"Shape coexistence in the vicinity of Z= 82" Re-analyzing the mercury Coulex data

> Piet Van Duppen KU Leuven, Belgium

- Shape coexistence in the neutron-deficient mercury isotopes
- New data from beta-decay study of ^{182,184}TI isotopes re-analysis of Coulex data
- Two-state mixing, transitional and diagonal matrix elements and (2+2+) monopole transitions
- Laser spectroscopy of neutron-deficient Hg isotopes and Monte Carlo Shell Model calculations (Y. Tsunoda & T. Otsuka)
- Conclusion and outlook with beams from HIE ISOLDE

Shape coexistence in heavy nuclei: initial indications

Bonn,- PLB 38 (1972), Hannachi,- ZP A370 (1988), Ma,- PLB167 (1986) Janssens,- PLB131 (1983), Cole,- PRL37 (1976)

KU LEUVEN

- Re-analysis of Coulex data on Hg isotopes – data from ^{182,184}TI β -decay
 - ✓ new gamma-ray branching ratios
 - new 2+-2+ conversion coefficients

223 203

1091

706

601

434 420

100 0.66 14

(4+

(2+

sensitivity to $\delta(E2/M1)$ \checkmark

8028

4+

2+

 $2^{+}_{0^{+}}$

✓ approved ^{182,184,186}TI decay study at ISOLDE – IDS (K. Rezynkina - IS641)

¹⁸⁰Hg

Comparison with theory

• Transitional (arrows) and spectroscopic (loops) quadrupole moments given in eb units (K. Wrzosek-Lipska,- to be published)

IBM - CM

BMF

no mixing

6

• 2⁺₁ energy: cross between N=106-108

KU LEUVEN

Deduced from fitting the higher-lying levels using the variabel moment of inertia model

• 0⁺ states: only weakly mixed for all ¹⁸²⁻¹⁸⁸Hg

- 2+ states: mixing is changing from 29% up to 98%
- 4⁺ states: dominant deformed configuration for all ¹⁸²⁻¹⁸⁸Hg

Bree PRL (2014), Gaffney PRC (2015), Wrzosek-Lipska to be published

Bree PRL (2014), Gaffney PRC (2015), Wrzosek-Lipska to be published

Comparison of Q_s(2⁺)

TSM: Two-State Mixing

• E0 (2⁺₂-2⁺₁) transition from B(E2) and α_{tot}

$$\rho^{2}(\text{E0}) = \frac{Z^{2}}{R_{0}^{4}}a^{2}(1-a^{2})\left[\Delta\langle r^{2}\rangle\right]^{2}. \quad R_{0} = r_{0}A^{1/3}, r_{0} = 1.2 \text{ fm}$$

- Mixing amplitudes from two-level mixing calculation (Gaffney PRC (2014))
- $\Delta < r^2 > = 0.55$ fm² for ¹⁸²Hg and 0.48 fm² for ¹⁸⁴Hg from laser spectroscopy

 Laser ionization spectroscopy of neutron-deficient mercury isotopes using VADLIS and MR-TOF

First Coulex experiment at HIE ISOLDE 10/2015

- HIE ISOLDE Coulex in Hg and Pb using SPEDE
 - Multiple Coulex
 - Study of yrast and non-yrast states
 - Better sensitivity to diagonal E2 matrix element
 - Combined analysis with new data from beta decay (branching ratios, electron conversion coefficients

HIE ISOLDE - Opportunities

Reaction	Physics	Optimum energy
(d,p), (³ He,α), (³ He,d), (d,n), transfer	Single-particle configurations, r- and rp-process for nucleosynthesis	10 MeV/u
(³ He,p), (d,α), (p,t), (t,p)	pairing	5-10 MeV/u
Few-nucleon transfer	Structure of neutron-rich and proton-rich nuclei	8 MeV/u
Unsafe Coulomb excitation	High-lying collective states	6-8 MeV/u
Compound nucleus reactions	Exotic structure at drip line	5 MeV/u
Coulomb excitation, g-factor measurements	Nuclear collectivity and single- particle aspects	3-5 MeV/u
(p,p'γ), (p,α),	nucleosynthesis	2-5 MeV/u

- Miniball + T-REX (upgrade planned) : COULEX + Transfer
- SPEDE: added to Miniball+T-REX (Hg and Pb Coulex – J. Pakarinen)
- Multipurpose reaction chamber
- CORSET chamber for fusion-fission reactions
- MAYA/ACTAR/SpecMAT: resonant scattering + transfer
- ISOL Solenoidal Spectrometer: ISS (Hall \rightarrow @ TSR)
- Zero degree type spectrometer: HIE ISOLDE Fragment Identifier (HIFI)

KU LEUVEN

The High Energy Beam Transport Lines and experimental set-ups

• Open questions:

- what after the next set of high-statistics Coulex measurements (^{182,184}Hg, ^APb)?
- transfer reaction probes (^{185m,g}Hg(d,p)¹⁸⁶Hg) populating different band members in ¹⁸⁶Hg (see Riccardo Raabe)
- nucleon occupancy numbers: which experimental tool can be used to probe them – proton transfer?
- what makes beyond mean-field calculations predict the 'prolate' deformed states become the ground state in mercury?

