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ABSTRACT 

Monte car ï.o calculations in lattice gauge theories suggest the exis 
tence of a phase transition in QCD, between a hadron gas and a quark gluon 
plasma. We examine the theoretical consequences of the assumption that 
this transition is a critical phenomenon, called critical hadronization. 
The main idea is that if hadronization is critical, then it provides a new 
demain of application to the renormalization group equation ( RGE) of the 
underlying local field theory, that is QCD. 

The theoretical framework is provided by the topological expansion of 
QCD interpreted as a dual topological unitarization (DTU) procedure or as 
aregularization/renormalizationprocedure. 

At the planar level, which concentrates all the non linear character 
of unitarity, QCD is regularized in the se called dual parton model, which 
is a broad resonance dual model (BRDM) involving string like quarks, 
gluons and mesons and satisfying short range order scaling and confi 
nement. 

criticality of the hadron-parton transition is insured by the 
degeneracy of all planar trajectories and couplings ( which allows te 
cons train all the dimensionned parameters) and by the existence of a 
cylindrical pomeron with intercept one, which, through absorption cor 
rections breaks short range order and induces long range correlations. 

The summation over all higher topologies, that is over all multiple 
pomeron absorption corrections is shown te be equivalent te the 
renormalization of the dual parton model (that is te the removal of the 
transverse eut off provided by a non vanishing Regge trajectory slope in 
the BRDM). 

As calculational consequences of the proposed scheme we show 
quantitatively how the RGE of QCD can be used te estimate the rise of 
hadronic total cross sections and te estimate the EMC effect. 
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INTRODUCTION 

The main explorations of the non perturbative regime of QCD are 

made by means of lattice quantization(l). This quantization provides a specific 

regularization scheme which allows to renormalize the theory by analogy with 

a classical statistical problem in the neighborhood of a critical point (2) 

This method allows to have an insight in the strong coupling regime of QCD. 

Confinement naturally appears in this regime in terms of linearly rising 

potentials at large distances. Progresses have been met in introducing fermions 

on the lattice, in numerical methods, and in analytic approximations. Avery 

important result obtained by lattice quantization is the prediction of a 

phase transition in QCD(3). The two phases involved in this transition are 

a hadron gas at low temperature and energy density and a quark gluon plasma 

(also called a "quagma") at high temperature and energy·density. This tran 

sition is called deconfinement if one cornes from the hadron phase and 

hadronization if one cornes from the parton phase. The quagma phase would be 

a genuine new state of matter which appears extremely interesting to study. 

It could have been formed in the very early universe (at a time of about 10-S 

sec.). One can expect the formation of this phase in ultra-relativistic 

heavy ion collisions (at about 200 GeV per nucleon) (4). 

OUr purpose in the present paper is to stùdy the theoretical 

consequences on the description of high energy hadron production of the 

assumption that this phase transition is a critical phenomenon. In the time · 

development of any high energy reaction involving hadrons there is a short 

time in which only hard processes occur. The description of these processes 

is (more or less) under control by means of perturbative QCD (S,G,7). The 

part of the high energy reaction which is difficult to describe is the 

conversion into hadrons of the partons which have been produced in the hard 

part of the reaction. This is the reason why we are interested in the phase 

transition of QCD as a hadronization mechanism. 

The main idea in the present paper is that if hadronization is 

a critical phenomenon, it should be possible to describe it in terms of 

the renormalization group equations (RGE) of QCD. What one has learnt from 

lattice quantization is that the regularization/renormalization procedure 

in QCD is equivalent to a critical phase transition in a statistical 

mechanical system <2>. Conversely, if high energy reactions proceed through 
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critical hadronization, the renormalization group equations of the underlying 

local field theory, that is QCD, should be relevant also in this non pertur 

bative process. One sees that the criticality of hadronization may have far 

reaching consequences : up to now RGE of QCD h~ye been used only to establish 

asymptotic freedom (that is the logarithmic decrease of the running coupling 

at small distance, which is indeed a very important result) now, if our 

conjecture makes sense it would mean that the RGE, related to the ultraviolet 

behaviour of RCD provide some information about hadronization which is related 

to the infrared behaviour. It would be a step forward in the program of 

establishing QCD as the complete theory of strong interactions. 

On a phenomenological level, the Saclay approach (9) to confinement 

has allowed to improve the understanding of the connection between soft and 

bard processes. This approach is based on a correspondence between QCD and 

the Dual Topological Unitarization(DTU) scheme (9). The quarks of the duality 

diagrams which occur in DTU are identified with the quarks of a QCD inspired 

parton model. More precisely, the planar approximation of DTU can be inter 

preted in terms of a genuine quark parton model, the so called dual parton 

model. Higher topology corrections are associated with scaling violations 

and gluon cascading. This approach has met some phenomenological successes. 

It is currently being explored by other groups (ll,9) . It is actually very 

well suited for our present purpose for several reasons. 
\,,. 

i) The correspondence between QCD and DTU is precisely interpreted 

in terms of the equivalence of two "bases" or two "vacua" to describe 

hadronic reactions. Now vacuum degeneracy is a specific property of critical 

transitions. 

ii) DTU is a procedure to implement unitarity in a dual string 

dynamics. At the zeroth order DTU reduces to a narrow resonance dual model 

(NRDM). Now it is well known (12) that a NRDM can reproduce at the limit 

of vanishing trajectory slope (a') a local field theory. It bas been 

shown that under some conditions one can build dual string actions which 

reproduce a Yang Mills Lagrangian at the a'+ 0 limit. It is also well 

known that Reggeization implies a gaussian transverse eut off in dual 

string theory. One thus sees that duality can provide a specific regula 

rization scheme for QCD, analogous to lattice regularization. 

- 
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-iii) As an iterative unitarization procedure, DTU leads to a topo 

logical expansion of S matrix elements. Basically, the correspondence between 

DTU and QCD consists on identifying, te:rm by term this topological expansion 

with the topological expansion of QCD proposed by 'tEooft (l
3
). Since the topo- 

, 

logical expansion of QCD supposedly exhausts the full content of QCD, and 

if the zeroth order approximation of DTU, that is a NRDM is a regularization 

of QCD, then the summation over all higher topologies in DTU is nothing but 

the reno:rmalization implied by this specific regularization. 

iv) The assimilation of DTU as a regularization/renormalization 

procedure is also strongly suggested by the way how it implements unitarity. 

All non linear constraints. of unitarity are concentrated in the planar 

topology, in terms of the so-called planar bootstrap constraints, whereas 

higher topologies are introduced, perturbatively, through linear equations. 

This method is strikingly similar to the resummation technique used in a 

renormalizable field theory: non linear RGE allow to define renormalized 

vertices and propagators with which one can build generalized lad.der 

diagrams which in turn can be evaluated at the leading logarithm appro- 
. t. (5) xama ion, say 

v) At the planar level of DTU, the basic properties of the NRDM 

are preserved : local duality, exchange degeneracy,,· and short range order 

in the rapidity distributions of multiple production. Very important new 

properties appear: non vanishing widths for resonances, factorization 

in the sense of a quark parton model with confined quarks (the so-called 

dual parton model). At the first iteration, that is when considering the 

shadow scattering of the NRDM one obtains, apart from the planar reggeon, 

a new contribution, the cylindrical pomeron. This contribution corresponds 

to a Regge singularity, with intercept equal to one, and with vacuum quantum 

numbers. This feature is the most important for our purpose. Indeed the 

occurence of a Regge singularity with intercept one signals the possibility 

of the breacking of short range order, and thus of long range correlations 

which are characteristic of critical phase transitions. 

vi) Because of the topology of the dual pomeron, summing over 

multi pomeron corrections is equivalent to sum over higher topologies. 

The basic ingredient to sum over pomeron corrections is provided by the 

celebrated Abramowski GribovKanchelli (l4) (AGK) cutting rules, which allow 

- 
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to define cross sections for cutting a given number of panerons and reggeons. 

In the framework of critical phenomena these cross sections ca~ be inter 

preted as the production cross sections of fluctuating distributions. Some 

renormalization group techniques could hopefully help in averaging these 

fluctuations. 

