Bogoliubov Many-Body Perturbation Theory for Open-Shell Nuclei

Pierre Arthuis
IRFU, CEA, Université Paris - Saclay

with T. Duguet (CEA Saclay), J.-P. Ebran (CEA DAM), H. Hergert (MSU), R. Roth (TU Darmstadt) \& A. Tichai (ESNT, CEA Saclay)

Workshop MBPT in modern quantum chemistry and nuclear physics CEA Saclay - March 29th 2018

Quantum many-body methods

Open shells
Restored sym.

Expansion methods around unperturbed product state

On symmetry breaking

- Symmetry breaking helps incorporating non-dynamical correlations:
\diamond Superfluid character: $U(1)$ (particle number)
\diamond Deformations: $S U(2)$ (angular momentum)
- But nuclei carry good quantum numbers (e.g. number of particles)
\Rightarrow Symmetries must eventually be restored
- See Thomas' talk on Monday

Quantum many-body methods

Quantum many-body methods

The BMBPT project

Particle-number-restored BMBPT formalism

Exact diagrammatic expansion with symmetry breaking and restoration [Duguet and Signoracci, J. Phys. G 44, 2017] \rightarrow Thomas' talk on Monday

Formalism actualization

Expand off-diagonal kernels $\left\langle\Psi_{0}^{\mathrm{A}}\right| H|\Phi(\phi)\rangle$

$$
\left\langle\Psi_{0}^{\mathrm{A}} \mid \Phi(\phi)\right\rangle
$$

Symmetry restoration

Diagonal reduction $\left\langle\Psi_{0}^{\mathrm{A}}\right| H|\Phi\rangle$

$$
\left\langle\Psi_{0}^{\mathrm{A}} \mid \Phi\right\rangle
$$

No symmetry restoration
Abinitio

The BMBPT project: Current step

Diagonal implementation

$$
\begin{gathered}
\left\langle\Psi_{0}^{\mathrm{A}}\right| H|\Phi\rangle \\
\left\langle\Psi_{0}^{A} \mid \Phi\right\rangle
\end{gathered}
$$

Bogoliubov Many-Body Perturbation Theory

- Bogoliubov vacuum $|\Phi\rangle, \beta_{k}|\Phi\rangle=0 \forall k$ with

$$
\begin{aligned}
& \beta_{k}=\sum_{p} U_{p k}^{*} c_{p}+V_{p k}^{*} c_{p}^{\dagger} \\
& \beta_{k}^{\dagger}=\sum_{p} U_{p k} c_{p}^{\dagger}+V_{p k} c_{p}
\end{aligned}
$$

- Particle number symmetry broken: $A|\Phi\rangle \neq \mathrm{A}|\Phi\rangle$
- Grand potential $\Omega \equiv H-\lambda A$ in qp basis, normal-ordered w.r.t. $|\Phi\rangle$

$$
\begin{aligned}
\Omega= & \Omega^{00}+\frac{1}{1!} \sum_{k_{1} k_{2}} \Omega_{k_{1} k_{2}}^{11} \beta_{k_{1}}^{\dagger} \beta_{k_{2}}+\frac{1}{2!} \sum_{k_{1} k_{2}}\left\{\Omega_{k_{1} k_{2}}^{20} \beta_{k_{1}}^{\dagger} \beta_{k_{2}}^{\dagger}+\Omega_{k_{1} k_{2}}^{02} \beta_{k_{2}} \beta_{k_{1}}\right\} \\
& +\frac{1}{(2!)^{2}} \sum_{k_{1} k_{2} k_{3} k_{4}} \Omega_{k_{1} k_{2} k_{3} k_{4}}^{22} \beta_{k_{1}}^{\dagger} \beta_{k_{2}}^{\dagger} \beta_{k_{4}} \beta_{k_{3}} \\
& +\frac{1}{3!} \sum_{k_{1} k_{2} k_{3} k_{4}}\left\{\Omega_{k_{1} k_{2} k_{3} k_{4}}^{31} \beta_{k_{1}}^{\dagger} \beta_{k_{2}}^{\dagger} \beta_{k_{3}}^{\dagger} \beta_{k_{4}}+\Omega_{k_{1} k_{2} k_{3} k_{4}}^{13} \beta_{k_{1}}^{\dagger} \beta_{k_{4}} \beta_{k_{3}} \beta_{k_{2}}\right\} \\
& +\frac{1}{4!} \sum_{k_{1} k_{2} k_{3} k_{4}}\left\{\Omega_{k_{1} k_{2} k_{3} k_{4}}^{40} \beta_{k_{1}}^{\dagger} \beta_{k_{2}}^{\dagger} \beta_{k_{3}}^{\dagger} \beta_{k_{4}}^{\dagger}+\Omega_{k_{1} k_{2} k_{3} k_{4}}^{04} \beta_{k_{4}} \beta_{k_{3}} \beta_{k_{2}} \beta_{k_{1}}\right\}+\ldots
\end{aligned}
$$

Bogoliubov Many-Body Perturbation Theory

- Fully correlated state obtained via the evolution operator

$$
\begin{aligned}
\left|\Psi_{0}^{\mathrm{A}}(\tau)\right\rangle & \equiv \mathcal{U}(\tau)|\Phi\rangle \\
& =e^{-\tau \Omega_{0}} \mathrm{~T} e^{-\int_{0}^{\tau} d \tau \Omega_{1}(\tau)}|\Phi\rangle
\end{aligned}
$$

Ground state energy of an open-shell nucleus

$$
\mathrm{E}_{0}^{\mathrm{A}}=\lim _{\tau \rightarrow \infty}\left\langle\Psi_{0}^{\mathrm{A}}(\tau)\right| \Omega|\Phi\rangle_{c}
$$

