Introduction to experimental shape coexistence studies

John L. Wood
School of Physics
Georgia Institute of Technology

Coexistence: where we have been

Coexistence in the even- Hg isotopes

NOTE: deformed states exhibit a characteristic "parabolic" energy pattern

Odd-Au isotopes: $\mathrm{h}_{9 / 2}$ "intruder" state

 intruder states exhibit a characteristic "parabolic" energy pattern

Odd-Tl isotopes:

NOTE the " $\mathrm{h}_{9 / 2}$ " state lies below the $\mathrm{h}_{11 / 2}$ state

Coexistence in even-Pb isotopes:

 multiple parabolas and spherical (seniority) structure

Odd-Tl isotopes: $\mathrm{h}_{9 / 2}$ and $\mathrm{i}_{13 / 2}$ intruder states

"displaced" parabolas

Coexistence in odd-Tl isotopes:

 $h_{9 / 2}$ multiple parabolas
$\pi h_{9 / 2}$ intruder bands
Note:
\star coexistence of
strongly coupled, $9 / 2,11 / 2,13 / 2, \ldots$ and
decoupled bands, $9 / 2,13 / 2,17 / 2$,... in ${ }^{185,187} \mathrm{Tl}$
\star large $B(E 2)$ value
$\star \mathrm{h}_{9 / 2} \pi(1 \mathrm{p}) \times \mathrm{Hg}(2 \mathrm{~h}$; weak oblate)
$\star \underset{9 / 2}{ } \pi(1 p) \times \mathrm{Hg}(2 \mathrm{p}-4 \mathrm{~h}$; strong
Figure from Heyde \& Wood

Coexistence in odd-Au isotopes:

EO transitions and multiple parabolas

Odd-Au "double-intruder" structure associated with the $h_{9 / 2}$ configuration: $\pi 1 p-4 h$ and $\pi 3 p-6 h$

Coexistence in the even-Pt isotopes: mixing and E0 transition strength

Relationship between energies of intruder states in odd-mass nuclei and coexistence in even-mass nuclei
Unpaired nucleons are not the "drivers" of deformation

Relationship between energies of intruder states in odd-mass nuclei and coexistence in even-mass nuclei multiple parabolas?

Relationship between energies of intruder states in odd-mass nuclei and coexistence in even-mass nuclei

Figure adapted from Heyde \& Wood

Odd-mass intruder states and their association with low-energy excited 0^{+}states

$\underline{0^{+} \quad 1884}$		$0^{+} 1758$		
$200 \mathrm{~ns} \quad \underline{2^{+} 1157}$	53.6 ns	$2^{+\quad 1230}$	1.4 min	$2^{+} \quad 774$ $0^{+} \quad 658$
$\frac{7 / 2^{-} \quad 738}{1 / 2^{ \pm}}$	$\begin{aligned} & 3 / 2 \pm 660 \\ & 3 / 2= \\ & 1 / 2= \end{aligned}$		9/2-1281	
$\underline{3 / 2^{+} \quad 0^{+}} \underline{0^{+} \quad 0}$	$9 / 2^{+} \quad 0$	$0^{+} \quad 0$	$\underline{1 / 2^{+} \quad 0}$	$0^{+} \quad 0$
${ }_{19}^{43} \mathrm{~K}_{24} \quad{ }_{20}^{44} \mathrm{Ca}_{24}$	${ }_{49}^{117}{ }^{1 \mathrm{In}_{68}}$	${ }_{50}^{118} \mathrm{Sn}_{68}$	${ }_{81}^{189}{ }^{\mathrm{Tl}}{ }_{108}$	${ }_{82}^{190}{ }^{19 b}{ }_{108}$
		$\underline{0} 0^{+} 3346$		
	1.02 ns	$2^{+} 3291$		
$\underline{00^{+} \quad 2251}$	7/2-1991			
$115 \mathrm{fs} \quad \overline{2^{+} 2102}$	$1 / 2^{+}$		415 ns	$0^{+} \quad 1365$
1/2-320				$2^{+} 1330$
$\underline{\square}$	$3 / 2^{+} \quad 0$	$\underline{0^{+} \quad 0}$	$\frac{1}{1}$	$\underline{0^{+} \quad 0}$
$\overline{1 / 2^{+} \quad 0}$			$\overline{3 / 2^{-} \quad 0}$	
${ }_{4}^{11} \mathrm{Be}_{7} \quad{ }_{4}^{12} \mathrm{Be}_{8}$	${ }_{16}^{35} \mathrm{~S}_{19}$	${ }_{16}^{36} S_{20}$	${ }_{16}^{43} S_{27}$	${ }_{16}^{44} \mathrm{~S}_{28}$

