even higher accuracy [3]. But
not arbitrarily high.

Least term truncation is to be used as a “last resort”–when the number of terms
is really small, or the accuracy is low.

2Explained in the sequel.
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Classical Borel summation

Borel summation (LB) is essentially based on refinements of Fourier analysis. Why
Fourier? Ultimately, factorial divergence originates in applying (∂)n which in
Fourier space (the spectral measure unitary for ∂) becomes (ik)n which behaves
geometrically, not factorially. Instead of Fourier, L−1 in Écalle critical time: if the
exponential correction is say e−cxa

the critical time is xa.

Back to the toy-model: Lpk = k!
xk+1 or L−1 k!

xk+1 = pk. Thus

∞

∑
k=0

k!
(−x)k+1 = 1̂

∞

∑
k=0

k!
(−x)k+1 = LL−1

∞

∑
k=0

k!
(−x)k+1 =: LB

∞

∑
k=0

k!
(−x)k+1

= L
∞

∑
k=0
L−1 k!

(−x)k+1 = L
∞

∑
k=0

(−p)k = L 1
1 + p

=
∫ ∞

0

e−xp

1 + p
dp

Definition

A series f̃ = ∑∞
k=0

ak
xk+1 is Borel summable if B f̃ = ∑∞

k=0
ak
k! pk converges, to a function

F(p) which is real-analytic and exponentially bounded. Then, LB f̃ =: LF(p).
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Definition

A series f̃ = ∑∞
k=0

ak
xk+1 is Borel summable if B f̃ = ∑∞

k=0
ak
k! pk converges, to a function

F(p) which is real-analytic and exponentially bounded. Then, LB f̃ =: LF(p).
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Classical Borel summation, features and limitations

LB is formally the identity 1. Thus, whatever properties a series f̃ has, f = LB f̃
has them too. Borel summation behaves like usual, convergent summation.

More interestingly, with f̃ = ∑ k!(−x)−k−1 we have f̃ ′ − f̃ = x−1, thus (LB f̃ )′ −
LB f̃ = LBx−1, meaning that f ′ − f = 1/x, f is the actual solution of the ODE
decaying at infinity, and thus LB f̃ = exEi(−x).

Even more interestingly, the problem could be nonlinear too, since LB(f̃ g̃) =
(LB f̃ )(LBg̃), and a power series solution of the Painlevé equation y′′ = y2 + z
becomes an actual solution; this allowed us to prove some important conjectures.
This applies to PDEs too, such as the time-dependent Schrödinger equation.

But: if we just change the sign (−x) → x in the series above, B∑∞
k=0

k!
xk+1 = 1

1−p
which fails real-analyticity and thus is not classically Borel summable. This was
a serious difficulty which resisted up until the late 70’s, when J. Écalle discovered
transseries, medianization and accelero-summability which allows for singular-
ities along R+, while keeping all good properties of Borel summation [1].

Definition

Transseries which are Écalle-Borel summable (still denoted LB) are called resurgent;
the resummed functions are also called resurgent.
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Transseries which are Écalle-Borel summable (still denoted LB) are called resurgent;
the resummed functions are also called resurgent.

O Costin, R D Costin, G Dunne Convergence from divergence 10 / 36



Classical Borel summation, features and limitations

LB is formally the identity 1. Thus, whatever properties a series f̃ has, f = LB f̃
has them too. Borel summation behaves like usual, convergent summation.

More interestingly, with f̃ = ∑ k!(−x)−k−1 we have f̃ ′ − f̃ = x−1, thus (LB f̃ )′ −
LB f̃ = LBx−1, meaning that f ′ − f = 1/x, f is the actual solution of the ODE
decaying at infinity, and thus LB f̃ = exEi(−x).

Even more interestingly, the problem could be nonlinear too, since LB(f̃ g̃) =
(LB f̃ )(LBg̃), and a power series solution of the Painlevé equation y′′ = y2 + z
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Which functions are resurgent?

All functions which occur naturally in mathematics (and mathematical physics)
have been shown to be resurgent 3 It means: these functions are represented by
Écalle-Borel summable transseries. This is of course remarkable.

But not miraculous. This universality, the ubiquity of resurgence is due to the
fact that resurgence is provably hereditary. If the ingredients of a mathematical
object are resurgent, then so is the object itself. Example: write y′′ = y2 + x is a
polynomial of y and x and ∂, thus the solutions are resurgent.

Therefore, if a transseries expansion solves a problem of “natural origin”, then it
is Écalle-Borel to a unique solution of the problem it originated in.