The purpose of the subsequent sections of the paper is to provide 

this qualitative overview with a quantitative and calculational content. The 

first section will be devoted to the lowest topology and to the criticality 

of the hadronization. One will specify the NRDM corresponding to the regu 

larization of QCD. This NRDM involves three types of open strings : a meson 

string with flavor· and anti-flavor at its ends, a quark string with flavor 

and color at its ends, and a gluon string with color and anti-color at its 

ends. Criticality is implied by planar unitarity that is the summation 

over all planar internal color and flavor loops. Indeed on the one hand planar 

unitarity implies the degeneracy of the three Regge trajectories of meson, 

quark and gluon strings (with important consequences on the values of the dimen 

sioned parameters) and on the other hand the existence of a cylindrical pomeron 

with intercept one. Planar unitarity also guarantees confinement and it pro 

vides the theoretical basis of the dual parton model. 

The second section is devoted to multi pcineron expansion and to 

renormalization. We discuss the calorimetric interpretation of the cross 

section for cutting a given number of reggeons and panerons. On the 

explicit example of deep inelastic scattering we show how the summation of 

the multi pomeron expansion is equivalent to the renormalization of the NRDM 

regularization of QCD. 

The third section is devoted to the calculational consequences 

of the proposed schene. According to the new interpretation we discuss 

some results obtained previously such as the-èstimate of the rise of high 

h ' . (1 S) l . th ' f th ff ( 16) energy aaronic tota cross section or e estimate o e EMC e ect . 
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I. PLANAR UNITARITY AND CRITICALITY 

1. The topological expansion of QCD 

The starting point of the correspondence between QCD and DTU is 

the topological expansion of QCD. 'tHooft (l
3) has shown that one can 

rearrange the perturbation expansion of QCD in a way which exhibits the 

topological properties of the two dimension manifold on which one can draw 

the Feynman diagrams. One writes the n point Green's function as : 

A n ({P.}) 
l. 

n = g 
-n 
~,h,l,w 

({P.}) 
l. 

(1) 

where {P.} denotes the set of external four momenta, N is the number of 
l. C 

colours, Nf the number of flavors. b,h,l and w are topological indices.bis 

the number of boundaries, that is the number of closed loops to which external 

particles are attached, h is the number of handles allowing internal propagators 

to cross each other; 1 is the number of closed color loops and w the number 

of closed flavor loops. The reduced amplitude ~n h 1 contains the full dyna- 
b, ' ,w 

mical information. To make more explicit the topological properties it is 

useful to use a notation for quark and gluon propagators which exhibits their 

color and flavor content (see fig. 1). This notation, when it is completed 
t.:·,' 

te include mesons, will be useful to identify the NRDM regularization of QCD. 

--+---(. ·····--> .•..... ,. or 

==:::===c.. C: ,,-, .......•.. 
_JL •• -·. >· .••.•. 

_JL 

,, 

Fig. 1 : Two line representation of quark and gluon propagators. We use an axial 

or n]anar aauae wbicb is.frPP of Fadp...ev_Ponov Gbasts. 
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To illustrate the definition of topological indices we show in fig. 2 a 

specific contribution to the QQ + QQ Green's functions. 

go 
U:··rD t : 

fJ 
.... - . - • <· - - ·-· . . ·· ··· ... 

: 

b:1 .I I .I 

Fig. 2 : a specific contribution in the topological expansion of the QQ ~ QQ 
Green's function. The values of the topological indices are given. 

On this example one can see the effect bf non planarity : because 

of the existence of one handle, three independant gluon loops give rise 

to a color factor N (one closed color loop) instead of N 3 in the absence 
' C C 

of a handle (three closed color loops). This remark is at the origin of the 
. · (13) . (17) . 

conJectures of 'tHooft and of Veneziano about confinement. 'tHooft 

considers the limit in which N + 00 with g
2
N and Nf fixed, whereas Veneziano 

C C 
considers the limit in which Ne and Nf go to infinity with g2Nc and g2Nf fixed. 

In these limits the contributions which would survive for the process of 

fig. 2 are shown in fig.3. 

we focuss on the Veneziano's limit since it is the one which is 

the basis of the equivalence between QCD and DTU. In this limit it is clear 

that the summation over 1 and w cannot be perfc:-med perturbatively since 

g2Nc and g
2
Nf are not necessarily small. Once the effect of these summations 

is known or assumed, the topological expansion of (eq. 1) reduces to a 

perturbative expansion in h, the number of handles. 
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Fig. 3 QQ + QQ amplitude in the 'tHooft lirait {a) and in the Veneziano 

li.mit (b) • 

(The summation over bis necessarily finite, since for a given n, the number 

of boundaries cannot exceed the number of external particles). Now, such 

an expansion is precisely the one which occurs in the dual topological 

unitarization of a narrow resonance dual model. In order to identify the 

NRDM whose DTU is equivalent te the topological e~pansion of QCD we first 

concentrate on the planar topology. 

2. Narrow Resonance Dual Regularization of QCD 

We show on fig. 4, four types of cutting the configuration which 

survives at the Veneziano's li.mit. These cuttings exhibit the planar 

"renormalization" (insertion of closed color and flavor loops) of four 

open string propagators : the quark (flavor-color), the anti-quark (anti 

color-anti flavor), the gluon (color - anticolor) and the meson (flavor - 

antiflavor). The NRDM we are looking for is provided by the three diagrams 

(i.e. without planar "renormalization") of the string action involving these 

four open strings. 

Although the quark and gluon have the same representation in 

the NRDM as in QCD, they have different properties. In the NRDM quarks 

and gluons lie on linear Regge trajectory. Duality reflects the equivalence 

of two descriptions: in a two body reaction, say, the exchange of t-channel 

- 



1- - 
- 8 - 

Regge pales is equivalent to the formation of S-channel resonances - see 

fig. 5. 

a..) 
. •)- . ,,,. .. ' ,,. .. :~~ , .. ' 

~ 
. . .. '-' .. ·-· . /\/"'\ .-. î"\ ~~":..:,;.,...,,·. ....... ·>·· ..•... 

- r G 

. ······-<···· .... .o) 9 . .J!"\ ~··. ~- \ .L"'\ . -u .... , ... ·~ 
~·: L",./'\ •..• : ~.· ,__,~ -· ·-····~·······. 

c) - 
d -0-0't)-0 r -01o11·) ~-,o ..•.•....... 

. C. 

d) 
. . ..... -.,,. ........ 

C M '° .:·,..:·)"'"'' " '" , .. . - .. ....... ·->···. -·· 
()0-0t:: . ···•· ·•-- .... 
..• -·. ·<· ••...• F 

z crc." wte 

··~ Sl"rin,:s pr-or- ~ tors 
~) 

Fig. 4: Four cuttings of the configuration of fig. 3b, exhibiting planar 

renormalized open string propagators. The corresponding bare propagators 

are those of the NRDM regularizing QCD. 

. . . .. 
', ....•.... , ..... ,, 

.. .:(. ... .. ·· . . . .. .• 
.• '· 

~- 

== L 

Fig. 5 Duality properties of the QQ + QQ amplitude in the NRDM 

- 
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In the NRDM the QQ +QQ amplitude would be written in terms of 

the Veneziano's ansatz (lB). The spin of the quarks can be taken into account 

by writing the invariant amplitudes (S,V,T,A,P). Flavor and color symmetries 

are i.mposed as global symmetries by means of the Chan Patton factors (l9). 

For instance the vector invariant amplitude in the t-channel (corresponding 

to fig. 5) would be equal to 

Vt(s,t) = 
r (-a ( 

{CF} M S) ( 2) 
f(-a (t}) 

1 
-a (t)) 

g 

where {cF}denotes the Chan Patton factors for color and flavor symmetries 

a (S) is the S channel mesonic trajectory and a (t) the t-channel gluonic M g 
trajectory. 

The main problem which one could enconter in writing the NRDM 

is to put in the same string action bosonic and fermionic strings. Now 

this problem has been solved by Neveu and Ramon (20). Actually, it is pre 

cisely the Neveu Ramon NRDM which can reproduce QCD at the a•+ 0 limit. 

