

TECHNISCHE UNIVERSITÄT DARMSTADT

Observation of the competitive double-gamma nuclear decay

Heiko Scheit

TECHNISCHE UNIVERSITÄT DARMSTADT

October 26, 2017

IntroductionEM radiationPositroniumDecay rateSecond OrderHistorical Detour $\gamma\gamma$ -decay $\gamma\gamma$ -decay: $\gamma\gamma$ /or-DecayExperimentResultsSummary	Introduction	
H. Scheit, The competitive double-gamma nuclear decay		CEA Saclay, October 26, 2017, – 3

Emission of Electromagnetic Radiation One and Two Photon(s)

TEC UNI DAF

 \vec{p}_1

 1γ

 \vec{k}_1

 $|i\rangle$

TECHNISCHE UNIVERSITÄT DARMSTADT

 E_0

EM radiation Positronium Decay rate Second Order Historical Detour $\gamma\gamma$ -decay $\gamma\gamma$ -decay $\gamma\gamma$ decay: 0⁺ \rightarrow 0⁺ $\gamma\gamma/\gamma$ -Decay Experiment Results

Summary

Introduction

• single photon emission

$$E_0 = E_1 = \hbar\omega_1$$

 double-gamma decay: two photons emitted simultaneously

$$E_0 = E_1 + E_2$$

Similar: Positronium Decay into 2,3,4... Photons

IntroductionEM radiationPositroniumDecay rateSecond OrderHistorical Detour $\gamma\gamma$ -decay $\gamma\gamma$ -decay: 0+ \rightarrow 0+ $\gamma\gamma/\gamma$ -DecayExperimentResultsSummary

• bound system of an electron and a positron

• decay into N_{γ} photons

- due to momentum conservation: $N_{\gamma} \ge 2$
- due to charge conjugation parity
 - para-Ps (S = 0): $N_{\gamma} = 2, 4, ...$ (for $N_{\gamma} = 1$: well known back-to-back **511 keV** γ rays)
 - ortho-Ps (S = 1): $N_{\gamma} = 3, 5, ...$ (three photons in lowest order)

Decay Width First Order Perturbation Theory

EM radiation Positronium Decay rate Second Order Historical Detour

 $\gamma\gamma$ -decay

Introduction

 $\gamma\gamma$ decay: $0^+ \rightarrow 0^+$ $\gamma\gamma/\gamma$ -Decay

Experiment

Results

Summary

• interaction of a nucleus with the free EM radiation field:

$$H_{\rm int} = -\frac{1}{c} \int \vec{j}_{\rm N}(\vec{r},t) \vec{A}(\vec{r},t) d^3r$$

• Fermi's Golden Rule

$$\Gamma_{\gamma} = 2\pi \left| \langle f | H_{\text{int}} | i \rangle \right|^2 \rho_f$$

 ρ_f : density of final states; H_{int} : interaction Hamiltonian $\vec{j}_N(\vec{r},t)$: nucl. current density; $\vec{A}(\vec{r},t)$: EM vector potential

Second Order

f

 $|i\rangle$

(C)

Introduction EM radiation Positronium Decay rate Second Order Historical Detour $\gamma\gamma$ -decay $\gamma\gamma$ -decay $\gamma\gamma$ decay: 0⁺ \rightarrow 0⁺ $\gamma\gamma/\gamma$ -Decay Experiment Results

Summary

• a,b) resonance amplitudes

(a)

|n|

(second order in $\vec{j} \cdot \vec{A}$ interaction)

 $|l\rangle$

- sum over all intermediate states |n
 angle
- usual selection rules apply at each vertex
- c) **seagull** amplitude:

first order, but quadratic in the radiation field A^2

 $|i\rangle$

(b)

|n|

- theory is fully developed
- J. Kramp,... D. Schwalm et al., NPA 474, 412 (1987)

Historical Detour

EM radiation Positronium Decay rate Second Order Historical Detour $\gamma\gamma$ -decay $\gamma\gamma$ -decay $\gamma\gamma$ decay: 0⁺ \rightarrow 0⁺ $\gamma\gamma/\gamma$ -Decay Experiment Results Summary

