Shape coexistence in the Sr-Zr mass region around A \sim 100 $\,$

E. Clément¹, M. Zielińska²

¹ GANIL, Caen, France; ² CEA Saclay, France;

ESNT Workshop on Shape Coexistence, Saclay, October 23-27, 2017 - p. 1/38

Shape transition at N=60

P. Campbell et al., Prog. Part. Nucl. Phys. 86 (2016) 127

Shape transition at N=60

P. Campbell et al., Prog. Part. Nucl. Phys. 86 (2016) 127

Ru

Sr

Shape transition at N=60 and shape coexistence around ¹⁰⁰Zr

P. Campbell et al., Prog. Part. Nucl. Phys. 86 (2016) 127

Unique shape transition

• most complete data set on both sides of the transition: ^{96,98}Sr

Deformation of ⁹⁶**Sr**

E. Clément, MZ et al. PRL 116, 022701 (2016)

Coulomb excitation at REX-ISOLDE: ⁹⁶Sr on ¹⁰⁹Ag, ¹²⁰Sn, ⁹⁸Sr on ⁶⁰Ni, ²⁰⁸Pb

⁹⁸Sr: quadrupole moments and transition probabilities

Identification of the southern border: deformation of N=60,62 ^{97,99}Rb

 identification of rotational bands in ^{97,99}Rb in low-energy Coulomb excitation at REX-ISOLDE

C. Sotty, MZ et al., PRL 115 (2015) 172501

- extracted B(E2) values confirm strong constant deformation in gsb in ^{97,99}Rb
- B(M1)/B(E2) ratios in ⁹⁷Rb favour 3/2⁺[431] configuration of the ground state

Transition probabilities and quadrupole moments in N=58,60,62 nuclei

• visible reduction of Q_0 for N=60 96 Kr – similar to what is observed for N=58 nuclei

- large deformation appears in 97 Rb and remains constant with increasing Z and N: Q_0 in 97,99 Rb similar to that of N=60,62 Zr and Sr nuclei
- Q_{sp} values from laser spectroscopy confirm a dramatic shape change at N=60 in Rb isotopes, deformation for ⁹⁷Rb consistent with Coulex results

Identification of the southern border: spectroscopy of ^{96,98,100}Kr

J. Dudouet et al. Phys. Rev. Lett. 118 (2017) 162501

F. Flavigny et al. Phys. Rev. Lett. 118 (2017) 242501

- 4⁺ state in ⁹⁶Kr behaves differently than in heavier N=60 nuclei
- 2⁺ energies in ^{98,100}Kr suggest that the shape transition may be delayed to N=62

What happens at N=59?

 deformations obtained from Q_s for ground (laser spectroscopy) and excited states (Coulex) consistent

E. Clément and MZ, Phys. Scr. 92 (2017) 084002

Missing experimental information

- in particular: g.s. deformation in ^{90,92}Rb, ^{91-93,95-98}Y, ^{94-98,100}Nb ⁹⁹⁻¹⁰¹Mo
- 2^+ quadrupole moments in 88,90,92 Kr, 90,92,94 Sr and ${}^{92-100}$ Zr

E. Clément and MZ, Phys. Scr. 92 (2017) 084002

Kr: E. Bouchez et al. Shape coexistence: two-state mixing PRL 90 (2003) 082502 6^{+} 6^{+} 6+ 2+ 858 prolate 4+ 4+ 825 778 0+ (2^{+}) 918 4+ 4+ 612 664 562 0+ 2^{+} 694 0+ 2^{+ 558} 2+ 611 0^{+} 346 2^{+} 710 671 0+456 509 655 oblate 0+424 0^+ 0^{+} ⁷⁸Kr 72 Kr ⁷⁴Kr ⁷⁶Kr mixing of the g.s. (from distortion oblate of rotational bands) 72Kr 74Kr 76Kr 78Kr mixing amplitudes for ⁹⁸Sr (from ME): cos $^{2}\theta_{0}$ =0.87(1), cos $^{2}\theta_{2}$ =0.99(1)