In order to constrain further the NRDM, that is to establish rela 

tions between trajectories we make some simplifying but natural assumptions. 

1,. 

i) We neglect heavy flavors, including strangeness. So we consider 

only u and d quarks. 

ii) We want not to break isospin invariance nor color symetry, 

so we assume all the quark trajectories to be degenerate, all the mesonic 

trajectories to be degenerate and all the gluonic trajectories to be degenerate 

too. 

iii) The simplest situation would ~e that all trajectories and 

couplings are degenerate. We shall see later on thatsuch a degeneracy, which 

is fundamental for criticality is implied by planar unitarity. 

Before going to planar renormalization, one more comment is 

in order about the spectrum of the NRDM. If we perform s-u crossing on the 

amplitude of fig. 5 we obtain a QQ + QQ amplitude which is exotic in the 

s-channel. Exoticity in the s channel is insured in the dual framework by 

means of exchange degeneracy (2l). This means that apart from the 8 degenerate 

• 
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negative signature gluon trajectories we have a singlet (corresponding to 

the trace in the color group) positive signature trajectory which is 

exchange degenerate with the gluon trajectories. The sum of the colored 

and singlet contributions amounts to a purely real contribution in the 

exotic channel and to a contribution with a rotating phase in the QQ channel. 

In fig. 6 we show the duality diagram corresponding to the exotic s channel. 

'tHooft (l3) had remarked that with the two line notation for quarks and 

gluons one was led to introduce a color singlet gluon which one has to 

remove to recover standard QCD. In our scheme the color singletpartner of the 

gluons is a positive signature trajectory, the first materialization of which 

is a spin 2 particle. When we renormalize we have to make sure that this 

spurious trajectory is actually removed . 

. . . . ·····>· - 
V(t,u) = 

f(-a.~(t)) f(-a.M(u}) 

Fig. 6 NRDM behaviour in the exotic QQ channel. 

3. Planar unitarity and the broad resonance dual model 

Dual topological unitarization is an iterative procedure (9) to 

unitarize a NRDM, with three basic rules. 

i) the zeroth order approximation is the NRDM itself 

ii) the nth iteration is computed as the shadow scattering of the 

(n-l)th iteration 

iii) at each step one neglects interferences. The neglected contri 

butions correspond to higher topologies which are recovered in higher ite 

rations. 

••••• 
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Veneziano has shown(l?) that this procedure leads to a topological 

expansion of amplitudes which can be put in a one to one correspondence with 

the topological expansion of QCD provided that the sum over land w (eq. 1) 

is performed non-perturbatively. 

We focuss now on the "planar renormalization" of the NRDM, that 

is effect of the insertion of all possible internal., planar color and flavor 

loops. Obviously this insertion does net change the topology of the duality 

diagrams representing the amplitudes. We thus expect Regge behaviour, 

exchange degeneracy and duality to be preserved by the insertions. The first 

important change is that resonances acquire non vanishing widths. One could 

thus call broad resonance dual model (BRDM) the dual model which emerges 

from the planar renormalization. It is interesting to note that there exists 

an ansatz for an analytic expression of scattering amplitudes in a BRDM, 

it is the so called DAMA (22) ansatz(Dual Amplitude with Mandelstam Analyticity). 

This ansatz allows_ to build amplitudes with crossing symmetry, duality, non 

linear trajectories, that ls·broadresonances, for any given number of external 

particles, and as a by product with Mandelstam analyticity (non vanishing 

double spectral functions in the demains implied by unitarity). It is also 

interesting to note that going from the NRDM to the BRDM weakens the transverse 

cutoff: in DAMA the transverse cutoff is exponential whereas it is gaussian 

in the NRDM. This last feature enforces our interRretation of DTU as a 

regularization/renormalization procedure. Planar unitarity is the beginning 

of renormalization. 

4. Planar unitarity and vacuum degeneracy 

The most important property of the BRDM is that it concentrates 

all the non linear constraints of unitarity. Since the BRDM is obtained by 

the summation over all planar color and flavor loops, any amplitude is left 

invariant by the removal or the insertion of any finite number of color 

or flavor loops. We call planar bootstrap equations the equations resulting 

from this invariance. In fig. 7 we show the graphical representation of 

some planar bootstrap equations. 

Planar bootstrap implies vacuum degeneracy. The equation of 

fig. 7 a implies that a gluon loop and quark loop contribute the same amount 

to the gluon propagator (of course these equations are true only in regularized 

QCD !} • 

• 
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a.) :: = 

' : 1 • ? I • 1 " j , .•... , ,.,' ••.•••.• _' 

b > ~ 't = /'D ~ s 1 t ) + l : 1 = 
• i • 1 ••• '• I ' : ..• , .,' ... ~ ! .. 

1 •• ! : • . ' 

: 

C f l. (q.) =<ri> 1 : Q e, ç 
fig. 7 planar bootstrap equations for the gluon (a) meson (b) and quark (c) 

propagators. 1,. 

For the energy dependence to coincide we infer 

(3) 

Fran fig. 7 b we obtain 

(4) 

and from fig. 7 c: 

(5) 

In the same way we obtain that all possible three-particle vertices 

are equal. 
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These degeneracy equations are important since they relate the 

unphysical trajectories (the quark and gluon ones) to the physical trajectory, 

the meson one. The dominant planar mesonic Regge trajectory is indeed known 

with accuracy: it is the P trajectory for which we know two materializations 
G_p + - G P + - 

the p (770) I ~ = 1 1 and the g (1690) I J = 1 3 . We also know the behaviour 

of this trajectory in the negative t region from the analysis of high energy 

reactions involving p exchange like '!T-p ~ TI
0n. The intercept of the p trajectory 

is about O.S. Actually Lovelace (23) has derived a useful theoretical constraint 

on the p trajectory by demanding the existence of an Adler zero (24) in the 

'!Ti: amplitude : 

Cl. (m 2 
p 'lT 

1 
2 

( 6) = 

From eq. (3) (4) (5) and (6) we obtain very interesting consequences. 

So we have 

i) a. (m2) = 1 (spin of the gluon) g g 
m = m g p (7) 

This mass is in excellent agreement with the mass given to the gluon in 

the analysis of the radiative~ decay (25) . 

ii) (spin of the quark) • 
t.:· .. 

So we have (8) 

So we note that in our regularization scheme the quark is given a smaller 

mass than the gluon. The gluon can thus "decay" into a QQ pair. The quarks 

thus produced have a transverse mass 

m 
m.1. = i = 385 MeV (9) 

which is good agreement with the primordial transverse momentum observed 
. . h. h . (26) in various ig energy reactions 

iii) if we demand the quark propagator to have a pole at p
2 2 
=m 'lT 

we see fran the equation of fig. 7 c that the coupling squared must have 

this pole since the loops are not singular. So m
2

'!T is the first infrared 

pole of the QCD couplings. So we infer 

=m 
'lT 

= 140 MeV (10) 
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an 

of 

equation which is in excellent agreement with the world average value 

AQCD(2?) and which, to our knowledge had never been written before. 

S. Planar unitarity,reggeons and pomeron 

The resolution of all coupled planar bootstrap equations would be 

a very difficult task. Fortunately, by means of approximation methods one 

can extract .from them some useful informations. We consider here the multi-reggeon 

approximation method (2S) which consists on considering only the dominant 

contributions in multiproduction reactions, i.e. the configurations where 

all P'i s are limited and the rapidities are ordered (this method is strinkingly 

similar with the leading logarithm method in standard QCD) 

Since all trajectories are degenerate we shall forget the distinction 

between flavor and color lines (except when we need it for some theoretical 

arguments). We thus deal with a BRDM with N =Ne= Nf ( = 5 in our simplified 

version) degrees of freedom. One finds, as shown in fig. 8 two configurations 

contributing to the n particle production cross section in the multi-reggeon 

approximation. According to the DTU procedure the shadow scattering of these 

contributions leads to the planar reggeon and cylindrical pomeron. 

le,· 

a 

I 
CS" : 

11. 

2. 