Introduction

first discussed in doctoral thesis (1930) of Maria Göppert-Mayer

Über Elementarakte mit zwei Quantensprüngen Von Maria Göppert-Mayer

(Göttinger Dissertation)

 not only two-photon emission, but also absoption and Raman scattering

- used routinely in atomic physics
- (later MGM also predicted double β -decay)

Double-Gamma Decay in Nuclei

Introduction	
$\gamma\gamma$ decay: $0^+ \rightarrow 0^+$	
Experiment	
Main Findings	
E1E1 Suppression	
Results	
$\gamma\gamma/\gamma$ -Decay	
Experiment	
Results	
Summary	

Double-gamma decay: $0^+ \rightarrow 0^+$ transitions

Experiment

Introduction	
$\gamma\gamma$ decay: $0^+ \rightarrow 0^+$	
Experiment	
Main Findings	
E1E1 Suppression	
Results	
$\gamma\gamma/\gamma$ -Decay	
Experiment	
Results	
Summary	

• γ detection using the Heidelberg-Darmstadt Crystalball

Heidelberg-Darmstadt Crystalball full solid angle 4π 162 Nal(TI) detectors

- selective population of 0^+_2 state by proton in-elastic scattering (p, p')
- coincidence: proton, 2 γ -rays
- ¹⁶O, ⁴⁰Ca, ⁹⁰Zr

Main Findings

Introd	luction
1111100	luction

 $\gamma\gamma \text{ decay: } 0^+ \rightarrow 0^+$

Experiment

Main Findings

E1E1 Suppression

Results

 $\gamma\gamma/\gamma$ -Decay

Experiment

Results

Summary

- $\gamma\gamma$ -decay can proceed via E1E1, M1M1, E2E2
- E2E2 is very small, as expected
- surprisingly **E1E1** is strongly suppressed (30...300)
- E1E1 and M1M1 transitions are comparable in strength
 - signature: E1, M1 interference
 - angular correlations not symmetric about 90°

E1E1 Suppression

Results ¹⁶O, ⁴⁰Ca, ⁹⁰Zr

Introduction				
$\gamma\gamma$ decay: $0^+ \rightarrow 0^+$				
Experiment Main Findings E1E1 Suppression	Nucleus	¹⁶ O	⁴⁰ Ca	⁹⁰ Zr
Results	$\Delta E_{12} = E_2 - E_1 [MeV]$	6.049	3.352	1.761
Experiment	$T_{1/2}[ns]$	0.067	2.1	61
Results	$(\Gamma_{\gamma\gamma}/\Gamma_{\rm tot})\cdot 10^{-4}$	6.6 ± 0.5	4.5 ± 1.0^{-4})	1.8 ± 0.3^{a})
Summary	$\alpha_{E1}^{12}[10^{-3} \mathrm{fm}^3]$	169 ± 4.3	7.8 ± 1.9	20.1 ± 10.9
		(2.7 ± 0.7)		
	$\chi^{12}[10^{-3} \mathrm{fm}^3]$	-2.7 ± 0.7	-18.3 ± 4.5	-10.4 ± 5.7
		(-16.9 ± 4.3)		
	$\alpha_{\rm E2}^{12}[\rm fm^5]$	≤120	≤670	≤4000
	$ \langle 0_{1}^{+} \bar{r}^{2} 0_{2}^{+}\rangle $ [fm ²]	3.55 ± 0.21 ^b)	$2.6 \pm 0.1^{\circ}$)	$1.71 \pm 0.06^{\rm d}$)
	$\alpha_{\rm E1}^{11}[10^{-3}{\rm fm}^3]$	585 °)	2230 °)	6330 ^e)
	$\chi_{\rm P}^{11}[10^{-3}{\rm fm}^3]$	1.78 ^f)	5.65 ^f)	14.5 ^f)
	$\vec{E}_{E1} - E_1[MeV]$	24 °)	20.2 °)	16.7 ^g)
	$\bar{E}_{M1} - E_1[MeV]$	17 ^h)	10')	9)