Figure: Heyde \& Wood

$\mathrm{T}_{1 / 2}$	isomeric state
	intruder state

Schematic view of energy contributions to intruder state energies

Figure: Heyde \& Wood

Coexistence in the odd K, Sc, and V isotopes:
deformed intruder states exhibit a characteristic parabolic energy trend


```
NOTE:
    \star Parabolas sharper in light nuclei
        than in heavy nuclei because shells
        more confining.
    \star Ground state of }\mp@subsup{}{}{45}\mp@subsup{\textrm{Sc}}{24}{}\mathrm{ :
        almost an "island of inversion".
```


Figure: Heyde \& Wood

Intruder state energies @ N = 20 have contributions from multiple sources which are not limited to the pure* shell model

Figure from Heyde and Wood JP G17 1351991
*the pure shell model is an independentparticle model:
intruder state energies have very large contributions from many-body correlations:
pairing-- $\Delta \mathrm{E}_{\text {pair }}$
quadrupole-- Δ_{Q}
monopole- $-\Delta_{M}$

Mapping the borders of the Island of Inversion: not a profound structural issue-there is coexistence inside and outside of the borders.

[^0]
$0^{+} v(2 p-2 h)$ intruder state energies @ $N=20$:

estimates from $v(1 p-2 h)+v(2 p-1 h)$ energies

Figure adapted from Heyde \& Wood

See: G Neyens, PR C 840643102011 JP G 430240072016

Shape coexistence @ N=20

Figure adapted from Heyde \& Wood

Sudden changes in Zr ground-state properties:

Intruder (shape coexistence) or critical point "phase" change?

$\mathrm{O}_{2}{ }^{+}$states and deformation in Zr isotopes, $50 \leq \mathrm{N} \leq 62$: electric quadrupole transition strengths

A deformed structure can intrude to become a ground state:

appears to produce a "collective phase change"

Nuclei are manifestations of coexisting structures
that may invert by addition of a few nucleons, and may mix.

Proton pair excitations with respect to the $Z=40$ subshell

$\mathrm{O}_{2}{ }^{+}$states and deformation in Zr isotopes, $50 \leq \mathrm{N} \leq 62$: electric monopole transition strengths

Isotope shifts and two-neutron separation energies

- A direct view of ground-state properties through atomic hyperfine spectroscopy and mass measurements
- Does not require decay of a parent isotope (further from stability, production-rate limitations)

$\mathrm{N}=20$: sudden onset of deformation in the Na isotopes revealed by ground-state isotope shift and mass data

Na isotope-shifts determined by: G. Huber et al., PRL 34, 1209 (1975); PR C18, 2342 (1978)

Na two-neutron separation energies deduced from masses determined by:
C. Thibault et al., PR C12, 644 (1975)

Ground-state properties are a direct signature of shell and deformation structures

Differences in mean-square charge radii (isotope shifts) determined by:
optical hyperfine spectroscopy using lasers

Two-neutron separation energies deduced from nuclear masses determined by:
direct mass measurements

Ground state properties, $\mathrm{S}_{2 n}$ and $\delta\left\langle\mathrm{r}^{2}\right\rangle$, in the regions of $N=60,90$ are very similar

Figure from S. Naimi et al. Phys. Rev. Lett. 105032502 (2010)