Bogoliubov Many-Body Perturbation Theory

- Fully correlated state obtained via the evolution operator

$$
\begin{aligned}
\left|\Psi_{0}^{\mathrm{A}}(\tau)\right\rangle & \equiv \mathcal{U}(\tau)|\Phi\rangle \\
& =e^{-\tau \Omega_{0}} \mathrm{~T} e^{-\int_{0}^{\tau} d \tau \Omega_{1}(\tau)}|\Phi\rangle
\end{aligned}
$$

Ground state energy of an open-shell nucleus

$$
\mathrm{E}_{0}^{\mathrm{A}}=\lim _{\tau \rightarrow \infty}\left\langle\Psi_{0}^{\mathrm{A}}(\tau)\right| \Omega|\Phi\rangle_{c}
$$

- Diagonal propagators (no anomalous)

$$
\begin{aligned}
G_{k_{1} k_{2}}^{+-(0)}\left(\tau_{1}, \tau_{2}\right) & \equiv \frac{\langle\Phi| \mathrm{T}\left[\beta_{k_{1}}^{\dagger}\left(\tau_{1}\right) \beta_{k_{2}}\left(\tau_{2}\right)\right]|\Phi\rangle}{\langle\Phi \mid \Phi\rangle} \\
G_{k_{1} k_{2}}^{-+(0)}\left(\tau_{1}, \tau_{2}\right) & \equiv \frac{\langle\Phi| \mathrm{T}\left[\beta_{k_{1}}\left(\tau_{1}\right) \beta_{k_{2}}^{\dagger}\left(\tau_{2}\right)\right]|\Phi\rangle}{\langle\Phi \mid \Phi\rangle}
\end{aligned}
$$

with antisymmetry relation

$$
G_{k_{1} k_{2}}^{+-(0)}\left(\tau_{1}, \tau_{2}\right)=-G_{k_{2} k_{1}}^{-+(0)}\left(\tau_{2}, \tau_{1}\right)
$$

Bogoliubov Many-Body Perturbation Theory

- Perturbative expansion of ground-state energy $\left(\Omega=\Omega_{0}+\Omega_{1}\right)$

$$
\begin{aligned}
& \mathrm{E}_{0}=\langle\Phi|\left\{\Omega(0)-\int_{0}^{\infty} d \tau_{1} \mathrm{\top}\left[\Omega_{1}\left(\tau_{1}\right) \Omega(0)\right]+\frac{1}{2!} \int_{0}^{\infty} d \tau_{1} d \tau_{2} \mathrm{~T}\left[\Omega_{1}\left(\tau_{1}\right) \Omega_{1}\left(\tau_{2}\right) \Omega(0)\right]+\ldots\right\}|\Phi\rangle_{c} \\
& =\sum_{p=0}^{\infty} \frac{(-1)^{p}}{p!} \sum_{i_{0}+j_{0}=2,4} \int_{0}^{\infty} d \tau_{1} \ldots d \tau_{p} \\
& i_{p}+\ddot{j}_{p}=2,4 \\
& \times \sum_{k_{1} \ldots k_{i_{1}}, k_{i_{1}+1} \cdots k_{i_{1}+j_{1}}} \frac{\Omega_{k_{1} \ldots k_{i_{1}} k_{i_{1}+1} \ldots k_{i_{1}}+j_{1}}^{i_{1} j_{1}}}{\left(i_{1}\right)!\left(j_{1}\right)!} \ldots \frac{\Omega_{l_{1} \ldots i_{i_{p}} l_{i_{p}+1} \ldots i_{i p}+j_{p}}^{i_{p} j_{p}}}{\left(i_{p}\right)!\left(j_{p}\right)!} \frac{\Omega_{m_{1} \ldots m_{i_{0}} m_{i_{0}+1} \ldots m_{i_{0}+j_{0}}^{i_{0} j_{0}}}^{\left(i_{0}\right)!\left(j_{0}\right)!}}{\left(j_{0}\right)} \\
& l_{1} \ldots i_{i_{p}}, i_{p}+1 \cdots i_{i_{p}+j_{p}} \\
& \times\langle\Phi| \mathrm{T}\left[\beta_{k_{1}}^{\dagger}\left(\tau_{1}\right) \ldots \beta_{k_{i_{1}}}^{\dagger}\left(\tau_{1}\right) \beta_{k_{i_{1}+j_{1}}}\left(\tau_{1}\right) \ldots \beta_{k_{i_{1}+1}}\left(\tau_{1}\right) \ldots \beta_{l_{1}}^{\dagger}\left(\tau_{p}\right) \ldots \beta_{{l_{p}}_{p}}^{\dagger}\left(\tau_{p}\right) \ldots\right. \\
& \left.\times \beta_{l_{i_{p}+j_{p}}}\left(\tau_{p}\right) \ldots \beta_{l_{i_{p}+1}}\left(\tau_{p}\right) \beta_{m_{1}}^{\dagger}(0) \ldots \beta_{m_{i_{0}}}^{\dagger}(0) \beta_{m_{i_{0}+j_{0}}}(0) \ldots \beta_{m_{i_{0}+1}}(0)\right]|\Phi\rangle_{c}
\end{aligned}
$$

$$
\text { Diagonal case: } \varphi=0
$$

- No anomalous propagator, no self-contraction
- Standard Wick's theorem with respect to $|\Phi\rangle$

Building blocks of the diagrammatic

- Normal-ordered form of Ω with respect to $|\Phi\rangle$

$$
\Omega=\underset{\Omega^{00}}{\bullet}+\oint_{\Omega^{11}}^{1}+\underset{\Omega^{20}}{\Omega}+\ldots
$$

