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Electric monopole (E0) transitions�
The probability for an E0 transition to occur is  

given by P=Ωρ2 with Ω and ρ2 electronic and 
nuclear factors.�

The nuclear factor is the matrix element �
�
�
Higher-order terms are usually not considered,   
σ=0, and hence contact is made with the charge 
radius.�
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Coexistence or collective?�
Origin of E0 transitions in nuclei: �

Mixing of coexisting configurations with different 
shapes (Heyde & Wood); �

Between β-vibrational states in the geometric 
collective model (Reiner).�

In a geometric framework E0 strength should rise 
in the transition from spherical to deformed    
⇒ Link with phase transitions in nuclei (von 
Brentano et al.).�



Hypothesis: collective E0�



Charge-radius and E0 operators�
Definition of a “charge radius operator”: �
�
�
Definition of an “E0 transition operator” (for σ=0): �
�
�
Hence we find the following (standard) relation: �
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Effective charges�
Addition of neutrons produces a change in the 

charge radius ⇒ need for effective charges.�
Generalized operators: �
�
�
�
�
Generalized (non-standard) relation: �
�

€ 

r2
s
=

1
enN + epZ

s ekrk
2 s

k =1

A

∑ ⇒ ˆ T r2( ) =
1

enN + epZ
ekrk

2

k =1

A

∑

ˆ T E0( ) = ekrk
2

k =1

A

∑

€ 

ˆ T E0( ) = enN + epZ( ) ˆ T r2( )



E0 transitions in nuclear models�
Nuclear shell model: E0 transitions between 

states in a single oscillator shell vanish.�
Geometric collective model: Strong E0 transitions 

occur between β- and ground-state band.�
Interacting boson model: Can be used to test the 

relation between charge radii and E0 
transitions.�



Operators in the IBM�
The charge radius operator: �
�
�
The E0 operator: �
�
�
The M1 operator: �
�
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Application to rare-earth nuclei�
Application to even-even nuclei with Z=58-74.�
Procedure: �

Determine IBM hamiltonian from spectra with special 
care to the spherical-to-deformed transitional region.�

Determine coefficients α and η in T(r2) from isotope and 
isomer shifts.�

Calculate ρ(E0) values.�
�

S. Zerguine et al., Phys. Rev. Lett. 101 (2008) 022502�
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Example: gadolinium isotopes�
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Example: gadolinium isotopes�
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Isotope shifts�
Isotopes shifts depend on the coefficients α and η: �
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Estimate of parameters�
Average increase of the charge radius with 

particle number: �
�
�
Increase of charge radius due to deformation: �
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Isotope shifts�
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Isotope shifts�
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ρ2 values�
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ρ2 values�

Data: Compilation B. Singh�
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spherical to a deformed shape which, at the phase-transitional
point, is characterized by a peak in the isotope shifts. The
height of the peak is proportional to the suddenness of the
transition. This effect is a direct consequence of the increase
in the mean-square radius of a nucleus due to its deformation.
The IBM-1 is able to provide an adequate description of this
transitional behavior. By adjusting the charge radius operator
of the IBM-1 to the observed height of the peak in the isotope
shifts, a first estimate of the parameter η (or η′) is obtained.
Its value follows more directly from isomer shifts since only
one parameter enters this quantity but, unfortunately, data are
scarce and often unreliable. The choice η = 0.50 fm2 (or η′ =
0.05 fm2) is a compromise between the value obtained from
a fit to "〈r2〉 of all isotopes and the one from δ〈r2〉 in the
Gd isotopes. The question is now whether this value of η (or
η′) reproduces the E0 transitions observed in the rare-earth
nuclei.

C. Electric monopole transitions

The calculation of the matrix elements of the E0 transition
operator (10) or (11) requires the knowledge of the effective
charges en and ep. In principle, an estimate of the ratio en/ep

can be obtained by fitting the expression (20) to the available
data on charge radii in the rare-earth region. The minimum
in the rms deviation is shallow though and, furthermore, the
correlation between r0 and en/ep is strong. In other words, a
slightly different choice of r0 gives an almost equally good fit to
the charge radii of 58 ! Z ! 74 nuclei but with a significantly
different ratio en/ep. A reasonable choice of parameters, close
to the optimum set, corresponds to r0 = 1.24 fm, en = 0.50e,
and ep = e.

In Table IV the available E0 data in the rare-earth region
are compared with the results of this calculation. The two
choices of E0 transition operator, Eqs. (10) and (11), again
yield comparable results. An overall comment is that the
present approach succeeds in reproducing the correct order
of magnitude for ρ2(E0), in particular in the Sm, Gd, and
Dy isotopes. However, some discrepancies can be observed in
heavier nuclei and especially concern 172Yb and 182−184W. A
possible explanation is that the ρ2(E0) measured for these
nuclei is not associated with collective states. This seems
to be the case in 172Yb where several ρ2(E0) have been
measured none of which is large. Only in the W isotopes does
it seem certain that the observed E0 strength is consistently
an order of magnitude smaller than the calculated value. It
is known that these nuclei are in a region of hexadecapole
deformation [55] and this may offer a qualitative explanation
of the suppression of the E0 strength, as argued in the next
section.

While in a spherical vibrator there is no appreciable E0
strength from the ground state to any excited 0+ state, this
is different in a deformed nucleus which should exhibit large
ρ2(E0)s from the ground-state toward the β-vibrational band
[1,7]. As a consequence, one predicts an increase in the E0
strength as the phase-transitional point is crossed. This seems
to be confirmed in the few isotopic chains where data are
available. Adopting a simple, schematic Hamiltonian, von

TABLE IV. Experimental and calculated ρ2(E0) values in the
rare-earth region.

