Introduction to experimental shape coexistence studies

John L. Wood School of Physics Georgia Institute of Technology

Coexistence: where we have been

Coexistence in the even-Hg isotopes

NOTE: deformed states exhibit a characteristic "*parabolic*" energy pattern

Odd-Au isotopes: h_{9/2} "intruder" state intruder states exhibit a characteristic "*parabolic*" energy pattern

Odd-Tl isotopes: NOTE the " $h_{9/2}$ " state lies *below* the $h_{11/2}$ state

Coexistence in even-Pb isotopes:

multiple parabolas and spherical (seniority) structure

Figure: Heyde & Wood

Heavy arrows indicate E0+M1+E2 transitions

Coexistence in odd-Tl isotopes: $h_{9/2}$ multiple parabolas

Figure from Heyde & Wood

Coexistence in odd-Au isotopes: E0 transitions and multiple parabolas

Odd-Au "double-intruder" structure associated with the $h_{9/2}$ configuration: π 1p-4h and π 3p-6h

Coexistence in the even-Pt isotopes: mixing and E0 transition strength

Relationship between energies of intruder states in odd-mass nuclei and coexistence in even-mass nuclei Unpaired nucleons are not the "drivers" of deformation

Relationship between energies of intruder states in odd-mass nuclei and coexistence in even-mass nuclei multiple parabolas?

Relationship between energies of intruder states in odd-mass nuclei and coexistence in even-mass nuclei

Odd-mass intruder states and their association with low-energy excited 0⁺ states

Figure: Heyde & Wood T_{1/2} isomeric state intruder state

Schematic view of energy contributions to intruder state energies

Coexistence in the odd K, Sc, and V isotopes: deformed intruder states exhibit a characteristic parabolic energy trend

NOTE:

★ Parabolas sharper in light nuclei than in heavy nuclei because shells more confining.

★ Ground state of ⁴⁵Sc₂₄: almost an "island of inversion".

Intruder state energies @ N = 20 have contributions from multiple sources which are not limited to the pure* shell model

Mapping the borders of the Island of Inversion: not a profound structural issue—there is coexistence inside and outside of the borders.

See also Poves and Retamosa PL B184 311 1987

0⁺ v(2p-2h) intruder state energies @ N=20: estimates from v (1p-2h) + v (2p-1h) energies

Shape coexistence @ N=20

Figure adapted from Heyde & Wood

Sudden changes in Zr ground-state properties:

Intruder (shape coexistence) or critical point "phase" change?

 0_2^+ states and deformation in Zr isotopes, $50 \le N \le 62$: electric quadrupole transition strengths

A deformed structure can intrude to become a ground state:

appears to produce a "collective phase change"

Nuclei are manifestations of coexisting structures that may invert by addition of a few nucleons, and may mix.

 0_2^+ states and deformation in Zr isotopes, $50 \le N \le 62$: electric monopole transition strengths

Zr

Isotope shifts and two-neutron separation energies

- A direct view of ground-state properties through atomic hyperfine spectroscopy and mass measurements
- Does not require decay of a parent isotope (further from stability, production-rate limitations)

N=20: sudden onset of deformation in the Na isotopes revealed by ground-state isotope shift and mass data

Na isotope-shifts determined by: G. Huber et al., PRL 34, 1209 (1975); PR C18, 2342 (1978)

Na two-neutron separation energies deduced from masses determined by: C. Thibault et al., PR C12, 644 (1975)

Ground-state properties are a direct signature of shell and deformation structures

Differences in mean-square charge radii (isotope shifts) determined by: optical hyperfine spectroscopy using lasers

Two-neutron separation energies deduced from nuclear masses determined by: direct mass measurements

Ground state properties, S_{2n} and $\delta < r^2 >$, in the regions of N = 60, 90 are very similar

Isotope shifts: Pt, Au, Hg, Tl, Pb, Bi, Po, At

ISOLDE collaboration--red

Two- and four-nucleon transfer reactions

• Reveal distinct pairing condensates

Two- and four-nucleon transfer reactions: Mo -> Zr

Time-of-flight (TOF) spectra for neutrons in the twoneutron transfer reactions, a). the ¹⁰⁸Pd(³He,n)¹¹⁰Cd and b). ¹¹⁶Cd(³He,n)¹¹⁸Sn.The events corresponding to the ground states are marked as g.s. All of the strong peaks correspond to 0⁺ states. The peaks at 1.44 MeV in ¹¹⁰Cd And 1.77 MeV in ¹¹⁸Sn match the excitation energies of the lowest energy deformed states in these isotopes. The spectra are taken from