- Diagonal propagators

$$
G_{k_{1} k_{2}}^{+-(0)}\left(\tau_{1}, \tau_{2}\right) \prod_{k_{1} \tau_{1}}^{k_{2} \tau_{2}} G_{k_{1} k_{2}}^{-+(0)}\left(\tau_{1}, \tau_{2}\right) \prod_{k_{1} \tau_{1}}^{k_{2} \tau_{2}}
$$

- Main diagrammatic rules from Wick theorem
\diamond No external legs
\diamond No oriented loop between vertices
\diamond No self-contraction
\diamond Propagators go out of the Ω vertex at time 0
\diamond Equivalent lines
\diamond Discard topologically equivalent diagrams

The BMBPT project: Low-order derivation

Diagonal implementation

$$
\begin{gathered}
\left\langle\Psi_{0}^{\mathrm{A}}\right| H|\Phi\rangle \\
\left\langle\Psi_{0}^{\mathrm{A}} \mid \Phi\right\rangle
\end{gathered}
$$

BMBPT diagrams landscape

Low-order diagrams

- First- and second-order diagrams [Duguet and Signoracci, J. Phys. G 44, 2017]
PE0.1

PE1. 1

PE1.2
- Third-order diagrams

Validation of the manual derivation by checking the MBPT limit

Derivation of a third-order diagram

Feynman (time-dependent) and Goldstone (time-integrated) expressions:

$$
\begin{aligned}
\mathrm{PE} 2.6 & =-\frac{1}{3!} \sum_{k_{1} k_{2} k_{3} k_{4} k_{8}} \Omega_{k_{1} k_{2} k_{3} k_{4}}^{40} \Omega_{k_{1} k_{2} k_{3} k_{8}}^{04} \breve{\Omega}_{k_{8} k_{4}}^{11} \int_{0}^{\infty} \mathrm{d} \tau_{1} \mathrm{~d} \tau_{2} \theta\left(\tau_{1}-\tau_{2}\right) e^{-\tau_{1}\left(E_{k_{1}}+E_{k_{2}}+E_{k_{3}}+E_{k_{8}}\right)} e^{\tau_{2}\left(E_{k_{8}}-E_{k_{4}}\right)} \\
& =-\frac{1}{3!} \sum_{k_{1} k_{2} k_{3} k_{4} k_{8}} \frac{\Omega_{k_{1} k_{2} k_{3} k_{4}}^{40} \Omega_{k_{1} k_{2} k_{3} k_{8}}^{04} \breve{\Omega}_{k_{8} k_{4}}^{11}}{\left(E_{k_{1}}+E_{k_{2}}+E_{k_{3}}+E_{k_{4}}\right)\left(E_{k_{1}}+E_{k_{2}}+E_{k_{3}}+E_{k_{8}}\right)}
\end{aligned}
$$

Status of manual derivation and implementation

- All diagrams from 2 N vertices derived and implemented up to order 3 [PA, Tichai, Ebran, Duguet]
- Want to go to higher orders
\diamond At least up to order 4
- Check convergence pattern
- Grasp effect from quadruples $\leftrightarrow 8$ qp excitations
\diamond Derivation time-consuming
\diamond Derivation error-prone

Status of manual derivation and implementation

- All diagrams from 2 N vertices derived and implemented up to order 3 [PA, Tichai, Ebran, Duguet]
- Want to go to higher orders
\diamond At least up to order 4
- Check convergence pattern
- Grasp effect from quadruples $\leftrightarrow 8$ qp excitations
\diamond Derivation time-consuming
\diamond Derivation error-prone

Develop automatic tool

\diamond To generate all possible connected diagrams at order n
\diamond To extract associated time-integrated expressions
\diamond To be both quick and safe

The BMBPT project: Automatic derivation

Diagonal implementation

$$
\begin{gathered}
\left\langle\Psi_{0}^{\mathrm{A}}\right| H|\Phi\rangle \\
\left\langle\Psi_{0}^{\mathrm{A}} \mid \Phi\right\rangle
\end{gathered}
$$

Ab initio
Realist H
High order

Manual derivation of order 3

Check against MBPT limit

Automatic derivation
[PA, Duguet, Tichai, Lasseri, Ebran, in prep.]

Numerical implementation

Why and how?

Our goal

An automatic and systematic way of producing diagrams

Our tool
Adjacency matrices in graph theory

Our challenge

From BMBPT diagrammatic rules to constraints on matrices

Graphs and adjacency matrix

Each Feynman diagram to be represented by an adjacency matrix

- $a_{i j}$ indicate the number of edges going from node i to node j

$$
A=\left(\begin{array}{lll}
0 & 2 & 2 \\
0 & 0 & 2 \\
0 & 0 & 0
\end{array}\right) \Leftrightarrow
$$

\diamond Carry detailed information for directed graphs
\diamond Symmetry properties and connectivity properties directly readable

- Only two propagators, readable as one once reading direction is fixed
\diamond Perfectly adapted for diagonal BMBPT
\diamond Extension needed for off-diagonal diagrams with anomalous propagator

Constraints from the diagrammatic rules

Each vertex belongs to $\Omega^{[2]}$, $\Omega^{[4]}$ or $\Omega^{[6]}$
For each vertex $i, \sum_{j}\left(a_{i j}+a_{j i}\right)$ is 2,4 or 6

No self-contraction

Every diagonal element is zero

Every propagator coming out of the vertex at time 0 goes upward
First column of the matrix is zero