Fig. 8 - Building the planar reggeon (CLJR) and cylindrical paneron (alP) from 

the shadow scattering on n particle multiproduction cross sections in the 

multi-reggeon approximation - 
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Analytically one finds for crI 
n 

d II p . d' Lb . (28) an cr oisson istri utions n 

crI = 
n 

2 n 
(g N log a.'s) 

n! 
(a.' s) 

(a.'s) 

2a. -2 
o': 1 

N 
(11) 

( 12) 

where a. and a.' are the intercept and the slope of the input planar 
0 

trajectory. The factor 2n-l in (12) is due to the summation over all 

possible twists. The summations over n can be performed and we obtain the 

following output trajectories and residues 

2 2a. - 1 + g N 
0 

2 =2.a -1+2gN 
0 

Planar bootstrap obviously implies 

a. = a 
JR 0 

which has three important consequences. 

2a. -2 
0 

n-1 2 -N 
2 

N 

(13 a) 

(13 b) 

(13 c) 

( 14) 

i) in a multi-reggeon chain, the intercept of the input trajectory 

determines a correlation length in rapidity: the exchange of the Regge 

trajectory between two subsequent particles in the chain induces in the 

amplitude a factor 

a. -1 
0 

(Cl I S, , ) a: 
1J 

e 
(a. -1) 
0 

The correlation length in rapidity is thus equal to 

6. = log 
s 
2 

m J.. 

1 
1 - a. 

0 
= 

(15) 

( 16) 

- 
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with a 
0 

of rapidity. It is very interesting to interpret s which one obtains by 
·1·, 

exponentiation of this correlation length : it is a eut off in the squared 

~ 0.5 one recovers the celebrated correlation length of two units 

cluster mass. A cluster with a higher squared mass would split into lighter 

clusters. s provides a eut off on the transverse masses of the produced 

partiel es and thus on their transverse momenta. Wi th a 
O 

= 0. 5, m .l = 0. 385 

we obtain s = 1.1 Gev
2 

which is in excellent agreement with the inverse 

of the slope of the meson trajectory, 

-2 * a'p = 0.9 Gev 

From equations (13 a), (14) and (16) we obtain 

2 
g N = 1 ( 1 7) 

log 
s 
-2 
m J. 

which guarantees that when we renormalize, that is when we lets go to 

infinity like Q
2 

we recover asymptotic freedom. 

ii) Taking (14) into account we find from (13b) that 
'vr , • 

a = 1 
:p 

(18) 

whatever is the value of a. This is may be the most important result of 
0 

DTU : planar unitarity implies the existence of a pomeron with intercept one. 

* We note, by the way, another relation which enforces once more our scheme. 

In lattice quantization one obtains confinement in terms of a linearly rising 

potential. The rate of increase is related to the string tension Kogut(l) 

quotes the prediction obtained from Monte Carlo method for the string tension 

in SU(3) QCD: 
K = (220 ± 60) AL 

where AL = A /83.5, which leads to 
QCD + 

K = (2.5 - 1.0) AQCD 

A ( 29) 1 d th . . - 1 b Now, rtru re ate e string tension to a y 
J 1 

a'= m2 = 27TK2 

with AQCD = m~ and a•= 0.9 GeV-2 we obtain K = 420 MeV= 3 AQCD 

- 
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Indeed this result bas been obtained with the help of some wild approximations, 

b t' t th t 'th ' · t· h (3o,3l) b u it turns ou a wi various approxima ion sc emes one o tains 

the same or a very similar result. From the discussion of the preceeding 

paragraph we see that the correlation length iri rapidity can increase to 

infinity as soon as one bas a Regge singularity with. intercept one. Now long 

range correlations are specific of critical transitions. So, to assume that (18) 

is an exact result is essentially equivalent to assume that hadronization is 

critical. 

The pomeron can be exchanged between any type of incoming particles 

partons as well as hadrons. If the intercept of the pomeron is one, the 

strength of the interaction through pomeron exchange is independent of the 

distance in rapidity of the two interacting particles. So, two colored partons 

can compensate their color through pomeron exchange, without exchanging much 

of four mcmentum whatever is their separation in rapidity. This is called 

soft confinement (S) or soft bleaching a confinement or hadronization mechanism 

which is widely agreed upon. It is interesting to note that such a mechanism 

is exactly what one expects in a critical phenomenon. 

iii) eq (13 c) reflects that since the pomeron topology inv'Olv•s two 

boundaries instead of 1 for the reggeon topology, the residue of the pcneron 

is suppressed by a factor~ with respect to the r~sidue of the reggeon. 

Eq (12) shows that the planar pole exists in the pomeron propagator 

with a negative residue, in such a way that the planar pole disappears in the 

full singlet sector (planar reggeon + pomeron). This phenomenon, known in 

standard DTU as "f0 promotion" (
32>, is very useful for our purpose : as we 

said above, in order to renormalize it is necessary to get rid of the spurious 

singlet gluonic trajectory which we have introduced to regularize. Summing 

over all virtual pomerons may do the job. 

6. Planar unitarity, confinement and the dual parton model 

We now answer a question which probably has upset the reader from 

the beginning of this paper : if gauge symmetry is broken by the regularization 

(the gluon is massive), if quarks and gluons are so similar to mesons, why 

are they confined? It is not enough to answer that the phase transition 

is a deconfinement transition. we have to make sure that for any process 

- 
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with a color singlet initial state, the description in terms of quarks and 

gluons can be completely replaced by a description involving only hadrons. 

This requirement is the way how confinement is formulated in the Saclay 
(8) 

approach 

It is easy to see that planar unitarity insures confinement 
+ - in this sense. Consider the e e annihilation into·hadrons, at the planar 

approximation. We assume that the virtual photon couples in a point like 

way to the flavor line. Planar unitarity allows us to remove all the internal 

flavor loops and to replace them by a single color loop (see fig. 9). We 

thus obtain the confinement equation 

cr planar 
+ - e e -+ HADRONS 

cr planar 
+ - - e e -+ QQ 

( 19) = 

.•. 
' 

)-< 
' ' , -· (P<AN•C ~:, 

CJUIT4R.1TY) ' \, .. 

Fig. 9 + - Planar unitarity and confinement in e e annihilation into 

hadrons. 

which can easily be generalized to any process involving planar configurations. 

Planar unitarity appears as the basis of the parton interpretation of DTU: 

the replacement, in the graph representing the inclusive summation, of the 

closed flavor loops by a color loop allows to replace an inclusive hadron 

product:on cross section by an exclusive parton production cross section 

and vice versa. 

- 
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The dual parton model which thus emerges appears as a very 

convincing realization of the quark-parton model proposed by Feynmann(33>. 
What we call partons in our picture are the string like quarks and gluons 

defined above. They are string like fragments of string like hadrons. Without 

planar unitarity, which allows to treat on the same foot mesons and partons, 

the parton interpretation of duality would be impossible. In a NRDM, which 

is the tree diagram approximation of a classical string action, there is· no 

parton structure. The end points of the string carry no momentum. They cannot 

be interpreted as partons. In our scheme, the parton which carries momentum 

is not the end point, but a fragment of the string. 

We shall not review all the applications of the dual parton model 

and we refer the reader to the quoted literature. However, just to make the 

transition with the problem of restoring full unitarity by means of the inclusion 

of higher topologies we discuss here the parton interpretation of the confi 

guration building the cylindrical pomeron. 

For a meson-meson interaction, the summation over all possible twists 

in the multi-Reggeon chain leading to the cylindrical pomeron, induces the two 

chain configurations shown in fig. 10 a. 

\,,. 

A ••••• .,>-· •.•. -'. ,,.~·· •• .. . • :·· . : r--- . . ..• , . 
; .. --· 
: V' 

• • ,·· t__ - - 

p ·-~-. ;:. -. ., ·~---··· ·:: ,, ...•. ,;. 
~ · ... '"'-· .. . •·." ... . -; 
:·~!.. . 
'\. .. -- .....• 

.'/ ~- -:-.:.. -~ .. 
~ 

-.:: •• >·· 

2. 2. 2. 

.: 

-· ..•. ·-· .. a 

( a.) 