H. W. Fielding et al., Nucl. Phys. A281, 389 (1977).

Rotational bands in (closed shell) ¹¹²⁻¹²⁰Sn: built on excited 0⁺ states

Figure from Rowe & Wood

B(E2)'s in W.u. [100 = rel. value]

N = 82: v (2p-2h) 0^+ , $2^+ 144$ Sm

Flynn et al., PR C28 97 (1983)

N = 50, 82: v (2p-2h) 0^+ , 2⁺

PR C37 587 PR C13 568 PR C2 1020

PL B98 166 PR C6 1802

t,p

Intruder v(1p-2h) " $2d_{5/2}$, $3s_{1/2}$ " structure in N = 49 isotones

Intruder v(1p-2h) "2f_{7/2}" structure in N = 81 isotones

³²Mg: 0₂⁺ state observed by (t,p) via inverse kinematics with a ³⁰Mg beam

K. Wimmer et al., PRL 105, 252501 (2010) --REX-ISOLDE

N=20 systematic showing the v(2p-2h) 0⁺ bands @ Z=14-18

Figure from Heyde & Wood

Excited O⁺ states in the Ca isotopes:

multi-particle-multi-hole states, and ...?

E0's and $\rho^2(E0)$'s

• Reveal mixing of configurations with different meansquare charge radii / different deformations

E0 transition between states with very different deformations and mean-square charge radii

Conversion electron spectroscopy:

uniquely sensitive to E0 transitions, identifies shape coexistence

E0 transitions-- $\alpha_{K} > \alpha_{K}$ (M1): complex decay schemes require γ -e coincidences

M.O. Kortelahti et al., PR C43 484 1991

E0 transitions between shape coexisting states in the Sn isotopes

E0: transition operator and matrix element --a model *independent* description

E0 transition strengths are a measure of the off-diagonal matrix elements of the mean-square charge radius operator.

$$\rho^{2}(EO) = \frac{1}{\Omega \tau(EO)}$$

"Electronic factor"

$$\Omega = \Omega(Z, \Delta E) = \Omega_{K} + \Omega_{L_{1}} + \dots + \Omega_{E^{+}E^{-}}$$

Monopole strength parameter

$$P_{if}(E0) = \frac{\langle f(\Sigma_{j}e_{j}r_{j}^{2}/i) \rangle}{eR^{2}} = \frac{\langle f(m(E0)/i) \rangle}{eR^{2}} = \frac{M_{if}(E0)}{eR^{2}}$$

Mixing of configurations with different mean-square charge radii produces E0 transition strength.

$$|i\rangle = |x|i\rangle + |\beta|2\rangle , \quad |f\rangle = -|\beta|i\rangle + |x|2\rangle$$

$$M_{if}(E0) = |x|\beta \left\{ \langle 2|m(E0)|2 \rangle - \langle 1|m(E0)|1 \rangle \right\}$$

$$+ (|x|^2 - |\beta|^2) \langle 1|m(E0)|2\rangle$$

$$M_{if}(E0) \approx d_{i}\beta \quad \Delta < r^2 \rangle$$

 Ω values: http://bricc.anu.edu.au

 τ : partial lifetime for EO decay branch

J. Kantele et al. Z. Phys. A289 157 1979 and see JLW et al. Nucl. Phys. A651 323 1999

Origin of idea that EO strength heralds shape coexistence is due to Jan Blomqvist (priv. comm. to JLW from Rauno Julin)