No loop between vertices
Can restrict to upper triangular matrices

Generate BMBPT diagrams

- Generate all upper triangular $n \times n$ matrices for n-th order BMBPT diagrams
\diamond Fill the matrices "vertex-wise" with all allowed integers
\diamond Check the degree of each vertex before moving on

$$
\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right) \rightarrow\left(\begin{array}{ccc}
0 & a_{12} & a_{13} \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right) \rightarrow\left(\begin{array}{ccc}
0 & a_{12} & a_{13} \\
0 & 0 & a_{23} \\
0 & 0 & 0
\end{array}\right)
$$

- Discard matrices leading to topologically identical diagrams
- Read the matrix and translate it into drawing instructions

```
\begin{fmfgraph*}(60,60)
\fmftop{v2}\fmfbottom{v0}
\mf{phantom}{v0,v1}
\mfv{d.shape=circle,d.filled=full,d.size=3thick}{v0}
\fmf{phantom}{v1,v2}
\mfv{d.shape=circle,d.filled=full,d.size=3thick}{v1}
\mfv{d.shape=circle,d.filled=full,d.size=3thick}{v2}
\fmffreeze
\fmf{prop_pm}{v0,v1}
\fmf{prop_pm,right=0.6}{v0,v2}
\fmf{prop_pm}{v1,v2}
\fmf{prop_pm,left=0.5}{v1,v2}
\fmf{prop_pm,right=0.5}{v1,v2}
\end{fmfgraph*}
```


Time to cook some diagrams

Run the code at order 4 with 2 N and 3 N interactions, obtain...

...and 388 others!

Status of the numerical derivation

- Number of diagrams with 2 N interactions (using an HFB vacuum)
$\diamond 8$ (1) diagrams at order 3
$\diamond 59$ (10) diagrams at order 4
$\diamond 568$ (82) diagrams at order 5
$\diamond 6805$ (938) diagrams at order 6
- Number of diagrams with 2 N and 3 N interactions (using an HFB vacuum)
$\diamond 23$ (8) diagrams at order 3
$\diamond 396$ (177) diagrams at order 4
$\diamond 10716$ (5 055) diagrams at order 5
$\diamond 100000+$ diagrams at order 6 ?
- Obtained in only a few minutes...

Automated expression derivation

All BMBPT diagrams produced automatically at a given order
\Leftrightarrow Need to derive automatically the diagrams' expressions

Automated expression derivation

All BMBPT diagrams produced automatically at a given order
\Leftrightarrow Need to derive automatically the diagrams' expressions

- Feynman diagrams recast different time-orderings
\checkmark Less diagrams to set up
\mathbf{x} But time-integrated (Goldstone) expressions are to be coded

Automated expression derivation

All BMBPT diagrams produced automatically at a given order
\Leftrightarrow Need to derive automatically the diagrams' expressions

- Feynman diagrams recast different time-orderings
\checkmark Less diagrams to set up
\mathbf{x} But time-integrated (Goldstone) expressions are to be coded
- Goldstone diagrams capture each time ordering separately
\checkmark Time-integrated expressions obtained directly from diagrammatic rules
X Many more diagrams to consider

Automated expression derivation

All BMBPT diagrams produced automatically at a given order
\Leftrightarrow Need to derive automatically the diagrams' expressions

- Feynman diagrams recast different time-orderings
\checkmark Less diagrams to set up
\boldsymbol{x} But time-integrated (Goldstone) expressions are to be coded
- Goldstone diagrams capture each time ordering separately
\checkmark Time-integrated expressions obtained directly from diagrammatic rules
X Many more diagrams to consider
Challenge: Extract Goldstone expressions from Feynman diagrams
\diamond Capture all time ordering at once
\diamond Challenging because of structure of corresponding time integrals
\diamond Undone task to our knowledge (even for standard diagrammatic)

Extract the Feynman expression of the diagrams

- Extract graph structure info as well
\diamond Associate labels with vertices, propagators, etc.
\diamond In- / out-degree of vertices associated with annihilators / creators
\diamond Run routines for symmetry factors
- Have your code write the corresponding equations in your .tex file

$$
\begin{array}{r}
\frac{-(-1)^{3}}{(3!)^{2}} \sum_{k_{i}} \Omega_{k_{1} k_{2} k_{3} k_{4}}^{40} \Omega_{k_{5} k_{6} k_{7} k_{8}}^{40} \Omega_{k_{5} k_{1} k_{2} k_{3}}^{04} \Omega_{k_{6} k_{7} k_{8} k_{4}}^{04} \int_{0}^{\tau} \mathrm{d} \tau_{1} \mathrm{~d} \tau_{2} \mathrm{~d} \tau_{3} \theta\left(\tau_{2}-\tau_{1}\right) \theta\left(\tau_{3}-\tau_{1}\right) \\
\times e^{-\tau_{1}\left(-E_{k_{5}}-E_{k_{6}}-E_{k_{7}}-E_{k_{8}}\right)} e^{-\tau_{2}\left(E_{k_{1}}+E_{k_{2}}+E_{k_{3}}+E_{k_{5}}\right)} e^{-\tau_{3}\left(E_{k_{4}}+E_{k_{6}}+E_{k_{7}}+E_{k_{8}}\right)}
\end{array}
$$

