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Quantum many-body methods

Expansion methods around unperturbed product state
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On symmetry breaking

• Symmetry breaking helps incorporating non-dynamical correlations:

� Superfluid character: U(1) (particle number)

� Deformations: SU(2) (angular momentum)

• But nuclei carry good quantum numbers (e.g. number of particles)

⇒ Symmetries must eventually be restored

• See Thomas’ talk on Monday
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Quantum many-body methods

New methods recently proposed and implemented
• GSCGF, BCC [Somà et al. 2011, Signoracci et al. 2014]

• Sym.-res. BCC & sym.-res. BMBPT [Duguet 2015, Duguet & Signoracci 2017, Qiu et al. 2017]
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Quantum many-body methods

MBPT reimplemented using SRG-evolved H in closed shell [Tichai et al. 2016] → Robert’s talk

å MBPT competes with non-perturbative methods
Current objective: extend to (symmetry-projected) BMBPT for open shell
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The BMBPT project

Particle-number-restored BMBPT formalism

Exact diagrammatic expansion with symmetry breaking and restoration
[Duguet and Signoracci, J. Phys. G 44, 2017] → Thomas’ talk on Monday

Formalism actualization

Expand off-diagonal kernels
〈ΨA

0 |H|Φ(φ)〉
〈ΨA

0 |Φ(φ)〉
Symmetry restoration

Diagonal reduction
〈ΨA

0 |H|Φ〉
〈ΨA

0 |Φ〉
No symmetry restoration

Ab initio

Realist H
High order
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The BMBPT project: Current step

Diagonal implementation
〈ΨA

0 |H|Φ〉
〈ΨA

0 |Φ〉

Ab initio

Realist H
High order

Manual derivation of order 3

Check against MBPT limit

Automatic derivation
[PA, Duguet, Tichai, Lasseri, Ebran, in prep.]

Numerical implementation

[PA, Tichai, Hergert, Roth, Duguet, in prep.]
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Bogoliubov Many-Body Perturbation Theory

• Bogoliubov vacuum |Φ〉, βk |Φ〉 = 0 ∀k with

βk =
∑

p

U∗pk cp + V ∗pk c†p

β†k =
∑

p

Upk c†p + Vpk cp

• Particle number symmetry broken: A|Φ〉 6= A|Φ〉

• Grand potential Ω ≡ H − λA in qp basis, normal-ordered w.r.t. |Φ〉

Ω = Ω00 + 1
1!
∑
k1k2

Ω11
k1k2β

†
k1βk2 + 1

2!
∑
k1k2

{
Ω20

k1k2β
†
k1β
†
k2 + Ω02

k1k2βk2βk1

}
+ 1

(2!)2
∑

k1k2k3k4

Ω22
k1k2k3k4β

†
k1β
†
k2βk4βk3

+ 1
3!
∑

k1k2k3k4

{
Ω31

k1k2k3k4β
†
k1β
†
k2β
†
k3βk4 + Ω13

k1k2k3k4β
†
k1βk4βk3βk2

}
+ 1

4!
∑

k1k2k3k4

{
Ω40

k1k2k3k4β
†
k1β
†
k2β
†
k3β
†
k4 + Ω04

k1k2k3k4βk4βk3βk2βk1

}
+ . . .
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Bogoliubov Many-Body Perturbation Theory

• Fully correlated state obtained via the evolution operator

|ΨA
0 (τ)〉 ≡ U(τ)|Φ〉

= e−τΩ0Te−
∫ τ
0

dτΩ1(τ)|Φ〉

Ground state energy of an open-shell nucleus

EA
0 = lim

τ→∞
〈ΨA

0 (τ)|Ω|Φ〉c

• Diagonal propagators (no anomalous)

G+−(0)
k1k2 (τ1, τ2) ≡

〈Φ|T[β†k1(τ1)βk2(τ2)]|Φ〉
〈Φ|Φ〉

G−+(0)
k1k2 (τ1, τ2) ≡

〈Φ|T[βk1(τ1)β†k2(τ2)]|Φ〉
〈Φ|Φ〉

with antisymmetry relation

G+−(0)
k1k2 (τ1, τ2) = −G−+(0)

k2k1 (τ2, τ1)
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Bogoliubov Many-Body Perturbation Theory

• Perturbative expansion of ground-state energy (Ω = Ω0 + Ω1)

E0 = 〈Φ|
{

Ω(0)−

∫ ∞
0

dτ1T [Ω1 (τ1)Ω(0)] +
1
2!