sharp transition related to the very weak mixing in contrast to Kr and Hg

Shape coexistence: two-state mixing

- four E2 matrix elements (including relative signs) needed to determine $\cos^2\theta_0$ and $\cos^2\theta_2$: $\langle 0_1^+ \parallel E2 \parallel 2_1^+ \rangle, \langle 0_1^+ \parallel E2 \parallel 2_2^+ \rangle, \langle 0_2^+ \parallel E2 \parallel 2_1^+ \rangle$ and $\langle 0_2^+ \parallel E2 \parallel 2_2^+ \rangle$
- but if $\cos^2\theta_2 \approx 1$, $\cos^2\theta_0$ is simply given by $\tan \theta_0 = \frac{\langle 0_2^+ | E2 | 2_1^+ \rangle}{\langle 0_1^+ | E2 | 2_1^+ \rangle}$

element	N=58	N=60
Pd	0.93	0.86
Ru	0.86	0.92
Мо	0.63	0.84
Zr	not measured	0.84
Sr	0.84	0.88
Kr	not measured	not measured

• low mixing both inside and north of the region of rapid shape change

E. Clément and MZ, Phys. Scr. 92 (2017) 084002

J. Xiang et al., PRC 93, 054324 (2016), 5DCH with PC-PK1 interaction

- beyond mean field calculations: GCM (GOA) D1S, (S. Péru, H. Goutte, J. Libert et al)
- first detailed calculation of transition probabilities on both sides of the N=60 shape transition
- shape change at N=60 and shape coexistence reproduced

 collectivity in ground-state bands overestimated as well as mixing of the structures

- collectivity in ground-state bands overestimated as well as mixing of the structures
- calculated K=2 band in ⁹⁸Sr has no experimental counterpart

GCM(GOA) D1S vs experiment: smoother evolution of energies and transition probabilities than observed experimentally

E0 transition probabilities

⁹⁶ Sr			⁹⁸ Sr						
$\overline{I_1^{\pi} I_2^{\pi}}$		$B(E2, I_1 \rightarrow I_2) \text{ (W.u.)}$			I_{1}^{π}	I_2^{π}	$B(E2, I_1 \rightarrow I_2) \text{ (W.u.)}$		
		Eexperiment	5DCH (Gogny)	Excited VAMPIR			Experiment	5DCH (Gogny)	5DCH (PC-PK1)
$\frac{1}{2_{1}^{+}}$	0_{1}^{+}	$17.3^{+4.0}_{-3.2}$	32	30	2_{1}^{+}	0^+_1	96 (3)	54	73.5
4^{+}_{1}	2^{1}_{1}	-3.2	63	68	4_{1}^{+}	2^{+}_{1}	129^{+8}_{-7}	110	162
0^{1}_{2}	2^{1}_{1}	15.3(16) [<mark>10</mark>]	58	83	6_{1}^{+}	4_{1}^{+}	175_{-14}^{+17}	150	196
0_{3}^{2}	2^{1}_{1}	0.028(11) [11]			8^{+}_{1}	6_{1}^{+}	123^{+19}_{-14}	173	211
2^{+}_{2}	2^{+}_{1}	>8.9 [10]	62	65	2^{+}_{2}	0^{+}_{2}	13 (2)	28	39.2
4_{1}^{+}	2^{+}_{2}		13	7	0^{+}_{2}	2_{1}^{+}	61 (5)	120	195 ^a
4^{+}_{2}	2^{2}_{2}		57	73	2^{+}_{2}	0_{1}^{+}	0.77 (13)	0.07	
$4^{\tilde{+}}_{2}$	4_{1}^{+}		49	47	2^{+}_{2}	2_{1}^{+}	$0.61\substack{+0.22\\-0.30}$	0.78	
2	1		$\rho^2(E0) (\times 10^3)$		2^{+}_{2}	4^{+}_{1}	4^{+4}_{-2}	19.4	
0_{2}^{+}	0_{1}^{+}		106	66			-	$ ho^2(E0)(imes 10^3)$	
0^{-1}_{3}	0_{1}^{+}		22		0_{2}^{+}	0_{1}^{+}	53(5) [21]	179	117
0_{3}^{+}	0^{+}_{2}	185(50) [<mark>13</mark>]	95	9	0_{3}^{+}	0_{1}^{+}		40	
	2				0_{3}^{+}	0^{+}_{2}		75	