3Caviat: infinite dimensional path integrals of interacting particles are still work in
progress.
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Some (of many known) results
ODEs: resurgence of the transseries is known for systems of the type y′ =
f (1/x, y), y ∈ Cn, x → ∞, f analytic at 0 in (1/x, y) under a genericity condi-
tion (weaker than): the Jacobian ∂f

∂(1/x,y) |0,0 has nonresonant eigenvalues over Q:
The general small solution at infinity is uniquely given by (OC, [2], 1998)

∞

∑
k∈Nn

Cke−k·λxk·βLBỹk(x) (3)

The resonant case needs Écalle acceleration [4].

Similar results have been proved for difference equations (Braaksma [5]).

Parametric resurgence: exact WKB (Voros, Kawai-Takei, OC · · · ) [6].

Finite dimensional integrals with saddles are also fairly well understood (M V
Berry, Howls, Delabaere [3]). The resurgent structure comes from the Jacobian,
when passing to the action as a variable.

PDEs Borel resummation of divergent expansions has been shown for fairly gen-
eral systems of nonlinear evolution PDEs (OC, S. Tanveer, [5]) ∂tf = E(1/x, f )f +
L, f ∈ Cd, x ∈ Cn, E elliptic, including Navier-Stokes (N-S [[?]]). Resurgence in
t, of the propagator of time-periodic Schrödinger equations (ionization settings)
(OC, J.L. Lebowitz, RD Costin,... [4]) is well understood.
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Some outstanding questions where resurgence was instrumental: Nonlinear
stability of self-similar singularity formation in supercritical4 Wave Maps and
Yang Mills [8], the solution of the time-periodic Schrödinger equation in external
fields which are O(1) [4] proof of Dubrovin’s conjecture (pole positions of special
solutions of Painlevé P1) [9].

Example, time behavior of

i
∂ψ

∂t
= −∆ψ− b

r
ψ + V(x) cos(ωt)ψ = 0

This setting is relevant for atoms interacting with radiation (such as laser fields).
At small V, the theory goes back to the 1930’s (atoms ionize, and the exponential
decay obeys the Fermi Golden Rule). For moderate-to-large amplitudes there are
of course numerical methods, as well as semi-classical approximations (Keldysh
theory) which a not always in qualitative agreement with the experiment. At
this time, the only mathematical theory to date is based on resurgence (in t [16]).
The phenomena in larger fields are much more subtle: islands of “stabilization”,
of power-law instead of exponential decay etc. This is in very good qualitative
(sometimes quantitative) agreement with experiments [4] and references therein.

4(sub-super critical)↔(irrelevant-relevant)
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Example of resurgent analysis: P1 5 In normalized form, a modified Boutroux
form, P1 reads

h′′ − 1
x

h′ − h− 1
2

h2 − 392
625x4 = 0 (∗)

When possible, instead of Borel transforming the asymptotic series we Borel
transform the source of the series. The Borel transform of (*) is

H = (p2 − 1)−1
(

196
1875

p3 −
∫ p

0
sH(s)ds +

1
2

∫ p

0
H(s)H(p− s)ds

)
(∗∗)

We “see” that p = ±1 are singular points. Looking more carefully, both are 1/√
branch points. If we iterate (**), convolution spreads these two singularities at
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General (small) transseries in P1

The general solution decaying along R+ (the tronquées) depends on a constant
C and has the transseries

h(C, x) = ∑
k≥0

Ckhkx−k/2e−kx

where hk are (generalized) Borel sums of divergent series; the hk satisfy linear
nonhomogeneous second order ODEs. Across a Stokes line C → C + S, where
S = i

√
6/(5π) is the Stokes constant 6.

Resurgence. Let Hk = L−1hk. The Borel plane jump at the j singularity of Hk is
related to Hk+j through a formula independent of the ODE

(H+
k −H−k )j =

(
k + j

j

)
SjH−k+j

In particular, the whole structure of H0 on the universal covering of C \N 7 is
contained in Hk. Since it’s all reduced to the first sheet, endless continuation also
follows.

6Calculated in closed form by isomonodromic deformations, recently by resurgence
techniques; numerically, there are many methods.