∫ ∞
0

dτ1dτ2T [Ω1 (τ1) Ω1 (τ2)Ω(0)] + ...
}
|Φ〉c

=
∞∑

p=0

(−1)p

p!

∑
i0+j0=2,4
...

ip +jp =2,4

∫ ∞
0

dτ1 . . . dτp

×
∑

k1...ki1 ,ki1+1...ki1+j1...
l1...lip ,lip +1...lip +jp

Ωi1 j1
k1...ki1 ki1+1...ki1+j1

(i1)!(j1)!
. . .

Ωip jp
l1...lip lip +1...lip +jp

(ip)!(jp)!

Ωi0 j0
m1...mi0mi0+1...mi0+j0

(i0)!(j0)!

× 〈Φ|T
[
β
†
k1

(τ1) . . . β†ki1
(τ1) βki1+j1

(τ1) . . . βki1+1 (τ1) . . . β†l1 (τp) . . . β†lip
(τp) . . .

×βlip +jp
(τp) . . . βlip +1 (τp) β†m1

(0) . . . β†mi0
(0)βmi0+j0

(0) . . . βmi0+1 (0)
]
|Φ〉c

Diagonal case: ϕ = 0

• No anomalous propagator, no self-contraction
• Standard Wick’s theorem with respect to |Φ〉
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Building blocks of the diagrammatic

• Normal-ordered form of Ω with respect to |Φ〉

Ω =
Ω00

+

Ω11

+

Ω20

+

Ω02

+ . . .

• Diagonal propagators

G+−(0)
k1k2 (τ1, τ2)

k2 τ2

k1 τ1

G−+(0)
k1k2 (τ1, τ2)

k2 τ2

k1 τ1
• Main diagrammatic rules from Wick theorem

� No external legs
� No oriented loop between vertices
� No self-contraction
� Propagators go out of the Ω vertex at time 0
� Equivalent lines
� Discard topologically equivalent diagrams
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The BMBPT project: Low-order derivation

Diagonal implementation
〈ΨA

0 |H|Φ〉
〈ΨA

0 |Φ〉

Ab initio

Realist H
High order

Manual derivation of order 3

Check against MBPT limit

Automatic derivation
[PA, Duguet, Tichai, Lasseri, Ebran, in prep.]

Numerical implementation

[PA, Tichai, Hergert, Roth, Duguet, in prep.]
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BMBPT diagrams landscape
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Low-order diagrams
• First- and second-order diagrams [Duguet and Signoracci, J. Phys. G 44, 2017]

PE0.1 PE1.1 PE1.2
• Third-order diagrams

PE2.1 PE2.2 PE2.3 PE2.4

PE2.5 PE2.6 PE2.7 PE2.8

Validation of the manual derivation by checking the MBPT limit
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Derivation of a third-order diagram

k1
k2 k3 k4

k5 k6 k7

k8

k9 k10

+Ω40
k1k2k3k4

+Ω04
k5k6k7k8

−Ω̆11
k9k10τ2

0

τ1

Feynman (time-dependent) and Goldstone (time-integrated) expressions:

PE2.6 = −
1
3!

∑
k1k2k3k4k8

Ω40
k1k2k3k4

Ω04
k1k2k3k8

Ω̆11
k8k4

∞∫
0

dτ1dτ2θ(τ1 − τ2)e
−τ1
(

Ek1 +Ek2 +Ek3 +Ek8

)
e
τ2
(

Ek8−Ek4

)
= −

1
3!