Fig. 10 (a) Two-chain configuration leading to cylindrical pomeron 

(b) The corresponding rapidity distribution of multiplicity 

(c} Parton interpretation 

• 
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This result has been obtained under the assumption that higher 

topologies can be neglected. The question of what becomes the dual parton 

model when taking into account higher topology corrections is the subject 

of the next section. 

II. HIGHER TOPOLOGIES AND RENORMALIZATION 

• 1. Space-time description of reggeon and pomeron exchange 

The parton model relies on a· space time description of high energy 

processes. The scaling property is based on the existence of two scales of 

time: a short one for the interaction at the level of partons and a long 

one either to extract partons from hadrons or tolet the partons hadronize. 

The fact that dual amplitudes show Regge behaviour already at the 

tree diagram approximation has obscured the space time description of dual 

processes. On the contrary Regge behaviour has been studied in the framework 

of a À~
3 theory. In such a theory Regge behaviour is satisfyed by sums of 

ladder diagrams obtained when computing the shadow scattering of multipe 

ripheral contributions <
35

) - see fig. 12. A multipheripheral production 

processes involves two scales of time: the short one is related to the inverse 
\,- .. 

mass of the exchanged particle in the multipheripheral chain, the long one 

2. 

= 

Fig. 12 - Multipheripheral dynamics and Regge behaviour in Àf3 
theory. 

is the full development time of the chain which is of the order of the total 

c.m. energy because of time dilatation. The existence of the two scales of 

time allows a parton interpretation of the multiperipheral dynamics. Indeed 

- 
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in the very crude À~3 model there is only one particle which can be consi- 

dered either as a hadron or as a.parton. Also in this crude modela paneron 

with intercept one does not emerge in a natural way. 

2. Abramowski Gr:ibov andKanchelli (AGK) cutting rules 

But these defects of the À~3 model do not prevent to use this 

model to discuss theoretically the effects of multiple reggeon exchanges • 

Basically the reasoning which underlies the reggeon diagram technique or 

reggeon calculus developed by AbramowskiGribov andKanchelli (l4) goes as 

follows. If it takes a long time to interact through one reggeon exchange, 

a given parton in an incoming hadron can interact only once. A planar diagram 

• 

with two subsequent reggeon interactions should be strongly suppressed. As 

a consequence the only important contribution involving 2 reggeon interactions 

must be non planar: each of the two incoming hadrons splits into two partons 

which interact at a time - see fig. 13. 

II 
let.) (J.) 

Fig. 13 (a) Vanishing planar two reggeon contribution 

(b) Non vanishing, non planar two reggeon contribution. 

It is possible to push further the argument. The contribution 

of fig. 13 b should be negative with respect to the one reggeon exchange 

contribution, since it is an absorption correction <36) 

n,_,... 
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The AGK cutting rules precisely allow not only to determine the 

sign of this screening correction but to evaluate it. To evaluate a contri 

bution like the one of fig. 13 b one has first to evaluate its absorptive 

part by cutting it in all the possible ways. In fig. 14 we sketch the 

argument according to which there are only three ways of cutting the diagram 

of fig. 13 b leading to non vanishing absorptive parts. The cutting of fig. 14 a 

(i) 
(J.) 

Fig. 14 (a) cutting leading to a vanishing absorptive part 

(b) the three cuttings leading to non vanishing absorptive parts. 

CD one eut reggeon none eut reggeon 

2 eut reggeons. 

(whd.ch is a partial cutting of a reggeon on a rapidi ty interval n ) implies 

that the dotted propagator is connected to a "hanging" multiperipheral 

chain, and has thus a high virtualness ( of the or der of m 2 en ) . Now À. -f 3 

,is a super-renormalizable theory in which all high transverse momenta 

are eut-off. So we expect all cuttings which involve partial cutting of 

reggeons to give rise to vanishing absorptive parts. The three remaining 

cuttings shown in fig. 14 b lead to contributions which can be evaluated 

by taking the imaginary parts of the eut reggeons and by convoluting on 

shell amplitudes when reggeon loops are involved. It is a matter of combina 

tories to generalize these rules to any number of eut and non eut reggeons. 

There are two possible analogies (which, actually, can be used 

together) for the problem of summing all the multiple reggeon exchange 

contributions(3?). 

• 
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i) A non relativistic field theoretical analog 

The reggeon is represented by a complex field w in two-space and 

one-time dimensions. Its propagator is of the form: 

i (22) 

where the squared energy E2 = 1 - J (J is the angular momentum in the 

t-channel) and k2 = - t is the square of the transverse momentum. 

l = 1 - a(o) plays the role of squared mass. The coordinate space 
+ 

variables are b the 2-vector impact parameter for space and iy (y is 

the rapidity) for time. We note, by the way, that with these assignments, 

the limit a(o)-+ 1 is indeed an infrared limit. The theory, called 

a reggeon field theory (RFT), has a three-point coupling shown in fig. 15. 

The coupling constant is complex in connection with the phase of reggeon 

exchange amplitudes. It is pure imaginary for a pomeron with intercept one. 

Fig. 15 - Three reggeon coupling in R.F.T. 

iiJ A phase transition analog 

The diagram of fig. 13 b contribute to a Regge singularity which 

is nota pole but a branch point. The intercept of this branch point is 

a = 2 a (o) - 1. The high energy behaviour of the two reggeon branch point 
C 

is 
52a(o) - 1 

log s (23) 

1 
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We thus see that if a(o) < 1, all multiple reggeon exchanges give 

contributions which are negligible with respect to single reggeon exchange. 

If on the contrary a(o) > 1 one expects multiple reggeon contributions 

to be more and more important and to be overwhelming with respect 

to the single reggeon exchange. Fig. 16 shows the fluid analogy corres 

ponding to the two situations. a(o)<-1 corresponds to a fluid with low 

density, agas say, whereas 

high density. 

a(o) > 1 corresponds to a liquid with 

I 
o,.c;.J 

T , j 

J 

(Cl) . 

(L. ) 

Fig. 16 (a) a(o) < 1 

(b) a(o) > 1 

gas analogy 

liquid analogy 

Indeed the interesting situation is when a(o) = 1, in which 

case multiple reggeon exchanges and the single reggeon are comparable in 

amplitude. Such a situation can give rise, as we sketch in fig. 17, to 

fluctuating multiplicity distributions, typical of a critical phase transition. 

+ t .... +- - , . 
'· .. ... . ' . . ·- ' 

J 

Fig, 17 - Fluctuating multiplicity distribution expected for a(o) = 1 - 
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By using together the two analogies which we have just sketched 

one may hope to use some renorinalization inspired techniques to compute 

"critical exponents". In the analogy which we have discussed a critical 

exponent would be related to the power of legs in the behaviour of the high 

energy total cross section (renormalized pomeron propagator). The hope was 

that, thanks to universality properties, this critical exponent is not too 

much dependent on the specific properties of the underlying local field 

theory. 

One must recognize that the outcome of this program is not very 

convincing. In our opinion, this is due to the fact that, despite univer 

sality, the À~ mode! is a too crude mode!. It is not strictly renormalizable 

but super renormalizable; there are no partons ; there is no bare pcmeron 

with intercept one. We thus come back to the discussion of the topological 

expansion of QCD. 

3. DTU as a reggeon-pomeron calculus 

In contradistinction with the Àf'3 model, our approach has good 

chances to lead to interesting results since the underlying local field 

theory, i.e. QCD , is strictly renormalizable, since there are hadrons 

and partons, and since the bare pcmeron émergës, in a natural way, with 

intercept equal to one. 

The cylindrical topology of the bare pcmeron allows to understand 

why the summation over handles is equivalent to the summation over all 

multiple paneron contributions. In fig. 18 we show how an interference 

which"is neglected in DTU is recovered as a final state interaction correction • 

. (. 