Isotope Transition J ρ2(E0) × 103

Th1a Th2b Th3c Expt.d

150Sm 740 → 0 0 7 6 18 2
1046 → 334 2 16 13 100 40

152Sm 685 → 0 0 52 52 72 51 5
811 → 122 2 41 41 77 69 6

1023 → 366 4 29 29 84 88 14
1083 → 0 0 2 2 0.7 0.4
1083 → 685 0 47 47 22 9

154Sm 1099 → 0 0 41 49 96 42
152Gd 615 → 0 0 68 68 63 14

931 → 344 2 77 77 35 3
154Gd 681 → 0 0 84 102 89 17

815 → 123 2 66 80 74 9
1061 → 361 4 38 46 70 7

156Gd 1049 → 0 0 44 64 42 20
1129 → 89 2 41 59 55 5

158Gd 1452 → 0 0 30 51 35 12
1517 → 79 2 27 45 17 3

158Dy 1086 → 99 2 42 70 27 12
160Dy 1350 → 87 2 28 56 17 4
162Er 1171 → 102 2 38 64 630 460
164Er 1484 → 91 2 24 48 90 50
166Er 1460 → 0 0 9 20 127 60
170Yb 1229 → 0 0 32 72 27 5
172Yb 1405 → 0 0 30 76 0.2 0.03
174Hf 900 → 91 2 32 71 27 13
176Hf 1227 → 89 2 15 38 52 9
178Hf 1496 → 93 2 32 72 14 3
182W 1257 → 100 2 45 77 3.5 0.3
184W 1121 → 111 2 52 75 2.6 0.5

aWith the E0 transition operator (10).
bWith the E0 transition operator (11).
cConfiguration-mixing calculation of Ref. [10].
dFrom Ref. [54] for J = 0, except 154Sm and 166Er which are from
Ref. [30]; from Ref. [6] for J '= 0.

Brentano et al. [56] showed that also in the IBM-1 sizable
E0 strength should be observed in all deformed nuclei. The
present IBM-1 calculation is in qualitative agreement with this
geometric picture and with the results of von Brentano et al.
Nevertheless, it should be pointed out that, systematically,
the calculated ρ2(E0; 0+

2 → 0+
1 ) in Table IV diminishes once

the phase-transitional point is crossed. In the Gd nuclei, at
least, this behavior seems to be borne out by the data. It
indicates that the first-excited 0+ state in the IBM-1 has not
simple a β-vibrational character but has a more complicated
structure [5,19].

Tables III and IV also show the results of a configuration-
mixing calculation for 152Sm [10]. This approach leads to a
quantitative, detailed description of the data. Results of similar
good quality are obtained for 154Gd [57]. However, in view of
the employed methodology, as explained in Sec. II E, it seems
difficult to make systematic calculations of E0 properties of
nuclei with this model.
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Summed B(M1) strength�
Ginocchio proved the following M1 sum rule: �
�
�
Summed M1 strength to the scissors state is 

known in many rare-earth nuclei.�
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Summed B(M1) strength�
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Correlation S(M1)-<r2>�
Rewrite expressions for <r2> and S(M1):�
�
�
�
�
We obtain the relation �
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Correlation ΔS(M1)-Δ<r2>�
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Correlation ΔS(M1)-Δ<r2>�
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Correlation S(M1)-ρ(E0)�
In well-deformed nuclei [SU(3)]: �
�
�
�
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We obtain the relation (for large Nb)�
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Correlation S(M1)-ρ(E0)�
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Correlation S(M1)-ρ(E0)�
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Conclusions�
Consistent treatment of charge radii and E0 

transitions assuming the same effective charges.�
An additional correlation exists with summed M1 

strength. Which can be related to charge radii 
and E0 transitions.�

Outlook: �
S(M1)-ρ(E0) correlation for transitional nuclei.�
Need for Δ<r2> through shape transition.�



Back-up �



Charge radii and E0 transitions�
Standard relation: �
�
Generalized relation depends on effective charges: �
�
Because of these relations, a correlation can be 

established between nuclear charge radii and   
ρ(E0) values.�
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Effective charges from radii�
Estimate with harmonic-oscillator wave functions: �
�
�
�
�
�
�
Fit for rare-earth nuclei (Z=58 to 74) gives: 

r0=1.24 fm, en=0.50e and ep=e.�

€ 

r2
s
=

1
enN + epZ

s ekrk
2 s

k=1

A

∑

=
34 / 3

4
b2

enN + epZ
enN

4 / 3 + epZ
4 / 3( )

=
3 23

5
r0
2 A

1/ 3 enN
4 / 3 + epZ

4 / 3( )
enN + epZ



Energy spectra�
The standard (1+2)-body IBM hamiltonian: �
�
Constant parameters for a given isotopic chain 

except for the quadrupole strength: �
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Isomer shifts�
Isomer shifts depend on the coefficient η: �
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Isomer shifts�
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ρ2 values�
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ρ2 values in samarium�
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ρ2 values in gadolinium�
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ρ2 values in gadolinium�
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ρ2 values in gadolinium�
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ρ2 values in dysprosium�
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ρ2 values in erbium�
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ρ2 values in ytterbium�
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ρ2 values in hafnium�
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ρ2 values in tungsten �
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Influence of g boson �
Spherical-to-deformed transitional hamiltonian in 

sdg-IBM-1:�
�
�
�
�
�
Take λ=1.5 and let ζ vary from 0 (spherical) to 1 

(deformed). �
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Effect of g boson on radii�
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Effect of g boson on E0s�

!b"!01! nd 02!" sd2
!01! nd 02!" sdg2
!01! ng 02!" sdg2

0 0.5 1
0

1

2

3

4

Ζ