∑
k1k2k3k4k8

Ω40
k1k2k3k4

Ω04
k1k2k3k8

Ω̆11
k8k4(

Ek1 + Ek2 + Ek3 + Ek4

)(
Ek1 + Ek2 + Ek3 + Ek8

)
P. Arthuis - IRFU, CEA, UPSaclay BMBPT for Open-Shell Nuclei 14/39



Status of manual derivation and implementation

• All diagrams from 2N vertices derived and implemented up to order 3
[PA, Tichai, Ebran, Duguet]

• Want to go to higher orders
� At least up to order 4

I Check convergence pattern
I Grasp effect from quadruples ↔ 8 qp excitations

� Derivation time-consuming
� Derivation error-prone

Develop automatic tool

� To generate all possible connected diagrams at order n
� To extract associated time-integrated expressions
� To be both quick and safe
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The BMBPT project: Automatic derivation

Diagonal implementation
〈ΨA

0 |H|Φ〉
〈ΨA

0 |Φ〉

Ab initio

Realist H
High order

Manual derivation of order 3

Check against MBPT limit

Automatic derivation
[PA, Duguet, Tichai, Lasseri, Ebran, in prep.]

Numerical implementation

[PA, Tichai, Hergert, Roth, Duguet, in prep.]
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Why and how?

Our goal

An automatic and systematic way of producing diagrams

Our tool

Adjacency matrices in graph theory

Our challenge

From BMBPT diagrammatic rules to constraints on matrices
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Graphs and adjacency matrix

Each Feynman diagram to be represented by an adjacency matrix

• aij indicate the number of edges going from node i to node j

A =

0 2 2
0 0 2
0 0 0

 ⇔
3

1

2

� Carry detailed information for directed graphs
� Symmetry properties and connectivity properties directly readable

• Only two propagators, readable as one once reading direction is fixed
� Perfectly adapted for diagonal BMBPT
� Extension needed for off-diagonal diagrams with anomalous propagator
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Constraints from the diagrammatic rules

Each vertex belongs to Ω[2], Ω[4] or Ω[6]

For each vertex i ,
∑

j (aij + aji ) is 2, 4 or 6

No self-contraction

Every diagonal element is zero

Every propagator coming out of the vertex at time 0 goes upward

First column of the matrix is zero

No loop between vertices

Can restrict to upper triangular matrices
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Generate BMBPT diagrams

• Generate all upper triangular n×n matrices for n-th order BMBPT diagrams
� Fill the matrices "vertex-wise" with all allowed integers
� Check the degree of each vertex before moving on(0 0 0

0 0 0
0 0 0

)
→

(0 a12 a13
0 0 0
0 0 0

)
→

(0 a12 a13
0 0 a23
0 0 0

)

• Discard matrices leading to topologically identical diagrams

• Read the matrix and translate it into drawing instructions
\begin{fmfgraph*}(60,60)
\fmftop{v2}\fmfbottom{v0}
\fmf{phantom}{v0,v1}
\fmfv{d.shape=circle,d.filled=full,d.size=3thick}{v0}
\fmf{phantom}{v1,v2}
\fmfv{d.shape=circle,d.filled=full,d.size=3thick}{v1}
\fmfv{d.shape=circle,d.filled=full,d.size=3thick}{v2}
\fmffreeze
\fmf{prop_pm}{v0,v1}
\fmf{prop_pm,right=0.6}{v0,v2}
\fmf{prop_pm}{v1,v2}
\fmf{prop_pm,left=0.5}{v1,v2}
\fmf{prop_pm,right=0.5}{v1,v2}
\end{fmfgraph*}
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Time to cook some diagrams

Run the code at order 4 with 2N and 3N interactions, obtain...

...and 388 others!
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Status of the numerical derivation

• Number of diagrams with 2N interactions (using an HFB vacuum)
� 8 (1) diagrams at order 3
� 59 (10) diagrams at order 4
� 568 (82) diagrams at order 5
� 6 805 (938) diagrams at order 6

• Number of diagrams with 2N and 3N interactions (using an HFB vacuum)
� 23 (8) diagrams at order 3
� 396 (177) diagrams at order 4
� 10 716 (5 055) diagrams at order 5
� 100 000+ diagrams at order 6?