Figure from Heyde \& Wood

Isotope shifts: Pt, Au, $\mathrm{Hg}, \mathrm{Tl}, \mathrm{Pb}, \mathrm{Bi}, \mathrm{Po}, \mathrm{At}$

ISOLDE collaboration--red

Two- and four-nucleon transfer reactions

- Reveal distinct pairing condensates

Two- and four-nucleon transfer reactions: $\mathrm{Mo} \rightarrow \mathrm{Zr}$

Figure from A. Saha et al. PL B82 2081979

Time-of-flight (TOF) spectra for neutrons in the twoneutron transfer reactions, a). the ${ }^{108} \mathrm{Pd}\left({ }^{3} \mathrm{He}, \mathrm{n}\right){ }^{110} \mathrm{Cd}$ and b). ${ }^{116} \mathrm{Cd}\left({ }^{3} \mathrm{He}, \mathrm{n}\right){ }^{118} \mathrm{Sn}$. The events corresponding to the ground states are marked as g.s. All of the strong peaks correspond to 0^{+}states. The peaks at 1.44 MeV in ${ }^{110} \mathrm{Cd}$ And 1.77 MeV in ${ }^{118} \mathrm{Sn}$ match the excitation energies of the lowest energy deformed states in these isotopes. The spectra are taken from
H. W. Fielding et al., Nucl. Phys. A281, 389 (1977).

Rotational bands in (closed shell) ${ }^{112-120} \mathrm{Sn}$: built on excited 0^{+}states

Figure from Rowe \& Wood
$B(E 2)$'s in W.u. [100 = rel. value]

$\mathrm{N}=82: v(2 \mathrm{p}-2 \mathrm{~h}) 0^{+}, 2^{+}{ }^{144} \mathrm{Sm}$

Flynn et al., PR C28 97 (1983)

$N=50,82: v(2 p-2 h) 0^{+}, 2^{+}$

Intruder $v(1 p-2 h)$ " $2 d_{5 / 2}, 3 s_{1 / 2}$ " structure in $N=49$ isotones

Intruder v(1p-2h) " $2 \mathrm{f}_{7 / 2}$ " structure in $\mathrm{N}=81$ isotones

${ }^{32} \mathrm{Mg}: \mathrm{O}_{2}{ }^{+}$state observed by (t, p) via inverse kinematics with a ${ }^{30} \mathrm{Mg}$ beam

K. Wimmer et al., PRL 105, 252501 (2010) --REX-ISOLDE

$\mathrm{N}=20$ systematic showing the $v(2 p-2 h) 0^{+}$bands @ Z=14-18

Figure from Heyde \& Wood

Excited 0^{+}states in the Ca isotopes:

multi-particle-multi-hole states, and...?

EO's and $\rho^{2}(E O)$'s

- Reveal mixing of configurations with different meansquare charge radii / different deformations

EO transition between states with very different deformations and mean-square charge radii

> The EO strength from the 238 U "fission" isomer is the weakest known
T. Kibédi and R.H. Spear, ADNDT 89772005

Figure from JLW et al., Nucl. Phys. A651 3231999

Conversion electron spectroscopy:

uniquely sensitive to E0 transitions, identifies shape coexistence

E0 transitions-- $\alpha_{K}>\alpha_{K}(M 1)$:
 complex decay schemes require γ-e coincidences

M.O. Kortelahti et al., PR C43 4841991

EO transitions between shape coexisting states in the Sn isotopes

EO: transition operator and matrix element --a model independent description

EO transition strengths are a measure of the off-diagonal matrix elements of the mean-square charge radius operator.

$$
\begin{aligned}
& \quad \rho^{2}(E O)=\frac{1}{\Omega \tau(E O)} \\
& \text { "Electronic factor" } \\
& \Omega=\Omega(Z, \Delta E)=\Omega_{K^{*}}+\Omega_{L_{i}}+\ldots+\Omega_{e^{+} e^{-}} \\
& \text {Monopole strength parameter } \\
& \rho_{i f}(E 0)=\frac{\langle f| \sum_{j} e_{j} r_{j}^{2}|i\rangle}{e R^{2}} \equiv \frac{\langle f| m(E 0)|i\rangle\rangle}{e R^{2}} \equiv \frac{M_{i f}(E 0)}{e R^{2}}
\end{aligned}
$$