• huge discrepancies and scarce experimental data

E. Clément, MZ et al, PRC 94 (2016) 054326

E0 transition probabilities: different predictions for ⁹⁶Sr and ⁹⁸Sr

Shape coexistence around A \sim 100: where we are?

Shape coexistence and type-II shell evolution in Zr isotopes

- p-n tensor interaction reduces the Z=40 gap when ν g7/2 is being filled
- 0⁺₂ states created by 2p-2h
 (+ 4p-4h...) excitation across Z=40
- very different configurations and small mixing of 0⁺₁ and 0⁺₂

Shape coexistence in ⁹⁶Zr

S. Kremer et al, PRL 117, (2017) 172503

- measured B(E2; $2_2^+ \rightarrow 0_1^+$), combined with known branching and mixing ratios, yields transition strengths from the 2_2^+ state
- B(E2; $2_1^+ \rightarrow 0_1^+$) = 2.3(3) Wu vs B(E2; $2_2^+ \rightarrow 0_2^+$) = 36(11) Wu nearly spherical and a well-deformed structure ($\beta \approx 0.24$)
- very low mixing of coexisting structures: $\cos^2\theta_0 = 99.8\%$, $\cos^2\theta_2 = 97.5\%$,

Shape coexistence in ⁹⁴Zr

A. Chakraborty et al, PRL 110, 022504 (2013)

T. Togashi et al, PRL 117, 172502 (2016)

- observation of a strong $2_2^+ \rightarrow 0_2^+$ transition (19 W.u.) - deformed band built on 0_2^+
- shell model calculations suggest an oblate shape

Coulex experiment accepted at LNL

Coulon	nb excitat	ion studie	s of ^{96–100}	MO MZ e	t al, Nucl. Ph	ys. A 712 (20	002)	
				K. W	rzosek-Lipska	a et al, PRC 8	36 (2012)	
0 ⁺ 2520		STABLE			EXOTIC)		
$\frac{2}{4^{+}} \frac{232}{282}$ $\frac{2^{+}}{1509}$	$\begin{array}{c} 2^{+} \\ 4^{-} \\ 2^{-} \\ 2^{+} \\ 2^{+} \\ 2^{+} \\ 0^{+} \\ 1742 \\ 4^{+} \\ 1574 \end{array}$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{cccc} 0^+ & 1963 \\ 2^+ & 1759 \\ 4^+ & 1510 \\ 2^- & 145 \\ 2^+ & 145 \\ \end{array}$	<u>\$</u> <u>+</u> <u>184</u> 71 <u>9</u> <u>+<u>1585</u> <u>4</u><u>+</u><u>168</u>5</u>	$8^{+} 2019$ $4^{+} 1398$ $2^{+} 1250$	$ \begin{array}{r} 8^+ & 1722 \\ 4^+ & 1584 \\ 4^+ & 1215 \\ 6^+ & 1080 \\ \end{array} $	8^+ 1688 6^+_1 1034	
	2 <u>+ 87</u> 1	2 <u>+ 778</u>	<u>8±7\$</u> 3	$ \begin{array}{cccc} 0^+ & 695 \\ 2^+ & 536 \end{array} $	2^+ 848 4^+ 648 2^+ 206	$\begin{array}{c} 0^+_+ & 886\\ 2^ & 872\\ 4^+ & 561 \end{array}$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
0 <u>+ 0</u>	0+ 0	0 <u>+ 0</u>	0+ 0	0+ 0	$0^+ 0$	$\begin{array}{ccc} 2^{+} & 192 \\ 0^{+} & 0 \end{array}$	$\begin{array}{ccc} 2^+ & 172 \\ 0^+ & 0 \end{array}$	
$^{92}Mo_{50}$	$^{94}Mo_{52}$	$^{96}\mathrm{Mo}_{54}$	$^{98}Mo_{56}$	$^{100}{ m Mo}_{58}$	$^{102}Mo_{60}$	$^{104}Mo_{62}$	$^{106}Mo_{64}$	
8.4 W.u.	16 W.u.	21 W.u.	20 W.u.	37 W.u.	74 W.u.	92 W.u.	87 W.u.	
JAEA Toka ⁹⁶ Mo+ ²⁰⁸ P	i, HIL Warsav b, ⁴⁰ Ar, ²⁰ Ne+	w JA - ⁹⁶ Mo ¹³	EA Tokai, H ³⁶ Xe, ⁸⁴ Kr, ⁴⁰	IL Warsaw Ar+ ⁹⁸ Mo		HIL Warsa 40 Ar, ³² S+ ¹⁰	w ⁰ Mo	
23	E2 ME's		17 E2 M	∕IE's		20 E2 ME	'S	
(3 (diagonal)		(4 diagonal)			(4 diagonal)		