][ 
Fig. 18 (a} an interference leading to a one handle topology 

(b} final state interaction through one cylindrical pomeron exchange 
leading to 

(c) a one handle topology;when summing over all internal loops, topo 
logies (a) and (c) are equivalent - 
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AGK cutting rules apply to DTU since there is a transverse 

eut off in the driving te:rm of the iteration. The DTU expansion can thus 

be reorganised in te:rms of cross sections for cutting a given number of 

reggeons and panerons, the summation over all non eut reggeons and panerons 

giving rise to what we call handle reno:rmalization. For these cross sections 

one can apply the same procedure as the one defined in fig. 9 : one can 

replace the flavor loops corresponding to the mesons produced in the chains 

of eut panerons or reggeons by color loops. The cross-section for eutting 

a given number of reggeons and panerons which is an inclusive cross section 

is thus interpreted as an exclusive cross section for producing a given 

number of partons (quarks and gluons). As in fig. 10 the produced partons 

are associated to inhomogeneities in the distribution of produced hadrons. 

A good observable to use to define experimentally cross sections for 

cutting reggeons and panerons in the transverse energy deposited in a 

calorimeter covering the full azimutal phase space: the higher is the 

number of eut reggeons or panerons, the higher is the multiplicity, and the 

higher is, in average, the transverse manentum of produced hadrons. So our 

procedure to define exclusive cross section for producing partons appears 

as canpletely standard : partons are inhomogeneities in calorimetric distri 

bution. 

• 

4. Handle reno:rmalization in deep inelastic scattering 

We show on an explicit example how works the topological definition 

of calorimetrio cross-sections, and how handle renormalization (summation 

over all non eut pomerons) can be performed by means of the renormalization 

group equation of QCD. The example we choose is deep inelastic scattering 

in the small x region. The region in xis chosen in such a way that 

i) The leading logarithm approximation (LLA) applies to selve 

the RGE, with no violation of unitarity that is 

2 2 
< ( Log Q

2
) / log log 

m J.. 
(24) 

ii) Log.!.. is large enough so that reggeon calculus is relevant 
X 

that is 

(25) 
1 

Log x > Log 

• 
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X 
the D.I.S. reaction 

is the squared invariant mass of the hadronic system produced in 

eA-+ e' + X (26) 

~ 
it is the squared c.m. energy in the V A reaction - see fig. 19. 

r !R., fi'., ····· 

A 

Fig. 19 - Regge model in D.I.S. 
4 * " • (V is a y , W or Z according to the type of leptons) • 

* If (25) is satisfied one can analyze the V A total cross section 

in terms of Regge pole exchanges. Applying DTU would lead to a reggeon 

pomeron calculus for this specific reaction. 

On the other hand L.V. Gribov, E.M. Levin and M.G. Ryskin(G) have 

shown that when (24) is satisfied the LLA is valid, more precisely that 
' 2 

the double logarithmic approximation (log Q
2 

and log.!.. both large) works 
~ X 

and that the Froissard bound for the y A m1total cross section is satisfied. 

Let us recall the main results obtained at the LIA (3B) • In this 

'approximation the dominant configurations are the ones shown in fig. 20. 

They involve three diagrams with strongly ordered virtualnesses. At the 

LLA one can neglect interferences and the cross section is represented 

in terms of generalized ladder diagrams that is ladder diagrams with 

renormalized vertices and propagators, evaluated in terms of the running 

coupling. It is interesting to note that, with the two line notation 

for quarks and gluons the non singlet ladder has the topology of a plane 

whereas the singlet ladder has the topology of a cylinder - see fig. 21. 

- 
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Fig. 20 - 

virtualnesses in the LLA 

Strong ordering of 

v* ~--t--/ . \., __ .,,,. _ 
-- ( 

A 

c~ J 
Fig. 21 - Topologies of the generalized latter diagrams in the LLA 

a - non singlet ladder 

b - singlet ladder. 

The LIA is at the root of the so-called QCD improved parton model (JS). 

The strong ordering of virtualnesses shows that the highest momentum transfer 

lt I is still very small as compared to Q2• So Q2 can be considered as a n 
transverse eut off and one can continue to use a parton model language. 

The RGE of QCD, which are solved by means of the LLA, just tell us how 

the QCD improved parton model depends on the transverse eut off. This 

interpretation of the LIA solution of the RGE as a renormalization of the 

parton model is important for our purpose for it suggests that handle 

renormalization is nothing but the renormalization of the dual parton 

model. 
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In terms of DTU, which can be applied in the region defined by 
'if 

(24) and (25), the V A total cross section can be written as the sum of 

all cross sections for cutting reggeons and panerons in all the possible 

configurations. We show on fig. 22 an example of such a partial cross 

section. We consider, in the non singlet structure function, the cross 

section for cutting one pomeron and one reggeon. 

= 

'--~-- F 

l'JS 
~1 

,I )__ 
.:. ---=·- - ~ - - 

(1.) (e) 

Fig. 22 -Cross section for cutting 1 reggeon and 1 pomeron in the non singlet 

structure function 

(a) cutting one pomeron and one reggeon 

(b) produced string configuration; one mesonic open string plus 

one closed string 

(c) interpretation as exclusive parton production cross section. 

All internal color loops, flavor loops and.handles are summed over. 

We can perform the same procedure for the sum over all cross sections 

for cutting all the possible configurations, namely 

i) exhibit only the color lines associated with the produced partons 

ii) swallow all the non eut pomerons (handles) in the renormalization 

of vertices and propagators. 

It is clear that doing so we shall obtain for the structure functions 

the skeleton diagrams shown in fig. 21 a for the non singlet structure function 

and in fig. 21 b for the singlet structure function evaluated in the LI.A. 

This method to renormalize the dual parton model is strikingly 

similar to the renormalization group approach used to average fluctuations 

in a critical phenomenon <
39>. If one performs DTU with s being fixed, it 
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means that all fluctuations inside a rapidity interval ~ = log~ are 

averaged. The other fluctuations extending on a larger scale inm/apidity, 

and corresponding to the cutting of panerons (like the one shown in fig. 

22 b) h~ve to be evaluated by means of the pomeron calculus. The idea which 

we propose here is to short circuit this calculation by letting S vary: 

if one increases S the transverse eut off becomes weaker and larger fluctua 

tions are averaged. In the considered process, the largest value that Scan 

take is Q2• In this case all fluctuations are averaged and we can describe 

the interaction in terms of one single parton with maximal virtualness equal 

to Q
2• We thus recover the QCD improved parton model, for which the dependence 

in the transverse eut off is expressed in the RGE. If, to solve the RGE, 

we use the LLA with a running coupling, it means that the averaging over 
2 

fluctuations is performed step by step from ~ to log Q2 . This is exactly 

how works the renormalization program in a critical ph~n1'menon. 

III. CALCULATIONAL CONSEQUENCE 

Indeed the interpretation of DTU as a renormalization procedure 

which we have just developped has no calculational consequence for deep 

inelastic scattering since we know that standard methods based on LLA 

are reliable in the considered region. 

On the contrary in processes for which the only theoretical 

framework available is the pomeron calculus, our approach may allow to 

enlarge the danain of application of the RGE of QCD. We want here to discuss 

in terms of this approach, two results which have been obtained previously. 

1. QCD and the rise of hadronic total cross sections(lS) 

The collider data have confirmed the rise of hadronic total cross 

sections. The most accurate measurements (including the ratio cr 
1
;cr ) (40) 

e tot 
suggest that the a~ptotic regime is not yet reached at the collider 

energy. The explanation of this rise remains an important theoretical 

challenge. 

Pomeron calculus is the natural theoretical framework to describe 

high energy multi particle production in hadronic reactions. It is well 
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suited for the description of multiplicity fluctuations, long range corre 

·1ations, KNO scaling, etc ••• Sane recent phenomenological analyses have 

1 od . th d (41) . ed to go agreements wi ata • However the total cross section 

itself remains difficult to approach in this framework. 

In our opinion this difficulty is due to the fact that one always 

uses a pomeron calculus with a fixed transverse eut off. New, one of the 

major experimental facts obtained at the collider <
42

> is that the cross 

section of processes in which at least one hadron has a transverse momentum 

P~ > 2 GeV is about 15 mb, i.e. it amounts to about 1/4 of the total cross 

section. Moreover the comparison between ISR and collider data shows that it 

is precisely this hard or semi hard canponent of the multiple production which 

is responsible for the rise of the total cross section. This observation 

suggests to use our modified pomeron calculus, wi th a running transverse 

eut off, to evaluate the rise of the total cross section. 