Ω values: http://bricc.anu.edu.au
τ : partial lifetime for EO decay branch

Mixing of configurations with different mean-square charge radii produces EO transition strength.

$$
\begin{aligned}
|\ddot{i}\rangle=\alpha|1\rangle & +\beta|2\rangle, \quad|f\rangle=-\beta|1\rangle+\alpha|2\rangle \\
M_{i f}(E 0)= & \alpha \beta\{\langle 2 / m(E 0) / 2\rangle-\langle 1| m(E O)|1\rangle\} \\
& +\left(\alpha^{2}-\beta^{2}\right)\langle 1 / m(E 0) / 2\rangle \\
M_{i f}(E 0) \simeq & \alpha \beta \Delta\left\langle r^{2}\right\rangle
\end{aligned}
$$

J. Kantele et al. Z. Phys. A289 1571979 and see
JLW et al. Nucl. Phys. A651 3231999

Origin of idea that EO strength heralds shape coexistence is due to Jan Blomqvist (priv. comm. to JLW from Rauno Julin)

Jan Bhomquint ~1978

$$
\begin{aligned}
& \begin{array}{c}
\text { Monopole matrix elements betwren mited spharial } \\
\text { and deformad stales }
\end{array} \\
& \text { Egs. 6-82, 6-84 in Pooke-Mottelion II: } \\
& \langle\beta| \sum_{i} c r_{i}^{2}|\beta\rangle=\langle\beta=0| \sum_{i} e r_{i}^{2}|\beta-0\rangle+k \beta^{2} . \\
& \text { with } k=\frac{3}{4 \pi} Z_{e} R_{0}^{2}\left\{1+\frac{\pi^{2}}{3} 4\left(\frac{a_{0}}{R_{0}}\right)^{2}\right\} \\
& \begin{array}{l}
\text { Assume completely micad sphactical and deformed states } \\
\left.\left.\qquad \left.\left|0_{3}^{+}\right\rangle=\frac{1}{\sqrt{2}} \right\rvert\, \text { sph }\right\rangle \left.-\frac{1}{\sqrt{2}} \right\rvert\, \text { def }\right\rangle
\end{array} \\
& \left.\left.\left.\left.\left|0_{2}^{+}\right\rangle=\frac{1}{\sqrt{2}} \right\rvert\, \text { sph }\right\rangle \left.+\frac{1}{\sqrt{2}} \right\rvert\, \text { def }\right\rangle\right\} \\
& m(E 0)=\left\langle 0_{2}^{+}\right| \sum_{i} e r_{i}^{2}\left|0_{3}^{+}\right\rangle=\frac{1}{2} k \beta^{2} \\
& \dot{\rho}=\frac{m\left(E_{0}\right)}{e R_{0}^{2}}=\frac{3}{5 \pi} Z\left\{1+\frac{\pi^{2}}{3} 4\left(\frac{a_{0}}{R_{0}}\right)^{2}\right\} \beta^{2}=6.6 \beta^{6}=a t \cdot 13.4 \beta^{2} \\
& \text { for } z=50, R_{0}=5.3 \mathrm{fm}, a_{0}=0.54 \mathrm{fmi}
\end{aligned}
$$

${ }^{34} \mathrm{Si}^{\mathrm{O}} \mathrm{O}_{2}{ }^{+}$state observed by internal-pair (electron) spectroscopy via β decay of ${ }^{34 \mathrm{~m}} \mathrm{Al}$

F. Rotaru et al. PRL 109092503 (2012) --LISE3@GANIL

Figure from Heyde \& Wood

EO transitions between "single"and "double" intruder states in ${ }^{185} \mathrm{Au}$