Magda Zielińska, CEA Saclay

ESNT Workshop on Shape Coexistence, Saclay, October 23-27, 2017 - p. 26/38

Determination of $\langle Q^2 \rangle \textbf{:}$ example of ^{100}Mo

state	loop	contribution to $\langle Q^2 \rangle$	2 ⁺ ₃
		[e2b2]	4.
	$\langle 0_1^+ \ \mathrm{E2} \ 2_1^+ \rangle \langle 2_1^+ \ \mathrm{E2} \ 0_1^+ \rangle$	0.46	
0^+_1	$\langle 0^+_1 \ \mathrm{E2} \ 2^+_2 \rangle \langle 2^+_2 \ \mathrm{E2} \ 0^+_1 \rangle$	0.01	0,2
	$\langle 0_1^+ \ \mathrm{E2} \ 2_3^+ \rangle \langle 2_3^+ \ \mathrm{E2} \ 0_1^+ \rangle$	0.0002	
	Total	0.48	2 ⁺
	$\langle 0_2^+ \ \mathrm{E2} \ 2_1^+ \rangle \langle 2_1^+ \ \mathrm{E2} \ 0_2^+ \rangle$	0.26	, , , , , , , , , , , , , , , , , , ,
0_{2}^{+}	$\langle 0_1^+ \ \mathrm{E2} \ 2_2^+ \rangle \langle 2_2^+ \ \mathrm{E2} \ 0_2^+ \rangle$	0.10	$ \begin{array}{c} 4_1 \\ 2_2^+ \\ $
	$\langle 0_2^+ \ \mathrm{E2} \ 2_3^+ \rangle \langle 2_3^+ \ \mathrm{E2} \ 0_2^+ \rangle$	0.25	
			$2_{1}^{$
	Total	0.62	0 ⁺ _1