The total inelastic cross section is expressed in terms of the 

total parton cross section: 

inel 

OAB = (27) 

If A and B are nucleons (or antinucleons) the distributions of the constituent 

and ~B + Q are such that eq. 27 can be approximated by 
B 

cr i~el = 9 ~ 

PP 
(s) 
9 

(28) 

· n,1hich is nothing but the prediction of the additive· quark model with quark 

kinematics. 

"' The total qq cross section cr is evaluated as an incoherent 

sum of partial cross sections of processes involving a maximal virtualness t. 

"' s 
"' "' cr(s) = dt (29) 

- 
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If we are interested only in the rise of the total cross section 

·we can split the integral of eq. 29 into '\, '\, I s <J(s} = 

2 

- '\, 
dt cr_ 

t 

two pieces 
'\, 

+ f s dt (30) 

s 

the first part would correspond to the bare pomeron, leading to a flat 

contribution in the total cross section, the second part would lead to the 

rise of the total cross sections~ 

'\, '\, 
<J (s} = dt (31) b. s 

s 

A - '\, 

For a fixed t > s we can apply the same decomposition of <J - as the one 
'\, t 

discussed in the previous section, and express <J; as a sum of cross sections 

for cutting a given number of pomerons - see fig. 23. 

a ..... } •R .•••.. ·>· • z r 11,. 
\.,, ) 1+;ç i 
Î J 
-<---- - . -- - - - Cfa 

• { 1 

Fig. 23 - Exclusive parton cross section interpretation of the cross section 
'\, 

for cutting one pomeron in <J ~. 

To evaluate these cross sections it is necessary to perform the 

band.le renormalization, that is to sum over all non eut pomerons. We use 

•••• 



- 34 - 

the RGE of QCD for .this purpose: we average step by step fluctuations in 

larger and larger rapidity intervals from ~ = log s/mi up te log t/m
2
l 

2 2 
we thu:s must bound MA and MB by 

log 
2 

t MA < log - 2 - 
m J. 

(32) 

t 

2 - 
t MB 

< log 21 - m t 
log 

since higher rapidity intervals imply propagators with a virtualness higher 

than t. 

This step by step averaging is completely equivalent te a LLA calcu 

lation in a specific integration demain - see fig. 24. 

M: Fig. 24 - The LLA qA~ cross 

section with a gluon exchange - with virtualness t. 

1\, c: t = (xa,t) <î; (~,t) dxa ~ 

~-+ b 

(33) 

where ~ 
qA-+ a 

(xa,t) (resp ~ qB-+ b (~,t) ) is the structure function 

of parton a (resp b) in the constituent quark qA (resp qB) with fraction 

of momentum xa (resp ~) evaluated at the LLA with resolution ~' dcrab 

dt 

is the differential cross section of ab scattering at the one gluon exchange 

approximation. The demain of integration ~t is the intersection of two demains 

- 



- 35 - 

i) since x b a, 
t =2 

MA,B 

, Eq 32 gives 

2 
X > m ; a ,b -=--- (34) 

t 

'\, 
ii) t< s = s X a 

(35) 

(kinematics of the ab collision). 

the most 

value is - '\, 
but t/s 

The,interplay of these two constraints is crucial to determine 

sensitive value of t. In ref(15) it is shown that this sensitive 
• 4/3 'vl/3 ~ 
t"" m J. s which corresponds to a semi hard process (t -+ œ 

'\, 
-+ 0 at larges). 

Constraint (34) was not well justified in ref (15) in the space 

like region there is 
1 2 2 

log - < log Q /m L 
X - 

tarity could be violated (see eq. 24). The argument which we present h•e is 
'\, 

new. The approach which we have developped consists in calculatin~ each cr~ 
by means of a paneron calculus with a transverse eut off equal to t. we 

no kinematical restriction on xa and~ and with 

one is far below the dangerous region in which uni- 

thus must not take into account parton cluster with too large squared in 

variant masses : violating constraint 34 would be equivalent to a partial 

cutting of a reggeon or a paneron, giving rise to a vanishing absorptive 

part. 

The rise of the pp total cross section has been quantitatively 

estimated in ref (15). It is interesting to note that, with the approach 

presented here, all dimensionned param.eters are constrained theoretically 

m 

ml..= f = 385 meV 

A QCD = m 1T = 140 MeV 

s = 1.1 Gev
2 

(see eq. 9) 

(see eq. 10) 

(see eq. 16) 

On the other hand, one knows that in the LLA the variable 

- 
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2 
log g_ 

A2 

ç; = log (36) 

µ2 
log A2 

controls the amount of cascading <
5>. The parameter µ2 is the reference 

Q2 (a. (µ2) is the "bare" coupling constant). Our approach leads to take s 
for µ, the value of the critical temperature of hadronization transition. 

It is interesting to note that with µ = T = 200 MeV (as suggested by Monte 
C 

Carlo calculation <
3>) the amount of cascading is consistent with the average 

momentum taken by gluons in nucleon structure functions at Q2 ~S. So, all 

dimensionned parameters can be fixed at values suggested by theoretical 

arguments. Doing so one obtains arise of the total cross section of about 

2.5 mb per unit of rapidity which is in good agreement with data. One can 

even, optimistically, use the proposed model to estimate the bare pomeron 

contribution (first piece of the dt integration in eq. 30). One obtains this 

way an excellent agreement with the total pp inelastic cross section from 

ISR to collider energies. 

2. The EMC effect (lG) 

Apart from high energy hadronic collisions, there is another 

demain for which pomeron calculus provides the most suitable theoretical 

framework; it is the domain of high energy reactions involving nuclei. 

For instance, in a high energy hadron-nucleus interaction the AGK 

. l ( 14) 11 t d th total · l · · ( 43) cutting ru es a ow o ecompose e ine astic cross section 

in a sum of cross sections of processes in which n nucleons of the target 

have been involved in an inelastic interaction, whereas the A-n remaining 

nucleons either are spectator or are involved in an elastic scattering. 

These cross sections generalize the cross sections for cutting a given 

number of panerons in the case of scatterings on a nuclear target, the 

panerons which are eut are not the bare,pomerons one has to take into 

account handle renormalization. So, the relevant cross section is the 

cross section cr for cutting n renormalized panerons or pomeron bundles. n 
AGK cutting rules lead to a verysi..mple form 

cr n 

for cr n 
T(b) J r1 - crhN 

- in 
T(b) J A-n (37) 
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where T(b) is the nuclear profile function and cr~N the inelastic hadron in 
nucleon cross section. This equation has a simple interpretation: cr~N T{b) in 
is the probability that a nucleon with impact parameter b interacts inelas- 

tically with the projectile. The Bernouilli's binomial distribution one has 

in eq. 37 expresses the probability of n "successes" in A independent trials. 

From eq. 37 one can compute the total inelastic cross section. One finds : 

= 
A 
E 

n=l 
cr n { 1 - 1-1 - crhN 

- in 
T(b) 1 } (38) 

One can also evaluate v , the averaga number of wounded nucleons, that is <n> . 

One finds : 

A 

E 
n=l 

ne = <n> n 
hA cr. in 

- hA =va. = A in (39) 

Despite their simplicity the results summarized in eq. 37, 38 and 39 are far 

from trivial <
43>. To understand them physically one needs a parton description 

of the inelastic interaction. One knows for instance that the projectile 

h is already far away from the target when the first inelastic interaction 

has completely taken place (remember that it takes a long time to exchange 

a reggeon or a pcmeron). So, one does not understand eq. 37, except if one 

assumes a parton picture : the incoming hadron has ta be thought as a beam 

of partons, among which the rapid ones go through the target without inter 

actions, whereas the slow ones (the number of which is unlimited) may trigger, 

at a time, multiple interactions with the target nucleons. This picture is 

very important for the physical interpretation of the EMC effect <
44>: the 

higher is n, the number of wounded nucleons, the higher is the number of 

radiated partons. 