7of forward continuations
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Transasymptotics 8, [9] a sketch

We can view the transseries

h(x) = ∑
j,k

ckjC
kx−k/2e−kxx−j

as a formal function of two variables ξ = Cx−1/2e−x, η = 1/x,

h(x) = F(ξ, η) = ∑
k,j

ck,jξ
kηj (∗)

When ξ � η (e−x � 1/x), (*) was conveniently written in the standard
“multiinstanton” form

∑
k≥0

hk(η)ξ
k

8Instanton condensation!
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However, when an antistokes line is approached (here ±iR+, where the exponen-
tial becomes oscillatory), it is natural to write it in the form

(∗) ∑
j

Fj(ξ)η
k

Plugging (*) in P1 and solving perturbatively in η we get

F0(ξ) =
ξ

(ξ/12− 1)2

and all Fk are rational functions. We see formation of singularities near anti-
stokes lines, at the points Ce−xx−1/2 ≈ 12, infinitely many of them due to the
periodicity of e−x.

More complex transasymptotic phenomena occur in PDEs [14].
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A simple PDE example [15]

Simplest example: the heat equation, ft = fxx. Because the equation is
parabolic, if we solve the initial value problem by a series expansion
f = ∑ tkfk(x), f0 = f (0, x), the PDE implies fk+1(x) = f ′′k (x)/k, that is

f (x, t) = ∑
k≥0

f (2k)
0 (x)

k!
tk

which diverges factorially even if f0 is analytic (but not entire). Instead of
Borel transforming the solution it is much better to Borel transform the
equation, in 1/t. This gives better analytic control, and more importantly we
can allow non-analytic initial conditions. With f (t, x) = t−1/2g(1/t, x) and
L−1

1
t

g(q) = q−1/2G(x, 2q1/2), 2q1/2 = p, the equation becomes

Gpp −Gxx = 0

the wave equation, for which power series solutions converge.
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Cont, and more general PDEs

Using the elementary solution of the wave equation G1(x + p) + G2(x− p) and
the initial and boundary conditions, one gets, after returning to f by Laplace
transform and changes of variables,

f (t, x) = t−1/2
∫ ∞

−∞
f (0, s) exp(−(x− s)2/(4t))ds

The point here, of course, is not to solve the heat equation in closed form. It
is, rather, like in most applications of resurgence, to transform divergent series
into convergent ones, more generally singular perturbations into regular pertur-
bations. This approach allows f (0, s) to be general, say in L1 and also shows when
resurgence is obtained: essentially iff f (0, s) is analytic.
A conceptually similar approach applies to very general systems of nonlinear
PDEs (Navier-Stokes included) [11,8], resulting in Laplace representations of ac-
tual solutions, proving (at least local) existence of solutions and the possibility to
control solutions more globally.
Because of dependence on initial conditions, one studies resurgence of the Green’s
function or of the unitary propagator. Fairly well understood for time-periodic
d-dim Schrödinger equations. In these models, the Borel sum of the series is
insufficient; one needs the full transseries. [16]
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The Borel transform as a regularizing operator

Another interesting property of Borel summation is that it is a regularizing trans-
formation. The derivative in y′ + y = 1

x is singularly perturbed at ∞. Its Borel
transform (≈ inverse Laplace) is −pY + Y = 1, an algebraic equation where
the previously singularly perturbed term is not singularly perturbed anymore.
∂h
∂t = ∂2h

∂x2 is parabolic (singular for small t); its Borel transform, ∂2H
∂q2 = ∂2H

∂x2 , its
Borel transform, is a regular, hyperbolic, PDE.

That’s because the Borel transform is a (refinement of) the Fourier transform 9,
the spectral measure unitary transformation for ∂, f ′ 7→ −pf̂ .

9It is combined with other needed transforms discovered by Écalle: critical time
transformation, acceleration and medianization.
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The all important Borel plane

For a function f or a formal series, this is the space where L−1f or B f̃ lives. For
time-dependent Schrödinger, this coincides with the energy space. Due to the fact
that the Borel transform is regularizing, B f̃ has only regular singularities. These
singularities contain most of the information about f , qualitative and quantitative
alike. E.g., for e−xEi(x) ∼ ∑∞

k=0
k!

xk+1 , it is the p plane, where B f̃ = 1
1−p

Figure: The Borel plane for e−xEi(x) (left); (right): typical Borel plane (Painlevé
transcendents, or anharmonic oscillators): p-plane singularities of resurgent func-
tions are always spaced in periodic arrays, and are regular singularities! This is instru-
mental in recovering global information from divergent resurgent series.

