TATRA Decay Station at ISOLDE and Shape Coexistence in Odd-mass Au Nuclei

Martin Venhart

Fyzikálny ústav Slovenskej akadémie vied, Bratislava Institute of Physics, Slovak Academy of Sciences, Bratislava

John L. Wood Georgia Institute of Technology, Atlanta, GA, USA

On behalf of the IS521 collaboration (ISOLDE)

SAV

Why to study excited states of odd-Au nuclei?

- An odd particle acts as a probe of the core
 - Information on independent particle states
 - Information on deformation: axial and triaxial shapes
 - Information on pairing from blocking
 - Identification of intruder states free of mixing
 - Information on rotational collectivity
- Need of beta decay studies: in-beam experiments reveal almost only yrast cascades
- Low-energy shape coexistence

- Complexity:
 - Multiple independent particle states coupling with core states: very high level density
 - Decay scheme spectroscopy involves multiple paths to the ground state (cf. eveneven nuclei where most decay is through first 2⁺ state)
 - Multipolarities not dominated by E2 (M1, M1 + E2)
 - Critical to identify *E*1 multipolarity (cf. even-even nuclei, where *E*1 decay is high energy)
 - Strong E0 components of transitions act as probe of the shape coexistence

• Spectra are very complex, therefore the energy resolution is critical

Particle-core coupling approach

(At least) four types of excitations in odd-Au isotopes

C. D. Papanicolopoulos et al., Z. Phys. A 330, 371 (1988).

• UNISOR facility at ORNL (US)

•In total 9 transitions with *E*0 components were identified

• Both between positive and negative parity states

• Study that set the standards for odd-mass spectroscopy

D. Rupnik et al., Phys. Rev. C 58, 771 (1998).

Road map to the Au structure: negative parity states

E. F. Zganjar et al., Phys. Lett. B 58, 159 (1975).

Road map to the Au structure: positive parity states

Road map to the Au structure: positive parity states

M. O. Kortelahti et al., J. Phys. G 14, 1361 (1988).

Intruder "parabola"

Intruder "parabola"

TATRA operation principle

8-track tape design

- Design inspired by Ed Zganjar
- Ed: "If you can tune beam to 6 mm wide tape, go for it, they are the best!"
- Single reel tapes with endless loop of magnetic tape
- Production ceased in 1980
- Original tapes do not work well after 35+ years of storage

Amorphous metallic tape (courtesy of Metal physics Dept.)

- Amorphous metallic tape produced by rapid quenching of an alloy
- Rapid = 10^6 K per second
- To operate in 8-track mode: alloy of 7 elements is used
- Welding of amorphous metal is a challenge: new methods need to be developed
- Tape keeps metallic properties: suitable for use in high-vacuum environment
- TATRA can be operated at pressures below 10⁻⁷ mbar in whole system
- Windowless Si(Li) detector operated at LN₂ temperature can be used

TATRA online: August 2014 – IS521 experiment

BE2020 Broad Energy Germanium Detector

- p-type HPGe detector
- Active diameter 51 mm and thickness 20 mm
- Relative efficiency of approximately 9 %
- Designed for environmental applications
- IS521 (one of) the first nuclear structure experiments
- Detector provided by the University of Liverpool
- Very promising gamma-detector for future
- Operated at high gain: one ADC channel = 27 eV

Experiment instumentation

GO box crucial: allows to use full dynamical range of the digitizer BEGe detects gamma rays up to 1 MeV, i.e., one channel is ~30 eV

TATRA in 2016: 3 coaxial detectors, 1 BEGe and Si(Li)

¹⁸³Hg decay spectrum detected with BE2020

- 1. Identification of the lines due to mother decay using the timestamped stream of the data
- 2. Determination of precise energies using gamma-ray singles spectrom from the BEGe
- 3. Standard gamma-gamma coincidence analysis
- 4. Rydberg-Ritz combination principle can be used (be careful about the doublets!)