K. Wrzosek-Lipska et al, PRC 86 (2012)

Determination of $\langle\cos3\delta\rangle$: example of $^{100}\mathrm{Mo}$

state	Іоор	contribution	
		to $\langle Q^3\cos 3\delta angle$	
	$\langle 0_1^+ \ \mathrm{E2} \ 2_1^+ \rangle \langle 2_1^+ \ \mathrm{E2} \ 2_1^+ \rangle \langle 2_1^+ \ \mathrm{E2} \ 0_1^+ \rangle$	-0.154	
	$\langle 0_1^+ \ \mathrm{E2} \ 2_1^+ \rangle \langle 2_1^+ \ \mathrm{E2} \ 2_2^+ \rangle \langle 2_2^+ \ \mathrm{E2} \ 0_1^+ \rangle$	0.132	4;
	$\langle 0_1^+ \ \mathrm{E2} \ 2_1^+ \rangle \langle 2_1^+ \ \mathrm{E2} \ 2_3^+ \rangle \langle 2_3^+ \ \mathrm{E2} \ 0_1^+ \rangle$	0.002	
0_{1}^{+}	$\langle 0_1^+ \ \mathrm{E2} \ 2_2^+ \rangle \langle 2_2^+ \ \mathrm{E2} \ 2_2^+ \rangle \langle 2_2^+ \ \mathrm{E2} \ 0_1^+ \rangle$	0.013	
	$\langle 0_1^+ \ \mathrm{E2} \ 2_2^+ \rangle \langle 2_2^+ \ \mathrm{E2} \ 2_3^+ \rangle \langle 2_3^+ \ \mathrm{E2} \ 0_1^+ \rangle$	-0.001	
	$\langle 0_1^+ \ \mathrm{E2} \ 2_3^+ \rangle \langle 2_3^+ \ \mathrm{E2} \ 2_3^+ \rangle \langle 2_3^+ \ \mathrm{E2} \ 0_1^+ \rangle$	-0.0001	
	Total	-0.008	
0 ₂ +	$\langle 0_2^+ \ \mathrm{E2} \ 2_1^+ \rangle \langle 2_1^+ \ \mathrm{E2} \ 2_1^+ \rangle \langle 2_1^+ \ \mathrm{E2} \ 0_2^+ \rangle$	-0.09	_
	$\langle 0_2^+ \ \mathrm{E2} \ 2_1^+ \rangle \langle 2_1^+ \ \mathrm{E2} \ 2_2^+ \rangle \langle 2_2^+ \ \mathrm{E2} \ 0_2^+ \rangle$	-0.31	
	$\langle 0_2^+ \ \mathrm{E2} \ 2_1^+ \rangle \langle 2_1^+ \ \mathrm{E2} \ 2_3^+ \rangle \langle 2_3^+ \ \mathrm{E2} \ 0_2^+ \rangle$	-0.04	4;
	$\langle 0_2^+ \ \mathrm{E2} \ 2_2^+ \rangle \langle 2_2^+ \ \mathrm{E2} \ 2_2^+ \rangle \langle 2_2^+ \ \mathrm{E2} \ 0_2^+ \rangle$	0.12	
	$\langle 0_2^+ \ \mathrm{E2} \ 2_2^+ \rangle \langle 2_2^+ \ \mathrm{E2} \ 2_3^+ \rangle \langle 2_3^+ \ \mathrm{E2} \ 0_2^+ \rangle$	-0.13	
	$\langle 0_2^+ \ \mathrm{E2} \ 2_3^+ \rangle \langle 2_3^+ \ \mathrm{E2} \ 2_3^+ \rangle \langle 2_3^+ \ \mathrm{E2} \ 0_2^+ \rangle$	-0.06	
	Total	-0.51	0 ⁺ ₁

Shape evolution of ^{96–100}Mo

M. Zielińska et al, Nucl. Phys. A 712 (2002) K. Wrzosek-Lipska et al, PRC 86 (2012)

- Ge isotopes, ⁹⁶Mo: deformed ground states coexist with spherical 0₂⁺
- $\langle \cos 3\delta \rangle$ for ground states of Mo isotopes corresponds to maximum triaxiality (probably γ softness); deformation of 0⁺₂ increasing with N
- shape coexistence in ^{98}Mo manifested in a different average triaxiality of 0^+_1 and 0^+_2

Kr isotopes around N=60: where we are?