Écalle-Borel summation: take the Laplace transform in the appropriate direction.
In singular directions an averaging (medianization) is needed.
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transcendents, or anharmonic oscillators): p-plane singularities of resurgent func-
tions are always spaced in periodic arrays, and are regular singularities! This is instru-
mental in recovering global information from divergent resurgent series.
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What if we only have a finite # of asymptotic terms?
We are developing methods to approximately obtain the Borel plane structure of
resurgent functions/series f̃ , from a limited number of asymptotic coefficients,
with limited accuracy. Provably exact in the limit when all the information exists,
in practice we get very good accuracy with 10-15 terms and 10 digit accuracy. We
still need the Borel plane. Here we took 200 terms in soln. of P1.
The first step is standard in numerical resummation: Padé of B f̃ .

-6 -4 -2 2 4 6

-1.0

-0.5

0.5

1.0

Figure: Borel-Padé for Painlevé. After Borel transform B f̃ = F, F is convergent in
the unit disk D. Padé of F gives the position of the singularity lines and of the
first singularities: poles at ±1. It misses however all other poles; this will be fixed
in the next step. Let D = C \ ((−∞,−1] ∪ [1, ∞)), the yellow region.
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Global representation: resurgent-conformal Padé
The domain of analyticity of F is D. Let p = ϕ(q) be the conformal map of the
unit disk D onto D. Expand F(ϕ(q)) in series for small q, S(q). S(q) must converge
in D. Padé S(q) 7→ P(q). Conformal-Padé: F(p) = P(ϕ−1(p)) in the whole of D!

The poles of Pade S(ϕ(z)))

in red, are outside the

closed unit disk

-1.0 -0.5 0.5 1.0

-1.0

-0.5

0.5

1.0

-4 -2 2 4

-4

-2

2

4

Figure: Placement of conformal poles (left). Reconstructed Borel plane of F, luminos-
ity=singularity strength. (All singularities 6= ±n are on the second Riemann sheet.)
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Large to small coupling connection

Calculate a resurgent fcn. in the whole physical domain using asypt. info only

Resurgent-Padé gives 60 digits of accuracy up to |p| = 50 in Borel plane (using
200 asympt terms; divide by 10 for 15 terms).

Therefore, LB f̃ has accuracy e−50 down to x = 1. Re-expanding at 1, we get
at least 40 digits of accuracy in C, all the way down to 0. Similarly for the
anharmonic oscillator, we can calculate, from the divergent expansion at small
coupling, 18 Taylor terms of the large coupling expansion, with 20 digits for the
leading term, 19 for the next one, then 18,...

Based on these ideas, in [17], we discovered a new type of expansions “binary
rational expansions”.

Divergent power series can be re-expanded convergently in these rational func-
tions. The re-expansion is very general: it applies to all resurgent functions.

Binary rational expansions are valid globally in the physical domain, in the entire
region in C where the resurgent function is singularity free.

A precursor of these has been known since Stirling, on the next slide.
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Dyson’s argument rules out convergence of
perturbation series, but

does not rule out rational function expansions. Some expansions in Pochhammer
symbols 1/(x)m (here (x)m = x(x + 1) · · · (x + m− 1)) were known–in fact since
Stirling.

ln Γ(x) = x ln x− x + 1
2 ln

2π

x
+

1
12(x + 1)

+
1

12(x + 1)(x + 2)

+
59

360(x + 1)(x + 2)(x + 3)
+ · · ·+ cm

(x)m
+ · · · ; cm ∼ m−am!

We have, with θ = arg x,

1
(x)m

∼
ρm

θ

m!
; ρθ ∈

{
{1}; |θ| ≤ π

2
(1, 2); |θ| ∈ (π

2 , π)

thus the series converges (albeit slowly) and only for Re x > 0. All special func-
tions admit similar representations, but these drawbacks make them of little use
and low popularity. Why is the domain of convergence limited to a half-plane?
The singularity type of the expansion and of the function are of different type.
Dyson’s argument, in spirit, still applies, and, as we see, still needs further care.
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And if we address all issues in Dyson’s argument?

We remove the last obstruction by allowing poles to accumulate on one ray.

Remarkably, this is enough to obtain the needed 2−m improvement in the decay
of the coefficients.

Remarkably too, all resurgent functions can be represented uniformly in their
domain, by these enhanced rational expansions.

Examples. 1. Geometrically convergent Stirling in C \R−:

(ln Γ(x))′ = ln x +
∞

∑
k=1

∞

∑
m=0

m!
2m+1(2kx + 1)m+1

; x /∈ R−

Geometrically convergent expansion of e−xEi(x), in C \ iR−:

e−xEi(x) = iπe−x −
∞

∑
m=1

Γ(m)

2m(y)m
+

∞

∑
k=1

∞

∑
m=1

Γ(m)e−
iπ
2k

(1 + e−
iπ
2k )m

1
(2ky)m

; x /∈ iR−

where y = − ix
π . These expansions converge geometrically, in a full 2π sector.