¹⁸³Hg -> ¹⁸³Au decay: Example of BE2020 spectrum

¹⁸³Hg -> ¹⁸³Au decay: Identification of peaks using timing

¹⁸³Hg -> ¹⁸³Au decay: Identification of peaks using timing

BE2020 Broad Energy Germanium Detector

M. Venhart et al., Nucl. Instrum. and Methods in Phys. Res. 849, 112 (2017).

BE2020 Broad Energy Germanium Detector

M. Venhart et al., Nucl. Instrum. and Methods in Phys. Res. 849, 112 (2017).

Deconvolution using the timestamped data

M. Venhart et al., Nucl. Instrum. and Methods in Phys. Res. 849, 112 (2017).

Building of the level scheme: Rydberg-Ritz combination principle

M. Venhart et al., Nucl. Instrum. and Methods in Phys. Res. 849, 112 (2017).

Determination of the excitation energy of first excited state

M. Venhart et al., Nucl. Instrum. and Methods in Phys. Res. 849, 112 (2017).

Distribution of Rydberg-Ritz combinations

Conversion-electron spectrum: 1.5 keV resolution

Decay of ¹⁸³Hg: excited states of ¹⁸³Au

Decay of ¹⁸³Hg: excited states of ¹⁸³Au

¹⁸³Au partial level scheme: Placement of the 60.37 keV transition

Intruder parabola

- Spectroscopy at minimum of intruder parabola in odd-Au isotopes
- Laser measurements are in agreement conclusions based on excited states

Internal conversion coefficients: two E0 transition identified

${ m E}_{\gamma}~[{ m keV}]$	Experimental value	\mathbf{BrIcc} (M1)	BrIcc $(E2)$	Multipolarity
60.37	$\alpha_L = 0.22(4)$	4.355	37.68	E1
	$\alpha_M = 0.04(2)$	1.011	9.782	
160.11	$\alpha_K/\alpha_L = 4.7(18)$	5.99	0.72	M1 (+ E2)
166.46	$\alpha_K/\alpha_L = 3.4(5)$	5.994	0.782	M1 + 40(10)% E2
	$\alpha_L = 0.24(5)$	0.233	0.338	
172.85	$\alpha_K = 1.25(28)$	1.257	0.242	M1
173.96	$\alpha_K = 1.25(28)$	1.234	0.238	M1
188.29	$\alpha_K = 0.87(20)$	0.989	0.197	M1 (+ E2)
198.12	$\alpha_K = 0.88(20)$	0.858	0.174	M1
217.53	$\alpha_K = 0.54(13)$	0.661	0.138	M1 (+ E2)
284.40	$\alpha_K = 1.21(33)$	0.316	0.071	E0 + M1 +
289.37	$\alpha_K = 0.25(6)$	0.302	0.068	M1 + E2
296.54	$\alpha_K = 2.84(74)$	0.282	0.064	E0 + M1 +
305.05	$\alpha_K = 0.26(6)$	0.261	0.060	M1
	$\alpha_L = 0.04(1)$	0.043	0.029	

Placement of 296.54 keV E0 transition: coincidences

Placement of 296.54 keV E0 transition: Rydberg-Ritz

- Initial analysis (singles spectrum): 50 eV difference for Rydberg-Ritz combination
- What is wrong?

Placement of 296.54 keV E0 transition: Rydberg-Ritz

- Initial analysis (singles spectrum): 50 eV difference for Rydberg-Ritz combination
- What is wrong?
- 296.54 keV line is a doublet!

Systematics of positive-parity states extended

¹⁸¹Hg decay: limit β^+ /EC decay studies

- Lighter isotopes dominantly decay via α decay
- Yield of ISOLDE is limited
- Previous data: ISOCELE in beginning of 80's
- Only list of gamma rays is given, no level scheme
- IS521: first (limited) level scheme constructed
- Great benefit from the time structured data and BEGe detector
- Analysis of the data is not finished yet
- Dedicated study will be needed in the future

Manifestation of the resolving power of BEGe

¹⁸¹Hg decay: Feeding from 1/2⁻ ground state

¹⁸¹Hg decay: idenfication of lines due to $1h_{11/2}$ configuration

Excellent young team

- Martin Veselský
- Ján Kliman
- Stanislav Hlaváč
- Vladislav Matoušek
- Peter Švec, Sr.
- Paresh Prajapati
- Anton Repko
- Kristian Petrík
- Peter Švec
- Štefan Motyčák
- Dušan Janičkovič

- Matúš Sedlák
- Matúš Balogh
- Jozef Klimo
- Robert Urban
- Jakub Krajňák
- Monika Bírová
- Andrej Špaček
- Jakub Lietavec
- Jakub Lušnák
- Lukáš Holub

 Slovakia member state of ISOLDE since 2015

Conclusion

- TATRA system was used to identify E0 transitions in ¹⁸³Au
- To our knowledge the BEGe detector was used for the first time for nuclear spectroscopy experiment
- Conversion electrons with 1.5 keV resolution (above 100 keV) were detected
- TATRA can be operated
- Lot of work is still ahead of us: the system is very fragile and sensitive for presise tuning
- The tape is very difficult to produce and to weld