It is essentially this reasoning which has been applied in ref. (16) 

to elucidate the EMC effect. In deep inelastic scattering on a nuclear target, 

the role of the p~ojectile is played by a virtual vector meson v* . Although 
• it is reasonable to assume that the V itself interacts only once, the 

probability that n target nucleons are wounded is of the same order of magnitude 

as in hadron nucleus collisions since slow partons are equally important for a 

V~ or a hadron projectile. - 
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The idea is thus to perform a paneron calculus in D.I.S. on a 

nuclear target anito use our renormalization group approach to sum it up. 

For the sake of simplicity we assume that the profile function T(b) is a 

flat function. We thus introduce the normalized n nucleon cluster distri- 

bution: A-n 
P(n,A) = (A) P(A)n-l r1 - P(A)] 

n - 
(40) 

which satisfies 

A 
~ 

n=l 
n P(n,A) = A (41) 

provided that 
0 < P (A) < 1 {42) 

with P(n,A) we can write the structure function of the nucleus A as 

A 
= I: 

n=l 

n 2 
P{n,A) F2 (x,Q) (43) 

n · th f · f th 1 1 <45) where F
2 

is e structure unction o en nue eon c uster 

For a non singlet quark F~,NS is constrained by 

f (44) 

so, from eq. 41, we obtain trivially 

A 
dx F 2,NS 

2 (x , Q ) = 3A (45) 

0 
The EMC effect is to be found in the n dependence of P(n,A) and of F~(x,Q2). 

i) The n dependence of P (n,A) is given by eq. 40. We constrain 

P(A) by the fact that the average number of wounded nucleons vis of the 

same order as in hadron-nucleus collisions 
A 

V = <n > = ~ 
n=l 

2 n 
A 

P(n,A) = 1 + (A-1) P(A) (46) 

We take 
V = with À 

(43) 
between 0.7 and 1.0 
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ii) We apply our renormalization group approach to determine 

the n dependence of F~ (x, Q
2

) in terms of a recursion relation. 

We 

no screening 

first note that if Q2 and x/n are not too small, there is 

effect, and F~ (x,Q2) is, up to scaling violation effects, 

n l.og - < 
X 

precisely if 

Q2 
- 2 (log 2 ) / log 
m.1. 

2 
Q 

log 2 
m 1 

(47) 

proportional ton. More 

which is the equ~valent of condition (24) for DIS on an nucleon cluster, 

one has : 

n+l 2 n 2 F 
2 

(x, Q) - F
2 

(x,Q) = n 
2 + E (x,Q) n (48) 

where E (x,Q2) is related to scaling violation effect. We verify that if n 
E ( x,Q2) = 0, n 

2 = n F 2 (x,Q ) 

n=l 2 = F 
2 

(x ,Q ) 

(48) 

where 2 F 2 (x ,Q ) 

and there is no EMC effect 

2 = AF 
2 

(x,Q ) (49) 

To estimate E (x,Q2) n 
. . . (38) Parisi equation 

2 2 where W = Q /x 

we first recall the physical meaning of the Altarelli 

h . 1 2 . 1 2 w en one increments og Q one increments og W, 

is the maximal value that can take the transverse momentum 

of the probed quark. The corresponding increment of F
2

(x,Q2) is the 

convolution of F2(x,Q2) by the splitting function P. For the sake of simplicity 

we shall use the approximate form of the Altarelli-Parisi equation: 

2 d log F 2 tx , Q ) 

d log w2 
= 

2 d log F2 (x,Q ) 
2 

d log Q 
= a(x) (50) 

where a(x) is independent of Q2, at least in a large range of values, and 
. (46) 

can be extracted from data 

Let us increment n by one unit in F2n (x,Q2), keeping x and 

fixed. This increment has three consequences. 

• 
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i) The relative momentum of the probed quark is decremented from 

x/n to x/n+l. 

ii) log w2 = log nQ2 is incremented by 
n X 

t. log w!I 2 
1 (51) = - 

x,Q n 

iii) There is one more target nucleon wounded. There is thus one 

more eut pomeron, and thus, according to the discussion of the previous 

section, one more gluon produced. 

On the whole we can estimate the effect of the increment of n 

by one unit 

t.n = 1 

~ 2 1 
log w = - n n 

D.log F~ (x , Q2) 
X 

t.log w2 
= a (-) (52) 

2 n 
n X, Q 

leading to 
n 2 X F 
2 

(x, Q ) a (-) 
2 n 

E (x, Q) = 
n n 

(53) 

The e~timate of the EMC effect, perfo:rmed by means of this model with a(x) 

taken from data and V defined in eq. 46 equal to 0.9 Al/3 (54) 

(~eads t~ a satisfactory agreement with data - see fig. 25. 

Fig. 25 - Estimate of the EMC affect - ref. (16) 
â. full line: iron compared to data - dotted line 
b. aluminium compared to data 

u 

.la 

{.!:,) 

prediction for uranium 

- 
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IV. CONCLUSION AND OUTLOOK 

The results which we have just discussed are not new. What is new 

is their theoretical justification. Both results (the rise of the hadronic 

total cross section and the EMC effect) are obtained by means of the LLA. 

But what is intriguing is that LLA applies in such processes. The message 

of this paper is that LLA acts as a renormalization group approach applied 

te hadronization considered as a critical phenomenon. Indeed the effects 

which we have studied with our theoretical scheme have analogs in the 

framework of critical phenomena. 

We would compare the rise of the hadronic total cross section 

With.critical opalescence (
47

). Critical opalescence is a phenomenon which 

occurs at the critical transition between steam and water : drops of liquid 

and bubbles of vapor are intermixed at all scales of length, producing a 

milky medium which refracts the light (39). Now, as remarked by I.M.Dremin(4S) 

one can relate the refractivity index of the quark-gluon medium to the real 

part of the forward scattering amplitude by 

~N 
n(w) = 1 + ~-

2 
Re F(w) 

w 
(55) 

Our estimate of the rise of the hadronic cross section clearly indicates a 

positive real part (actually the real part·of the forward scattering amplitude 

is equal, to a good approximation to the logarithmic derivative of the total 

cross section) and thus a refractivity index greater than one.I.M. Dremin has 

argued that one can expect a relativistic parton travelling through this medium 

to emit a Cerenkov gluon·radiation. Such an effect would appear as a ring 

of particles with a given 8 (or pseudo rapidity) and isotropically distri 

buted in azimut. In our approach, it would be a fluctuation in a high 

multiplicity event corresponding to the cutting of a large number of 

reggeons in a small interval of rapidity. It is interesting to note that such 

an effect has been observed by the uA.5 collaboration <
49

> - see fig. 26. 

• 
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Fig. 26 - UA5 observation of a ring like event 
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For the EMC affect, the analog which we propose, is the Mossbauer 

effect. The n wounded nucleons are connected together by panerons. They 

forma cluster which recoils as a whole, which increases the resolution 

Here the porneron plays the role of a phonon (the zero mass quasi particle 

associated with a vibration mode of a Mossbauer crystal). 

Analogs can be very stimulating but they do not replace calcula 

tional methods. 

The experimental study of ultra relativistic heavy ion collision 

to try and reproduce in a laboratory the conditions of the deconfinement 

phase transition, represents a challenge not only for experiment but also 

for theory. Up to now the only theoretical framework which has been used 

is provided by the thermodynamics of plasmas. However the experiment (if it 

is done) will be a scattering experiment. Indeed the number of produced 

particles is expected to be very large (a few thousands say). But, can one 

speak of thermal equilibrium for such transient proce-sses as high energy 

hadronic or nuclear reactions? How can one define and measure a temperature? 

a pressure? 

We present our work as a step forward to the building of a 

theoretical framework suitable to the description of such experiments. Indeed 

the reggeon calculus is already known as the most suitable framework to 

describe high energy processes leading to high multiplicity events. This 

framework is already used to estimate various expectations for high energy 

ion collisions such as multiplicities, correlations (SO) •.. 

The method which we propose would allow to use the most powerful 

tool provided by R.G.E. to disentangle the paneron calculus. How the two 

examples discussed above have shown i t, the reasoning which underlies over 

approach is difficult, but the calculation at the end of this reasoning 

is very simple (a standard LIA calculation). 

We have begun to investigate the possibility of building a 

Monte Carlo generator of events, based on critical hadronization, suitable 

for any high energy reaction, including heavy ion collisions. 

- 
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