9/2- state @ 9 keV: "double" intruder state: $\pi h_{9 / 2}(1 p) \times{ }^{184} \mathrm{Pt}[\pi(2 p-6 h)]=\pi(3 p-6 h)$

9/2- state @ 322 keV : "single" intruder state: $\pi h_{9 / 2}(1 p) \times{ }^{184} \mathrm{Pt}[\pi(4 h)]=\pi(1 p-4 h)$

Shape coexistence in the $\mathrm{N}=90$ isotones: revealed by EO transition strengths

Strong mixing of coexisting shapes produces strong electric monopole (EO) transitions and identical bands.

Data from Heyde \& Wood

Coexistence in the $\mathrm{N}=90$ isotones:

$\mathrm{K}=0$ and $\mathrm{K}=2$ bands

EO transitions between pairs of $K=2$ bands

Kulp, Wood, Garrett, Zganjar and others

${ }^{152} \mathrm{Sm}$ and the neighboring $\mathrm{N}=90$ isotones are a manifestation of shape coexistence

Proton particle-hole excitations across the $Z=64$ gap may be the source of the coexisting shapes.

Less-deformed 2 h and moredeformed $2 \mathrm{p}-4 \mathrm{~h}$ structures coexist at low energy at $N=90$.

Strong mixing obscures the energy differences that are indicative of different shapes.

Strong EO transitions are a key signature of the mixing of coexisting structures.

As observed, the $K=2$ bands will also mix strongly, resulting in EO transitions.

Coexistence in the even-Pt isotopes:

coexistence of $K=0$ and $K=2$ bands in ${ }^{184} \mathrm{Pt}$

Note: the nonobservation of a γ ray between the two 3^{+}
$\mathrm{K}=2$ states due to
accidental cancellation
of the E2 matrix
element because $3 K^{2}-I(I+1)=0$

Coexistence in the even-Pt isotopes:

$$
\mathrm{K}=0 \text { and } \mathrm{K}=2 \text { bands }
$$

Coexistence in the even-Pt isotopes:

$$
\mathrm{K}=0 \text { and } \mathrm{K}=2 \text { bands }
$$

Coexistence in the even-Pt isotopes:

$$
\mathrm{K}=0 \text { and } \mathrm{K}=2 \text { bands }
$$

Coexistence in the even-Pt isotopes:

 intruder ground-state interpretation

Coexistence in the even-Cd isotopes:

$\mathrm{K}=0$ and $\mathrm{K}=2$ bands

Nilsson 1/2-541 odd-proton ($\mathrm{h}_{9 / 2}$ intruder) energy systematics

> Energies of the $\pi 9 / 2,1 / 2^{-}[541]$ state

NOTE: the minimum energy shifts by approximately $\Delta N=2$ for each change of $\Delta Z=2$

The shapes of the "parabolas" are not understood

$$
\mathrm{Os} \mathrm{O}_{2}^{+} \text {energies-- } \star
$$

$B(E 2)$'s and <|E2|>'s

- Reveal directly the quadrupole collectivity (deformation)

OR

- Reveal mixing of configurations with different intrinsic quadrupole moments

E2 transitions associated with shape coexisting states in the Sn isotopes

Evidence for mixing of $\mathrm{O}_{2}{ }^{+}$and $\mathrm{O}_{3}{ }^{+}$configurations in ${ }^{116} \mathrm{~S} n$

$\mathrm{B}\left(\mathrm{E} 2 ; \mathrm{O}_{2}^{+} \rightarrow 2_{1}^{+}\right)$vs. $\mathrm{E}\left(\mathrm{O}_{2}^{+}\right)-\mathrm{E}\left(2_{1}^{+}\right)$: coexistence and mixing yields $B\left(E 2 ; O_{2}{ }^{+} \rightarrow 2_{1}{ }^{+}\right) \sim \alpha^{2} \beta^{2}(\Delta Q)^{2}$