Extract the Feynman expression of the diagrams

- Extract graph structure info as well
\diamond Associate labels with vertices, propagators, etc.
\diamond In- / out-degree of vertices associated with annihilators / creators
\diamond Run routines for symmetry factors
- Have your code write the corresponding equations in your .tex file

$$
\begin{array}{r}
\frac{-(-1)^{3}}{(3!)^{2}} \sum_{k_{i}} \Omega_{k_{1} k_{2} k_{3} k_{4}}^{40} \Omega_{k_{5} k_{6} k_{7} k_{8}}^{40} \Omega_{k_{5} k_{1} k_{2} k_{3}}^{04} \Omega_{k_{6} k_{7} k_{8} k_{4}}^{04} \int_{0}^{\tau} \mathrm{d} \tau_{1} \mathrm{~d} \tau_{2} \mathrm{~d} \tau_{3} \theta\left(\tau_{2}-\tau_{1}\right) \theta\left(\tau_{3}-\tau_{1}\right) \\
\times e^{-\tau_{1}\left(-E_{k_{5}}-E_{k_{6}}-E_{k_{7}}-E_{k_{8}}\right)} e^{-\tau_{2}\left(E_{k_{1}}+E_{k_{2}}+E_{k_{3}}+E_{k_{5}}\right)} e^{-\tau_{3}\left(E_{k_{4}}+E_{k_{6}}+E_{k_{7}}+E_{k_{8}}\right)}
\end{array}
$$

Sign, prefactor and operators left unchanged in Goldstone expression
\Rightarrow Only need to extract the denominator

- Introduce time-structure diagrams (TSDs)
\diamond Links carry time-ordering relations, moving towards higher times
\diamond Contain only the minimal set of links to describe all the time relations

- Determine the time-structure diagram (TSD) associated to BMBPT one
\diamond Propagators carry time-ordering relations
$\diamond \Omega$ vertex at time 0 is a lower limit for time
\diamond One TSD recast several Feynman, even more Goldstone
- Each TSD produced from the BMBPT diagram
\diamond Replace propagators by links
\diamond Add links between vertex at time 0 and other vertices
\diamond Remove links carrying unnecessary information

- Extraction of time-integrated expression depends on tree / non-tree

Denominator extraction algorithm for tree TSDs

For each perturbation vertex in the diagram with an associated tree TSD
(1) Determine all its descendants using the TSD diagram
(2) Form a subgraph using the vertex and its descendants
(3) For all propagators entering the subgraph, add the associated qpe

$\frac{-(-1)^{3}}{(3!)^{2}} \sum_{k_{i}} \frac{\Omega_{k_{1} k_{2} k_{3} k_{4}}^{40} \Omega_{k_{5} k_{6} k_{7} k_{8}}^{40} \Omega_{k_{5} k_{1} k_{2} k_{3}}^{04} \Omega_{k_{6} k_{7} k_{8} k_{4}}^{04}}{\left(E_{k_{1}}+E_{k_{2}}+E_{k_{3}}+E_{k_{4}}\right)\left(E_{k_{1}}+E_{k_{2}}+E_{k_{3}}+E_{k_{5}}\right)\left(E_{k_{4}}+E_{k_{6}}+E_{k_{7}}+E_{k_{8}}\right)}$

Denominator extraction algorithm for tree TSDs

For each perturbation vertex in the diagram with an associated tree TSD
(1) Determine all its descendants using the TSD diagram
(2) Form a subgraph using the vertex and its descendants
(3) For all propagators entering the subgraph, add the associated qpe

$\frac{-(-1)^{3}}{(3!)^{2}} \sum_{k_{i}} \frac{\Omega_{k_{1} k_{2} k_{3} k_{4}}^{40} \Omega_{k_{5} k_{6} k_{7} k_{8}}^{40} \Omega_{k_{5} k_{1} k_{2} k_{3}}^{04} \Omega_{k_{6} k_{7} k_{8} k_{4}}^{04}}{\left(E_{k_{1}}+E_{k_{2}}+E_{k_{3}}+E_{k_{4}}\right)\left(E_{k_{1}}+E_{k_{2}}+E_{k_{3}}+E_{k_{5}}\right)\left(E_{k_{4}}+E_{k_{6}}+E_{k_{7}}+E_{k_{8}}\right)}$

Denominator extraction algorithm for tree TSDs

For each perturbation vertex in the diagram with an associated tree TSD
(1) Determine all its descendants using the TSD diagram
(2) Form a subgraph using the vertex and its descendants
(3) For all propagators entering the subgraph, add the associated qpe

$\frac{-(-1)^{3}}{(3!)^{2}} \sum_{k_{i}} \frac{\Omega_{k_{1} k_{2} k_{3} k_{4}}^{40} \Omega_{k_{5} k_{6} k_{7} k_{8}}^{40} \Omega_{k_{5} k_{1} k_{2} k_{3}}^{04} \Omega_{k_{6} k_{7} k_{8} k_{4}}^{04}}{\left(E_{k_{1}}+E_{k_{2}}+E_{k_{3}}+E_{k_{4}}\right)\left(E_{k_{1}}+E_{k_{2}}+E_{k_{3}}+E_{k_{5}}\right)\left(E_{k_{4}}+E_{k_{6}}+E_{k_{7}}+E_{k_{8}}\right)}$

Denominator extraction algorithm for tree TSDs

For each perturbation vertex in the diagram with an associated tree TSD
(1) Determine all its descendants using the TSD diagram
(2) Form a subgraph using the vertex and its descendants
(3) For all propagators entering the subgraph, add the associated qpe

$$
\frac{-(-1)^{3}}{(3!)^{2}} \sum_{k_{i}} \frac{\Omega_{k_{1} k_{2} k_{3} k_{4}}^{40} \Omega_{k_{5} k_{6} k_{7} k_{8}}^{40} \Omega_{k_{5} k_{1} k_{2} k_{3}} \Omega_{k_{6} k_{7} k_{8} k_{4}}^{04}}{\left(E_{k_{1}}+E_{k_{2}}+E_{k_{3}}+E_{k_{4}}\right)\left(E_{k_{1}}+E_{k_{2}}+E_{k_{3}}+E_{k_{5}}\right)\left(E_{k_{4}}+E_{k_{6}}+E_{k_{7}}+E_{k_{8}}\right)}
$$

Denominator extraction and integral structure

Why a so simple denominator algorithm for all trees?