• Obtained in only a few minutes...
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Automated expression derivation

All BMBPT diagrams produced automatically at a given order
å Need to derive automatically the diagrams’ expressions

• Feynman diagrams recast different time-orderings
4 Less diagrams to set up
8 But time-integrated (Goldstone) expressions are to be coded

• Goldstone diagrams capture each time ordering separately
4 Time-integrated expressions obtained directly from diagrammatic rules
8 Many more diagrams to consider

Challenge: Extract Goldstone expressions from Feynman diagrams

� Capture all time ordering at once
� Challenging because of structure of corresponding time integrals
� Undone task to our knowledge (even for standard diagrammatic)
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Extract the Feynman expression of the diagrams

• Extract graph structure info as well
� Associate labels with vertices, propagators, etc.
� In- / out-degree of vertices associated with annihilators / creators
� Run routines for symmetry factors

• Have your code write the corresponding equations in your .tex file
−(−1)3

(3!)2
∑

ki

Ω40
k1k2k3k4Ω40

k5k6k7k8Ω04
k5k1k2k3Ω04

k6k7k8k4

∫ τ

0
dτ1dτ2dτ3θ(τ2 − τ1)θ(τ3 − τ1)

×e−τ1(−Ek5−Ek6−Ek7−Ek8 )e−τ2(Ek1+Ek2+Ek3+Ek5 )e−τ3(Ek4+Ek6+Ek7+Ek8 )

Sign, prefactor and operators left unchanged in Goldstone expression
å Only need to extract the denominator
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Time-structure diagrams [PA, Duguet, Tichai, Lasseri, Ebran, in prep.]

• Introduce time-structure diagrams (TSDs)

� Links carry time-ordering relations, moving towards higher times
� Contain only the minimal set of links to describe all the time relations

• Determine the time-structure diagram (TSD) associated to BMBPT one

� Propagators carry time-ordering relations
� Ω vertex at time 0 is a lower limit for time
� One TSD recast several Feynman, even more Goldstone
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Time-structure diagrams [PA, Duguet, Tichai, Lasseri, Ebran, in prep.]

• Each TSD produced from the BMBPT diagram

� Replace propagators by links
� Add links between vertex at time 0 and other vertices
� Remove links carrying unnecessary information

→ → →

• Extraction of time-integrated expression depends on tree / non-tree

Tree−−→ Non-tree−−−−→ = +
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Denominator extraction algorithm for tree TSDs
For each perturbation vertex in the diagram with an associated tree TSD

1 Determine all its descendants using the TSD diagram

2 Form a subgraph using the vertex and its descendants

3 For all propagators entering the subgraph, add the associated qpe

↔

−(−1)3

(3!)2
∑

ki

Ω40
k1k2k3k4Ω40

k5k6k7k8Ω04
k5k1k2k3Ω04

k6k7k8k4
(Ek1 + Ek2 + Ek3 + Ek4 )(Ek1 + Ek2 + Ek3 + Ek5 )(Ek4 + Ek6 + Ek7 + Ek8 )
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Denominator extraction and integral structure

Why a so simple denominator algorithm for all trees?

Link between tree TSD structure and time integrals structure

τ3

τ1

τ2

D = lim
τ→∞

∫ τ

0
dτ1dτ2dτ3θ(τ3 − τ1)θ(τ2 − τ1)eaτ1ebτ2ecτ3

= lim
τ→∞

∫ τ

0
dτ1eaτ1

∫ τ1

0
dτ2ebτ2

∫ τ1

0
dτ3ecτ3

= lim
τ→∞

1
bc

∫ τ

0
dτ1eaτ1

(
ebτ − ebτ1

)
(ecτ − ecτ1)

= 1
bc(a + b + c)

• Integrate from the leaves first

• Go down each branch

• Each vertex depends on the vertices above it
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Algorithm for denominator extraction: Special case

Same algorithm applied on linear tree

Classic Goldstone rule recovered on a Feynman graph

↔

(−1)3
(3!)2

∑
ki

Ω40
k1k2k3k4Ω13

k5k1k2k3Ω31
k6k7k8k5Ω04

k6k7k8k4
(Ek1 + Ek2 + Ek3 + Ek4)(Ek5 + Ek4)(Ek4 + Ek6 + Ek7 + Ek8)
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Algorithm for denominator extraction: Special case
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(−1)3
(3!)2

∑
ki

Ω40
k1k2k3k4Ω13

k5k1k2k3Ω31
k6k7k8k5Ω04

k6k7k8k4
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Algorithm for cycle finding

• For each node_a with out_degree ≥ 2:
� For each node_b different from node_a:

I List all paths going from node_a to node_b

I If in_degree(node_b) ≥ 2 and nb_paths ≥ 2:
node_a and node_b are end nodes of the cycle