Coulomb excitation of radioactive beams $\left({ }^{182} \mathrm{Hg}\right)$

$\left\langle I_{i}\\|E 2\\| I_{f}\right\rangle$ (eb)	${ }^{182} \mathrm{Hg}$
$\left\langle 0_{1}^{+}\\|E 2\\| 2_{1}^{+}\right\rangle$	$1.22_{-0.03}^{+0.04}$
$\left\langle 2_{1}^{+}\\|E 2\\| 4_{1}^{+}\right\rangle$	$3.71(6)$
$\left\langle 0_{1}^{+}\\|E 2\\| 2_{2}^{+}\right\rangle$	$-0.61(3)$
$\left\langle 0_{2}^{+}\\|E 2\\| 2_{1}^{+}\right\rangle$	$-2.68_{-0.15}^{+0.15}$
$\left\langle 0_{2}^{+}\\|E 2\\| 2_{2}^{+}\right\rangle$	$-1.7(2)$
$\left\langle 2_{1}^{+}\\|E 2\\| 2_{2}^{+}\right\rangle$	$-2.2(4)$
$\left\langle 2_{2}^{+}\\|E 2\\| 4_{1}^{+}\right\rangle$	$3.1(3)$
$\left\langle 2_{1}^{+}\\|E 2\\| 2_{1}^{+}\right\rangle$	$-0.00_{-1.40}^{+1.30}$
$\left\langle 2_{2}^{+} \\| E 22_{2}^{+}\right\rangle$	$0.8_{-0.6}^{+1.0}$

$<|E 2|>$'s
N. Bree, K. Wrzosek-Lipska et al. PRL 112162701 2014,

Multistep Coulomb excitation of ${ }^{74,76} \mathrm{Kr}$ using radioactive beams of Kr on a ${ }^{208} \mathrm{~Pb}$ target

Quadrupole shape invariants constructed from E2 matrix elements for ${ }^{74,76} \mathrm{Kr}$

$\left\langle q^{2}\right\rangle \equiv\left\langle 0_{1}^{+}\|\hat{Q}\| 2_{1}^{+}\right\rangle\left\langle 2_{1}^{+} \| \hat{Q} \mid 0_{1}^{+}\right\rangle+\left\langle 0_{1}^{+}\|\hat{Q}\| 2_{2}^{+}\right\rangle\left\langle 2_{2}^{+}\right|\left|\hat{Q} \| 0_{1}^{+}\right\rangle$
for the ground state
$\left\langle q^{3} \cos 3 \delta\right\rangle \equiv \frac{\sum_{r, s=1,2}\left\langle 0_{1}^{+}\|\hat{Q}\| 2_{r}^{+}\right\rangle\left\langle 2_{r}^{+}\|\hat{Q}\| 2_{s}^{+}\right\rangle\left\langle 2_{s}^{+} \| \hat{Q}\right|\left|0_{1}^{+}\right\rangle .}{}$
E. Clement et al., Phys. Rev. C75 054313 (2007)

Shape coexistence at shell and subshell gaps: the suppression of collectivity

Shape coexistence in regions such as:
(a) ${ }^{32} \mathrm{Mg}$
(b) ${ }^{180-196} \mathrm{~Pb}$
(c) ${ }^{90-98} \mathrm{Zr}$

The Hoyle state (7.65 MeV state in ${ }^{12} \mathrm{C}$)

Helium fusion in stars
F. Hoyle, Astrophysical J. Suppl.

Ser. 11211954

Shape coexistence and subshells: ${ }^{96} \mathrm{Sr}$ and ${ }^{98} \mathrm{Zr}$

${ }^{94} \mathrm{Zr}$ from two structural perspectives: vibrator OR coexisting seniority and deformed structures

O^{+}states in ${ }^{68} \mathrm{Ni}:$
 $\mathrm{O}_{2}{ }^{+} \mathrm{v}=0$ state? $\quad \mathrm{O}_{3}{ }^{+} \pi 2 \mathrm{p}-2 \mathrm{~h}$ deformed state?