1

Jan Blumquist ~1978

$$\frac{\text{Monopole matrix elements between mixed spherical}}{\frac{\text{wid deformed states}}{\text{wid deformed states}}} = 1422}$$
Eqs. 6-82, 6-84 in Poole-Mottelson II:

$$\langle \beta | \xi eri^2 | \beta \rangle = \langle \beta = 0 | \xi eri^2 | \beta = 0 \rangle + k\beta^2$$
with $k = \frac{3}{4\pi} 2eR_0^2 \left\{ 1 + \frac{\pi z^2}{3} 4 \left(\frac{q_0}{R_0}\right)^2 \right\}$
Assume completely mixed spherical and deformed states

$$10_1^* > = \frac{1}{12} |sph \rangle - \frac{1}{12} |def \rangle$$

$$10_1^+ > = \frac{1}{12} |sph \rangle + \frac{1}{12} |def \rangle$$

$$m(E0) = \langle 0_1^+ | \xi eri^2 | 0_3^+ \rangle = \frac{1}{2} k\beta^2$$

$$\int m(E0) = \langle 0_1^+ | \xi eri^2 | 0_3^+ \rangle = \frac{1}{2} k\beta^2$$

$$\int eR_0^2 = \frac{3}{5\pi} Z \left\{ 1 + \frac{\pi z^2}{3} 4 \left(\frac{q_0}{R_0}\right)^2 \right\} \beta^2 = \frac{6.8}{68} \beta^2 = ab \cdot 13.6 \beta^2$$

$$\int r Z = 5D, R_0 = 5.3 fm, q_0 = 0.54 fm$$

Figure from Heyde & Wood

E0 transitions between "single" and "double" intruder states in ¹⁸⁵Au

Shape coexistence in the N = 90 isotones: revealed by E0 transition strengths

Strong mixing of coexisting shapes produces strong electric monopole (E0) transitions and identical bands.

Coexistence in the N = 90 isotones:

K = 0 and K = 2 bands

E0 transitions between pairs of K = 2 bands

Kulp, Wood, Garrett, Zganjar and others

¹⁵²Sm and the neighboring N = 90 isotones are a manifestation of shape coexistence

Proton particle-hole excitations across the Z = 64 gap may be the source of the coexisting shapes.

Less-deformed 2h and moredeformed 2p-4h structures coexist at low energy at N=90.

Strong mixing obscures the energy differences that are indicative of different shapes.

Strong *E0* transitions are a key signature of the mixing of coexisting structures.

As observed, the K=2 bands will also mix strongly, resulting in E0 transitions.

Coexistence in the even-Pt isotopes: coexistence of K = 0 and K = 2 bands in ¹⁸⁴Pt

Coexistence in the even-Pt isotopes: K = 0 and K = 2 bands

Coexistence in the even-Pt isotopes: K = 0 and K = 2 bands

Coexistence in the even-Pt isotopes: K = 0 and K = 2 bands

Coexistence in the even-Pt isotopes: intruder ground-state interpretation

Coexistence in the even-Cd isotopes:

K = 0 and K = 2 bands

Nilsson 1/2⁻ 541 odd-proton (h_{9/2} intruder) energy systematics

Energies of the π 9/2, 1/2⁻ [541] state

NOTE: the minimum energy shifts by approximately $\Delta N = 2$ for each change of $\Delta Z = 2$

The shapes of the "parabolas" are not understood

Os 0_2^+ energies-- \star

B(E2)'s and <|E2|>'s

- Reveal directly the quadrupole collectivity (deformation)
 OR
- Reveal mixing of configurations with different intrinsic quadrupole moments

E2 transitions associated with shape coexisting states in the Sn isotopes

Evidence for mixing of 0_2^+ and 0_3^+ configurations in ¹¹⁶Sn

B(E2; $0_2^+ \rightarrow 2_1^+$) vs. E(0_2^+) – E(2_1^+): coexistence and mixing yields B(E2; $0_2^+ \rightarrow 2_1^+$) ~ $\alpha^2 \beta^2 (\Delta Q)^2$

Coulomb excitation of radioactive beams (182Hg)

Multistep Coulomb excitation of ^{74,76}Kr using radioactive beams of Kr on a ²⁰⁸Pb target