I Check that the two paths share only their end ones

å Two pairs of end nodes producing cycles to be addressed
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Algorithm for cycle disentangling

• Set node_to_insert as the first node of path_1 after start node

• For each daughter_node in path_2 but the starting node:
� Make a copy of the graph

� Add an edge from node_to_insert to daughter_node

� Set mother_node as the node preceding daughter_node in path_2

� Add an edge from mother_node to daughter_node

� Remove the edges carrying unnecessary information

⇒

+ +
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Denominator extraction: Non-tree case
If the associated time-structure diagram is not a tree:
• Separate the TSD in a sum of tree TSDs
• Apply the tree denominator algorithm, sum the results

→ = +

−(−1)3
(3!)2

∑
ki

Ω40
k1k2k3k4Ω13

k5k1k2k3Ω31
k6k7k8k4Ω04

k6k7k8k5

×
[

1
(Ek1+Ek2+Ek3+Ek6+Ek7+Ek8 )(Ek1+Ek2+Ek3+Ek4 )(Ek5+Ek6+Ek7+Ek8 )

+ 1
(Ek1+Ek2+Ek3+Ek4 )(Ek4+Ek5 )(Ek5+Ek6+Ek7+Ek8 )

]

All BMBPT expressions produced automatically at a given order
å Need to implement them numerically
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The BMBPT project: Current step

Diagonal implementation
〈ΨA

0 |H|Φ〉
〈ΨA

0 |Φ〉

Ab initio

Realist H
High order

Manual derivation of order 3

Check against MBPT limit

Automatic derivation
[PA, Duguet, Tichai, Lasseri, Ebran, in prep.]

Numerical implementation

[PA, Tichai, Hergert, Roth, Duguet, in prep.]
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Oxygen chain calculations - Ground state energies
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[Arthuis, Tichai, Hergert, Roth and Duguet, in prep.]

• HFB
� BMBPT(2)
� BMBPT(3)
� Exp

~Ω = 20 MeV
α = 0.08 fm4

emax = 12
E3max = 14

• E (3) one order of magnitude smaller than E (2)

• Computer resources independent of system size: 10-20 CPU hours
• Error estimate on 3rd order correction: ∆E = ∆A(3) · 8MeV/A ≈ 5MeV
• Calculations of Ca, Ni and Sn chains coming soon
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Oxygen chain calculations - Comparisons
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[Arthuis, Tichai, Hergert, Roth and Duguet, in prep.]

� BMBPT(2)
� BMBPT(3)

IM-SRG(2)
N GSCGF(ADC(2))
� Exp

~Ω = 20 MeV
α = 0.08 fm4

emax = 12
E3max = 14

• Consistent with different non-perturbative methods

• Comparable accuracy within 1-5 % of computing time

• Computational scaling independent of system size
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Oxygen chain calculations - S2n
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[Arthuis, Tichai, Hergert, Roth and Duguet, in prep.]

• HFB
� BMBPT(2)
� BMBPT(3)

IM-SRG(2)
N GSCGF(ADC(2))
� Exp

~Ω = 20 MeV
α = 0.08 fm4

emax = 12
E3max = 14

• Very good agreement with state-of-the-art approaches

• Reproduction of experimentally observed shell gaps

• Little overall effect of particle-number breaking (similar to GGF)

• Particle-number restoration could impact near magic numbers
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Conclusion

• BMBPT diagrams now generated automatically
4 Fast and error-safe
4 No intrinsic upper limit on the order

• BMBPT analytical expressions automatically derived to all order as well
4 Feynman and Goldstone expressions for all diagrams
4 Order 4 to be implemented in BMBPT code in near future

• Project still moving on
� Code to be published
� Open to collaborations regarding other diagrammatic methods

• Numerical implementation of BMBPT(2) and BMBPT(3)
4 Very low-cost correlated method
4 Competes with state-of-the-art ab initio methods
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Perspectives

• Extend the scope of ADG
� Gorkov SCGF
� Off-diagonal BMBPT

• Extend the scope of diagonal BMBPT
� Excited states and new observables
� Developments used in parallel in future BCC implementation

• Move towards symmetry-restored BMBPT
� Extensive work on the theory
� Automated diagram generation and derivation
� Implementation in the BMBPT numerical code
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