Only a few terms in k are needed; these are, in calculations, basically single sums.
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Binary rational expansions as global
representations

Theorem (OC, RD Costin, (2018))

The following are equivalent:
(i) f is represented, for any δ ∈ (−a, a), R > 0 by some Pochhammer symbol-rational
expansion, uniformly convergent for |z| > R in C \R−eiδ.
(ii) f has a Cauchy-Stieltjes representation

f (z) =
∫ 0

−∞

F(s)
s− z

ds for z ∈ C \R−

with F analytic in {z : |z| > 0, arg z ∈ (−π− a,−π + a)} and O(1/z) for large z;
(iii) f has an asymptotic power series which is Borel summable for arg z ∈ (−π

2 −
a, π

2 + a).

Theorem (OC, RD Costin, (2017))

Resurgent functions (can be decomposed to) satisfy (iii) and thus can be represented
convergently in terms of binary rational expansions

∑
m,k

cmk

(2keiθz)m
; with |cmk| ≤ C 2−k−mm!
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Applications

Proof of the Dubrovin conjecture, which states that the tritronquée solutions of
Painlevé P1,

y′′ = y2 + z

i.e., the solutions that have a maximal asymptotic sector S of analyticity ( 4
5 (2π))

are analytic in the closed sector above, down to the origin (OC, Huang, Tanveer,
Duke Math J 2014).

New proof, OC, RD Costin, G Dunne.

P1 is an ODE with meromorphic coefficients, and thus tritronquée is resurgent. Its
binary rational representation is convergent if {z ∈ S, |z| > 0} and has the behavior
O(1/z) as z→ 0. On the other hand all singularities of P1 are double poles. Thus the
tritronquée is analytic in a neighborhood of {z ∈ S, |z| ≥ 0}.

Convergent representations for entropy, partition functions, effective action a.s.o.
in QFT and string theory. In (OC, Dunne, J.Phys A (2018)) we give many exam-
ples, such as strong-coupling expansions of one-loop corrections for Wilson loop
minimal surfaces in AdS5 × S5.
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Applications
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5 (2π))
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Duke Math J 2014).

New proof, OC, RD Costin, G Dunne.
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Plot of Y0 on the imaginary axis
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Figure: Y0 on the imaginary line (red=real part, blue=imaginary part; it looks essen-
tially the same in all directions except for the Stokes ray.
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Plot of Y0 on the singularity line
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Figure: Y0 on the real line, which is a Stokes ray, a ray of singularities (red=real part,
blue=imaginary part. Note: conformal-Padé is calculated on the very singular line.
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Plot of y0 in the domain of analyticity
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Figure: y0 on −iR+ ; it looks essentially the same inside the analyticity sector.
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The Stokes transition: Im ex√x(y+0 − y−0 ) on the
Stokes line R+
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Figure: At x = 110 one gets S with 3 digits, where the real part is about 1050.
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Plot of y0 on the edge of the sector of analyticity, an
antistokes line
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Figure: y0 on iR+ (red=real part, blue=imaginary part
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pp 795-823 (2007).

12 a E. Delabaere & C. J. Howls, Duke Math. J. 112, 199–26
b M. V. Berry and C. J. Howls, Proc. R. Soc. A 434, 657 (1991).

13 D. Sauzin arXiv:0706.0137 (2004).
D. Sauzin, Resurgent Functions and Splitting Problems, RIMS Kokyuroku 1493 (2006)

14 Costin, O.; Tanveer, S. Comm. in PDEs 31 (2006), no. 4–6, 593637.

15 Costin, Ovidiu; Tanveer, Saleh Ann. Fac. Sci. Toulouse Math. (6) 13 (2004), no. 4,
539–549.

16 a O. Costin, R. D. Costin, J. L. Lebowitz arXiv:1706.07129 (to appear in CMP)
b Costin, O.; Lebowitz, J. L.; Tanveer, S. Comm. Math. Phys. 296 (2010), no. 3, 681–738.

O. Costin, G. Dunne, J. Phys. A 51 (2018), no. 4

O Costin, R D Costin, G Dunne Convergence from divergence 35 / 36



Bibliography III

17 O. Costin O and R D Costin, (arXiv:1608.01010)
Costin, O., Dunne, G. Convergence from divergence. J. Phys. A 51 (2018), no. 4.

O Costin, R D Costin, G Dunne Convergence from divergence 36 / 36