E. Clement et al., Phys. Rev. C75 054313 (2007)

Quadrupole shape invariants constructed from E2 matrix elements for ^{74,76}Kr

$$\langle q^2 \rangle \equiv \langle 0_1^+ \| \hat{Q} \| 2_1^+ \rangle \langle 2_1^+ \| \hat{Q} \| 0_1^+ \rangle + \langle 0_1^+ \| \hat{Q} \| 2_2^+ \rangle \langle 2_2^+ \| \hat{Q} \| 0_1^+ \rangle$$

for the ground state
$$\langle q^3 \cos 3\delta \rangle \equiv \sum_{r,s=1,2} \langle 0_1^+ \| \hat{Q} \| 2_r^+ \rangle \langle 2_r^+ \| \hat{Q} \| 2_s^+ \rangle \langle 2_s^+ \| \hat{Q} \| 0_1^+ \rangle.$$

E. Clement et al., Phys. Rev. C75 054313 (2007)

Shape coexistence at shell and subshell gaps: the suppression of collectivity

Shape coexistence in regions such as: (a) ³²Mg (b) ¹⁸⁰⁻¹⁹⁶Pb (c) ⁹⁰⁻⁹⁸Zr

Figure from Heyde & Wood

The Hoyle state (7.65 MeV state in ¹²C)

Shape coexistence and subshells: 96Sr and 98Zr

⁹⁴Zr from two structural perspectives: vibrator OR coexisting seniority and deformed structures

0⁺ states in ⁶⁸Ni:

 0_2^+ v=0 state? 0_3^+ π 2p-2h deformed state?

$0^+ \rightarrow 0^+$ decays are pure E0: no γ 's (¹⁹⁰Hg)

1279 keV pure E0 evidence
Figure 2.68a,b

Shape coexistence in regions such as: (a) ³²Mg (b) ¹⁸⁰⁻¹⁹⁶Pb (c) ⁹⁰⁻⁹⁸Zr

Figure from Heyde & Wood

Coexistence in odd-Au isotopes: multiple parabolas

2₁⁺ state properties are a strong signature of shell and deformed structures

Energies of 2_1^+ states determined by: gamma-ray spectroscopy following β decay

problem— β -decaying parent is further from stability and yield will be (much) lower than nucleus of interest

gamma-ray spectroscopy following Coulomb excitation

Reduced E2 transition rates, B(E2) from 2_1^+ states determined by: lifetime measurements using fast β -y timing following β decay

problem--see above

gamma-ray yields following Coulomb excitation

Coexistence in even-Pb isotopes:

multiple parabolas and spherical (seniority) structure

Pakkarinen et al., preprint 2017

The nature of the shape coexisting state in ¹¹⁶Sn revealed by (³He,n) transfer reaction spectroscopy

Systematics of B(E2; $0^{+}_{2} \rightarrow 2^{+}_{1}$) vs. $E_{\gamma} (0^{+}_{2} - 2^{+}_{1})$

Hg (Z = 80) isotopes: detailed spectroscopy--Coulex

Multi-step Coulex @ REX-ISOLDE: Hg beam (2.85 MeV/A) / ¹¹²Cd target; GOSIA analysis of γ-ray yield(angle)

N. Bree et al. PRL 112 162701 2014 figure courtesy of Liam Gaffney

"Shape Coexistence in Atomic Nuclei"--Kris Heyde and JLW, Reviews of Modern Physics Vol. 83 1467 2011

"Coexistence in Even-Mass Nuclei"--JLW, K Heyde, W Nazarewicz, M Huyse, and P Van Duppen, Physics Reports **215** 101 1992

"Coexistence in Odd-Mass Nuclei"—K Heyde, P Van Isacker, M Waroquier, JLW, and RA Meyer, Physics Reports **102** 291 1983

"Electric Monopole Transitions from Low-Energy Excitations in Nuclei"—JLW, EF Zganjar, C De Coster, and K Heyde, Nucl. Phys. A651 323 1999

Electric monopole transition strengths: critical test of phase transition models

Cadmium isotopes: systematics (selected states) N = 50 to N = 82 positive parity, ⁹⁸⁻¹³⁰Cd

The Hoyle state (7.65 MeV state in ¹²C)

Sir Fred Hoyle (1915-2001)

Helium fusion in stars F. Hoyle, Astrophysical J. Suppl. Ser. **1** 121 1954

EVERYTHING YOU SEE, EXCEPT HYDROGEN, *i.e.*, MOST OF YOU AND ME CAME INTO EXISTENCE THROUGH THE HOYLE STATE

		Ζ	А
He nucleus = α	Helium	2	4
	Beryllium	4	8
	Carbon	6	12