M. Albers *et al.* Phys. Rev. Lett. 108, 062701 (2012) F. Flavigny *et al.* Phys. Rev. Lett. 118 (2017) 242501

- Coulex of 96 Kr at REX-ISOLDE (2010): 7 \cdot 10³ pps
 - \circ statistics not really sufficient to determine Q_s(2⁺₁)
- at 10⁵ pps population of non-yrast states via Coulex likely
- intensity expected at new generation ISOL facilities
 - Lol's for SPES: V. Modamio et al (^{94–98}Kr), K. Hadyńska-Klęk et al (^{90,92}Kr)

Shape coexistence in ^{94–98}**Kr: SPES Lol (V. Modamio et al)**

T. R. Rodriguez et al. Phys. Rev. C 90, 034306 (2014)

- coexistence of prolate-oblate (⁹⁸Kr) or oblate-triaxial shapes (⁹⁴Kr)
- 0⁺₂ states predicted below 1 MeV accessible in Coulex
- smooth evolution of measured 2_1^+ energies suggests mixing of $2_{1,2}^+$ states
- measurement of 0⁺₂ decay will already give an estimate of mixing

Shapes of ^{90–92}Kr: SPES Lol (K. Hadyńska-Klęk et al)

T. R. Rodriguez *et al.* Phys. Rev. C 90, 034306 (2014)

- first step: high-precision study of less exotic Kr isotopes
 - identification of predicted coexisting structures in ⁹⁰⁻⁹²Kr and precise measurement of their deformation
 - determination of their mixing via measurement of intra-band transition probabilities
 - study of the role of triaxiality

Outlook and open questions

- our understanding of the region has improved thanks to detailed spectroscopic studies and advances in theory
- detailed high-precision studies of stable nuclei ot those close to stability are important
- examples of missing pieces of the puzzle:
 - quadrupole moments of ground states in N=59 nuclei
 - shape coexistence and mixing in the Kr chain
 - quadrupole moments of excited states in the Zr chain
 - role of triaxiality in Sr isotopes

Example for odd-odd nuclei: rotational bands in Y isotopes

L. Iskra et al, EPL 117, 12001 (2017)

Quadrupole sum rules

D. Cline, Ann. Rev. Nucl. Part. Sci. 36 (1986) 683 K. Kumar, PRL 28 (1972) 249

• electromagnetic multipole operators are spherical tensors – products of such operators coupled to angular momentum 0 are rotationally invariant

• in the intrinsic frame of the nucleus, the E2 operator may be expressed by 2 parameters related to charge distribution: $E(2,0) = Q\cos\delta$ $E(2,2) = E(2,-2) = \frac{Q}{\sqrt{2}}\sin\delta$ E(2,1) = E(2,-1) = 0 $\frac{\langle Q^2 \rangle}{\sqrt{5}} = \langle i | [E2 \times E2]^0 | i \rangle = \frac{1}{\sqrt{(2I_i + 1)}} \sum_{t} \langle i | | E2 | t \rangle \langle t | | E2 | i \rangle \begin{cases} 2 & 2 & 0 \\ I_i & I_i & I_t \end{cases}$

 $\langle Q^2 \rangle$: overall deformation parameter

Quadrupole sum rules: triaxiality

D. Cline, Ann. Rev. Nucl. Part. Sci. 36 (1986) K. Kumar, PRL 28 (1972)

$$\sqrt{\frac{2}{35}} \langle \mathbf{Q}^3 \cos 3\delta \rangle = \langle i | \{ [\mathbf{E}2 \times \mathbf{E}2]^2 \times \mathbf{E}2 \}^0 | i \rangle$$
$$= \frac{1}{(2I_i + 1)} \sum_{t,u} \langle i || \mathbf{E}2 || u \rangle \langle u || \mathbf{E}2 || t \rangle \langle t || \mathbf{E}2 || i \rangle \left\{ \begin{array}{ccc} 2 & 2 & 2 \\ I_i & I_t & I_u \end{array} \right\}$$

 $\langle \cos 3\delta \rangle$: triaxiality parameter

Coulomb excitation of ⁹⁸Sr

- 2 targets differing in Z: ⁶⁰Ni and ²⁰⁸Pb
- gsb populated up to 8⁺
- good statistics: 4 subdivisions of CM angles for ²⁰⁸Pb, 3 for ⁶⁰Ni