Link between tree TSD structure and time integrals structure

$$
\begin{array}{rl}
\tau_{3} & D \\
\tau_{\tau \rightarrow \infty} \int_{0}^{\tau} d \tau_{1} d \tau_{2} d \tau_{3} \theta\left(\tau_{3}-\tau_{1}\right) \theta\left(\tau_{2}-\tau_{1}\right) e^{a \tau_{1}} e^{b \tau_{2}} e^{c \tau_{3}} \\
& =\lim _{\tau \rightarrow \infty} \int_{0}^{\tau} d \tau_{1} e^{a \tau_{1}} \int_{0}^{\tau_{1}} d \tau_{2} e^{b \tau_{2}} \int_{0}^{\tau_{1}} d \tau_{3} e^{c \tau_{3}} \\
& =\lim _{\tau \rightarrow \infty} \frac{1}{b c} \int_{0}^{\tau} d \tau_{1} e^{a \tau_{1}}\left(e^{b \tau}-e^{b \tau_{1}}\right)\left(e^{c \tau}-e^{c \tau_{1}}\right) \\
& =\frac{1}{b c(a+b+c)}
\end{array}
$$

- Integrate from the leaves first
- Go down each branch
- Each vertex depends on the vertices above it

Algorithm for denominator extraction: Special case

Same algorithm applied on linear tree

Classic Goldstone rule recovered on a Feynman graph

Algorithm for denominator extraction: Special case

Same algorithm applied on linear tree

Classic Goldstone rule recovered on a Feynman graph

Algorithm for denominator extraction: Special case

Same algorithm applied on linear tree

Classic Goldstone rule recovered on a Feynman graph

Algorithm for denominator extraction: Special case

Same algorithm applied on linear tree

Classic Goldstone rule recovered on a Feynman graph

Algorithm for cycle finding

- For each node_a with out_degree ≥ 2 :
\diamond For each node_b different from node_a:
- List all paths going from node_a to node_b
- If in_degree(node_b) ≥ 2 and nb_paths ≥ 2 :
node_a and node_b are end nodes of the cycle
- Check that the two paths share only their end ones

Algorithm for cycle finding

- For each node_a with out_degree ≥ 2 :
\diamond For each node_b different from node_a:
- List all paths going from node_a to node_b
- If in_degree(node_b) ≥ 2 and nb_paths ≥ 2 :
node_a and node_b are end nodes of the cycle
- Check that the two paths share only their end ones

Algorithm for cycle finding

- For each node_a with out_degree ≥ 2 :
\diamond For each node_b different from node_a:
- List all paths going from node_a to node_b
- If in_degree(node_b) ≥ 2 and nb_paths ≥ 2 :
node_a and node_b are end nodes of the cycle
- Check that the two paths share only their end ones

Algorithm for cycle finding

- For each node_a with out_degree ≥ 2 :
\diamond For each node_b different from node_a:
- List all paths going from node_a to node_b
- If in_degree(node_b) ≥ 2 and nb_paths ≥ 2 :
node_a and node_b are end nodes of the cycle
- Check that the two paths share only their end ones

\Rightarrow Two pairs of end nodes producing cycles to be addressed

Algorithm for cycle finding

- For each node_a with out_degree ≥ 2 :
\diamond For each node_b different from node_a:
- List all paths going from node_a to node_b
- If in_degree(node_b) ≥ 2 and nb_paths ≥ 2 :
node_a and node_b are end nodes of the cycle
- Check that the two paths share only their end ones

\Rightarrow Two pairs of end nodes producing cycles to be addressed

Algorithm for cycle disentangling

- Set node_to_insert as the first node of path_1 after start node
- For each daughter_node in path_2 but the starting node:
\diamond Make a copy of the graph
\diamond Add an edge from node_to_insert to daughter_node
\diamond Set mother_node as the node preceding daughter_node in path_2
\diamond Add an edge from mother_node to daughter_node
\diamond Remove the edges carrying unnecessary information

Algorithm for cycle disentangling

- Set node_to_insert as the first node of path_1 after start node
- For each daughter_node in path_2 but the starting node:
\diamond Make a copy of the graph
\diamond Add an edge from node_to_insert to daughter_node
\diamond Set mother_node as the node preceding daughter_node in path_2
\diamond Add an edge from mother_node to daughter_node
\diamond Remove the edges carrying unnecessary information

Algorithm for cycle disentangling

- Set node_to_insert as the first node of path_1 after start node
- For each daughter_node in path_2 but the starting node:
\diamond Make a copy of the graph
\diamond Add an edge from node_to_insert to daughter_node
\diamond Set mother_node as the node preceding daughter_node in path_2
\diamond Add an edge from mother_node to daughter_node
\diamond Remove the edges carrying unnecessary information

Algorithm for cycle disentangling

- Set node_to_insert as the first node of path_1 after start node
- For each daughter_node in path_2 but the starting node:
\diamond Make a copy of the graph
\diamond Add an edge from node_to_insert to daughter_node
\diamond Set mother_node as the node preceding daughter_node in path_2
\diamond Add an edge from mother_node to daughter_node
\diamond Remove the edges carrying unnecessary information

Denominator extraction: Non-tree case

If the associated time-structure diagram is not a tree:

- Separate the TSD in a sum of tree TSDs
- Apply the tree denominator algorithm, sum the results

$$
\begin{aligned}
& \frac{-(-1)^{3}}{(3!)^{2}} \sum_{k_{i}} \Omega_{k_{1} k_{2} k_{3} k_{4}}^{40} \Omega_{k_{5} k_{1} k_{2} k_{3}}^{13} \Omega_{k_{6} k_{7} k_{8} k_{4}}^{31} \Omega_{k_{6} k_{7} k_{8} k_{5}}^{04} \\
& \times {\left[\frac{1}{\left(E_{k_{1}}+E_{k_{2}}+E_{k_{3}}+E_{k_{6}}+E_{k_{7}}+E_{k_{8}}\right)\left(E_{k_{1}}+E_{k_{2}}+E_{k_{3}}+E_{k_{4}}\right)\left(E_{k_{5}}+E_{k_{6}}+E_{k_{7}}+E_{k_{8}}\right)}\right.} \\
&\left.\quad+\frac{1}{\left(E_{k_{1}}+E_{k_{2}}+E_{k_{3}}+E_{k_{4}}\right)\left(E_{k_{4}}+E_{k_{5}}\right)\left(E_{k_{5}}+E_{k_{6}}+E_{k_{7}}+E_{k_{8}}\right)}\right]
\end{aligned}
$$

Denominator extraction: Non-tree case

If the associated time-structure diagram is not a tree:

- Separate the TSD in a sum of tree TSDs
- Apply the tree denominator algorithm, sum the results

Denominator extraction: Non-tree case

If the associated time-structure diagram is not a tree:

- Separate the TSD in a sum of tree TSDs
- Apply the tree denominator algorithm, sum the results

$$
\begin{aligned}
& \frac{-(-1)^{3}}{(3!)^{2}} \sum_{k_{i}} \Omega_{k_{1} k_{2} k_{3} k_{4}}^{40} \Omega_{k_{5} k_{1} k_{2} k_{3}}^{13} \Omega_{k_{6} k_{7} k_{8} k_{4}}^{31} \Omega_{k_{6} k_{7} k_{8} k_{5}}^{04} \\
& \times {\left[\frac{1}{\left(E_{k_{1}}+E_{k_{2}}+E_{k_{3}}+E_{k_{6}}+E_{k_{7}}+E_{k_{8}}\right)\left(E_{k_{1}}+E_{k_{2}}+E_{k_{3}}+E_{k_{4}}\right)\left(E_{k_{5}}+E_{k_{6}}+E_{k_{7}}+E_{k_{8}}\right)}\right.} \\
&\left.\quad+\frac{1}{\left(E_{k_{1}}+E_{k_{2}}+E_{k_{3}}+E_{k_{4}}\right)\left(E_{k_{4}}+E_{k_{5}}\right)\left(E_{k_{5}}+E_{k_{6}}+E_{k_{7}}+E_{k_{8}}\right)}\right]
\end{aligned}
$$

Denominator extraction: Non-tree case

If the associated time-structure diagram is not a tree:

- Separate the TSD in a sum of tree TSDs
- Apply the tree denominator algorithm, sum the results

$$
\begin{aligned}
& \frac{-(-1)^{3}}{(3!)^{2}} \sum_{k_{i}} \Omega_{k_{1} k_{2} k_{3} k_{4}}^{40} \Omega_{k_{5} k_{1} k_{2} k_{3}}^{13} \Omega_{k_{6} k_{7} k_{8} k_{4}}^{31} \Omega_{k_{6} k_{7} k_{8} k_{5}}^{04} \\
& \times {\left[\frac{1}{\left(E_{k_{1}}+E_{k_{2}}+E_{k_{3}}+E_{k_{6}}+E_{k_{7}}+E_{k_{8}}\right)\left(E_{k_{1}}+E_{k_{2}}+E_{k_{3}}+E_{k_{4}}\right)\left(E_{k_{5}}+E_{k_{6}}+E_{k_{7}}+E_{k_{8}}\right)}\right.} \\
&\left.\quad+\frac{1}{\left(E_{k_{1}}+E_{k_{2}}+E_{k_{3}}+E_{k_{4}}\right)\left(E_{k_{4}}+E_{k_{5}}\right)\left(E_{k_{5}}+E_{k_{6}}+E_{k_{7}}+E_{k_{8}}\right)}\right]
\end{aligned}
$$

Denominator extraction: Non-tree case

If the associated time-structure diagram is not a tree:

- Separate the TSD in a sum of tree TSDs
- Apply the tree denominator algorithm, sum the results

$$
\begin{aligned}
& \frac{-(-1)^{3}}{(3!)^{2}} \sum_{k_{i}} \Omega_{k_{1} k_{2} k_{3} k_{4}}^{40} \Omega_{k_{5} k_{1} k_{2} k_{3}}^{13} \Omega_{k_{6} k_{7} k_{8} k_{4}}^{31} \Omega_{k_{6} k_{7} k_{8} k_{5}}^{04} \\
& \times {\left[\frac{1}{\left(E_{k_{1}}+E_{k_{2}}+E_{k_{3}}+E_{k_{6}}+E_{k_{7}}+E_{k_{8}}\right)\left(E_{k_{1}}+E_{k_{2}}+E_{k_{3}}+E_{k_{4}}\right)\left(E_{k_{5}}+E_{k_{6}}+E_{k_{7}}+E_{k_{8}}\right)}\right.} \\
&\left.\quad+\frac{1}{\left(E_{k_{1}}+E_{k_{2}}+E_{k_{3}}+E_{k_{4}}\right)\left(E_{k_{4}}+E_{k_{5}}\right)\left(E_{k_{5}}+E_{k_{6}}+E_{k_{7}}+E_{k_{8}}\right)}\right]
\end{aligned}
$$

Denominator extraction: Non-tree case

If the associated time-structure diagram is not a tree:

- Separate the TSD in a sum of tree TSDs
- Apply the tree denominator algorithm, sum the results

$$
\begin{aligned}
& \frac{-(-1)^{3}}{(3!)^{2}} \sum_{k_{i}} \Omega_{k_{1} k_{2} k_{3} k_{4}}^{40} \Omega_{k_{5} k_{1} k_{2} k_{3}}^{13} \Omega_{k_{6} k_{7} k_{8} k_{4}}^{31} \Omega_{k_{6} k_{7} k_{8} k_{5}}^{04} \\
& \times {\left[\frac{1}{\left(E_{k_{1}}+E_{k_{2}}+E_{k_{3}}+E_{k_{6}}+E_{k_{7}}+E_{k_{8}}\right)\left(E_{k_{1}}+E_{k_{2}}+E_{k_{3}}+E_{k_{4}}\right)\left(E_{k_{5}}+E_{k_{6}}+E_{k_{7}}+E_{k_{8}}\right)}\right.} \\
&\left.\quad+\frac{1}{\left(E_{k_{1}}+E_{k_{2}}+E_{k_{3}}+E_{k_{4}}\right)\left(E_{k_{4}}+E_{k_{5}}\right)\left(E_{k_{5}}+E_{k_{6}}+E_{k_{7}}+E_{k_{8}}\right)}\right]
\end{aligned}
$$

Denominator extraction: Non-tree case

If the associated time-structure diagram is not a tree:

- Separate the TSD in a sum of tree TSDs
- Apply the tree denominator algorithm, sum the results

$$
\begin{aligned}
& \frac{-(-1)^{3}}{(3!)^{2}} \sum_{k_{i}} \Omega_{k_{1} k_{2} k_{3} k_{4}}^{40} \Omega_{k_{5} k_{1} k_{2} k_{3}}^{13} \Omega_{k_{6} k_{7} k_{8} k_{4}}^{31} \Omega_{k_{6} k_{7} k_{8} k_{5}}^{04} \\
& \times \\
& \times\left[\frac{1}{\left(E_{k_{1}}+E_{k_{2}}+E_{k_{3}}+E_{k_{6}}+E_{k_{7}}+E_{k_{8}}\right)\left(E_{k_{1}}+E_{k_{2}}+E_{k_{3}}+E_{k_{4}}\right)\left(E_{k_{5}}+E_{k_{6}}+E_{k_{7}}+E_{k_{8}}\right)}\right. \\
& \left.\quad+\frac{1}{\left(E_{k_{1}}+E_{k_{2}}+E_{k_{3}}+E_{k_{4}}\right)\left(E_{k_{4}}+E_{k_{5}}\right)\left(E_{k_{5}}+E_{k_{6}}+E_{k_{7}}+E_{k_{8}}\right)}\right]
\end{aligned}
$$

All BMBPT expressions produced automatically at a given order
\Rightarrow Need to implement them numerically

The BMBPT project: Current step

Diagonal implementation

$$
\begin{gathered}
\left\langle\Psi_{0}^{\mathrm{A}}\right| H|\Phi\rangle \\
\left\langle\Psi_{0}^{A} \mid \Phi\right\rangle
\end{gathered}
$$

Ab initio
Realist H
High order

Oxygen chain calculations - Ground state energies

- $E^{(3)}$ one order of magnitude smaller than $E^{(2)}$
- Computer resources independent of system size: 10-20 CPU hours
- Error estimate on 3rd order correction: $\Delta E=\Delta A^{(3)} \cdot 8 \mathrm{MeV} / \mathrm{A} \approx 5 \mathrm{MeV}$
- Calculations of Ca, Ni and Sn chains coming soon

Oxygen chain calculations - Comparisons

- Consistent with different non-perturbative methods
- Comparable accuracy within 1-5 \% of computing time
- Computational scaling independent of system size

Oxygen chain calculations - S 2 n

- HFB
- BMBPT(2)
- BMBPT(3)
- IM-SRG(2)
$\triangle \operatorname{GSCGF}(A D C(2))$
- Exp
$\hbar \Omega=20 \mathrm{MeV}$
$\alpha=0.08 \mathrm{fm}^{4}$
$e_{\text {max }}=12$
$E_{3 \text { max }}=14$
- Very good agreement with state-of-the-art approaches
- Reproduction of experimentally observed shell gaps
- Little overall effect of particle-number breaking (similar to GGF)
- Particle-number restoration could impact near magic numbers
- BMBPT diagrams now generated automatically
\checkmark Fast and error-safe
\checkmark No intrinsic upper limit on the order
- BMBPT analytical expressions automatically derived to all order as well
\checkmark Feynman and Goldstone expressions for all diagrams
\checkmark Order 4 to be implemented in BMBPT code in near future
- Project still moving on
\diamond Code to be published
\diamond Open to collaborations regarding other diagrammatic methods
- Numerical implementation of BMBPT(2) and BMBPT(3)
\checkmark Very low-cost correlated method
\checkmark Competes with state-of-the-art ab initio methods

Perspectives

- Extend the scope of ADG
\diamond Gorkov SCGF
\diamond Off-diagonal BMBPT
- Extend the scope of diagonal BMBPT
\diamond Excited states and new observables
\diamond Developments used in parallel in future BCC implementation
- Move towards symmetry-restored BMBPT
\diamond Extensive work on the theory
\diamond Automated diagram generation and derivation
\diamond Implementation in the BMBPT numerical code

Our collaborators

BMBPT Project

P. Arthuis
T. Duguet
J.-P. Ebran
A. Tichai

On broader aspects

M. Drissi
J. Ripoche

TECHNISCHE
UNIVERSITAT
DARMSTADT
R. Roth
H. Hergert
$\frac{\text { MICHIGAN STATE }}{\text { UN I VERS I T Y }}$