Figure taken from F. Recchia et al., PR C88 0413022013
S. Suchyta et al., PR C89 0213012014

See also: D. Pauwels et al., PR C82 0273042010

$0^{+} \rightarrow 0^{+}$decays are pure EO: no $\gamma^{\prime} s\left({ }^{190} \mathrm{Hg}\right)$

1279 keV pure EO evidence

Figure 2.68a,b

Shape coexistence in regions such as:
(a) ${ }^{32} \mathrm{Mg}$
(b) ${ }^{180-196} \mathrm{~Pb}$
(c) ${ }^{90-98} \mathrm{Zr}$

Figure from Heyde \& Wood

Figure 2.67

Figure from Heyde and Wood

The superscripts, e.g., "[1,2]" associated with ${ }^{154} \mathrm{Dy}$, designate that two neutron shells are forming a "multi-shell"

Coexistence in odd-Au isotopes: multiple parabolas

$2_{1}{ }^{+}$state properties are a strong signature of shell and deformed structures


```
Energies of 21+}\mp@subsup{}{}{+}\mathrm{ states determined by:
gamma-ray spectroscopy following }\beta\mathrm{ decay
    problem- }\beta\mathrm{ -decaying parent is further from stability and yield will be (much)
        lower than nucleus of interest
gamma-ray spectroscopy following Coulomb excitation
```

Reduced E 2 transition rates, $\mathrm{B}(\mathrm{E} 2)$ from $2_{1}{ }^{+}$states determined by:
lifetime measurements using fast $\beta-\gamma$ timing following β decay problem--see above
gamma-ray yields following Coulomb excitation

Coexistence in even-Pb isotopes:

multiple parabolas and spherical (seniority) structure
Pakkarinen et al., preprint 2017

The nature of the shape coexisting state in ${ }^{116} \mathrm{Sn}$ revealed by (${ }^{3} \mathrm{He}, \mathrm{n}$) transfer reaction spectroscopy

Systematics of $\mathrm{B}\left(\mathrm{E} 2 ; \mathbf{0}^{+}{ }_{2} \rightarrow \mathbf{2}^{+}{ }_{1}\right)$ vs. $\mathrm{E}_{\gamma}\left(\mathbf{0}^{+}{ }_{\mathbf{2}}-\mathbf{2}^{+}{ }_{1}\right)$

$\mathrm{Hg}(\mathrm{Z}=80)$ isotopes: detailed spectroscopy--Coulex

$4^{+} \quad 1125$

$\mathrm{A}=182$

A=184

$\mathrm{A}=186$

$\mathrm{A}=188$

Multi-step Coulex @ REX-ISOLDE:
Hg beam ($2.85 \mathrm{MeV} / \mathrm{A}$) / ${ }^{112} \mathrm{Cd}$ target;
GOSIA analysis of γ-ray yield(angle)
"Shape Coexistence in Atomic Nuclei"--Kris Heyde and JLW, Reviews of Modern Physics Vol. 8314672011
"Coexistence in Even-Mass Nuclei"--JLW, K Heyde, W Nazarewicz, M Huyse, and P Van Duppen, Physics Reports 2151011992
"Coexistence in Odd-Mass Nuclei" - K Heyde, P Van Isacker, M Waroquier, JLW, and RA Meyer, Physics Reports 1022911983
"Electric Monopole Transitions from Low-Energy Excitations in Nuclei"-JLW, EF Zganjar, C De Coster, and K Heyde, Nucl. Phys. A651 3231999

Electric monopole transition strengths: critical test of phase transition models

Cadmium isotopes: systematics (selected states) $N=50$ to $N=82$ positive parity, ${ }^{98-130} \mathrm{Cd}$

The Hoyle state (7.65 MeV state in ${ }^{12} \mathrm{C}$)

Sir Fred Hoyle (1915-2001)
Helium fusion in stars
F. Hoyle, Astrophysical J. Suppl.

Ser. 11211954

[^0]: See also Poves and Retamosa PLB184 3111987