J. Kramp,... D. Schwalm et al., NPA 474, 412 (1987)

Introduction	
$\gamma\gamma$ decay: $0^+ \rightarrow 0^+$	
$\gamma\gamma/\gamma$ -Decay	
$\gamma\gamma/\gamma$ -Decay	
Experiment	
Results	
Summary	
	Competitive Double-Photon Decay: $\sqrt{2}$

Competitive Double-Photon Decay: $\gamma\gamma/\gamma$

Introduction
$\gamma\gamma$ decay: $0^+ \rightarrow 0^+$
$\gamma\gamma/\gamma$ -Decay
$\gamma\gamma/\gamma$ -Decay
Experiment
Results
Summary

- for $0^+ \rightarrow 0^+$ transitions:
 - single photon decay strictly forbidden
 - $\Gamma_{\gamma\gamma}/\Gamma \sim 10^{-4}$
 - $\Gamma \approx \Gamma_{\rm IP}$ (internal pair production)
- Competitive Double-gamma decay ($\gamma\gamma/\gamma$)
 - γγ decay competing with allowed single gamma decay
 - $\Gamma \approx \Gamma_{\gamma}$
 - $\Gamma_{\gamma\gamma}/\Gamma_{\gamma} \ll 10^{-4}$
 - has never been observed, despite a few searches in last 30 years

Introduction $\gamma\gamma$ decay: $0^+ \rightarrow 0^+$ $\gamma\gamma/\gamma$ -DecayExperimentSignatures			
Obstacles LaBr3 Detectors GALATEA Experimental Setup 137Cs		Experiment	
<u>Results</u> Summary			
H. Scheit, The competitiv	e double-gamma nuclear decay		CEA Saclay, October 26, 2017, – 17

Experimental Signatures

Introduction $\gamma\gamma$ decay: $0^+ \rightarrow 0^+$ $\gamma\gamma/\gamma$ -DecayExperimentSignaturesObstaclesLaBr3 DetectorsGALATEAExperimental Setup137CsResultsSummary

 two photons emitted simultaneously with continuous energy spectrum

• but energy is conserved:

$$E_0 = E_1 + E_2$$

 E_0 : transition energy; $E_{1/2}$: energies of two photons

Experimental Obstacle(s) for the Competitive Double-Gamma Decay

TECHNISCHE UNIVERSITÄT DARMSTADT

Introduction $\gamma\gamma$ decay: 0⁺ \rightarrow 0⁺ $\gamma\gamma/\gamma$ -Decay Experiment Signatures Obstacles LaBr3 Detectors GALATEA Experimental Setup 137Cs

Results

Summary

• very small branching ratio $\Gamma_{\gamma\gamma}/\Gamma_{\gamma} \ll 10^{-4}$

Compton scattering

energy of single γ ray deposited in two detectors

exact same signature for energy sum

```
E_0 = E_1 + E_2
```

but:

- different energy distribution
- different path of photons: shielding
- almost same timing ($\Delta t \sim 1 \text{ ns}$) but:
 - $\Delta t \neq 0$
- no problem for $0^+ \rightarrow 0^+$

Recent Experimental Advance: LaBr₃(Ce) Detectors

Introduction

 $\gamma\gamma/\gamma$ -Decay

Experiment

Signatures Obstacles

GALATEA

137Cs

Results

Summary

LaBr3 Detectors

Experimental Setup

 $\gamma\gamma$ decay: $0^+ \rightarrow 0^+$

TECHNISCHE UNIVERSITÄT DARMSTADT

- so far: NaI(TI) detectors
 - standard detector, if high efficiency is crucial
 - but: poor time and energy resolution

Heidelberg-Darmstadt Crystalball full solid angle 4π 162 Nal(TI) detectors

- large volume LaBr₃(Ce) detectors available:
 - better energy resolution by a factor 2–3
 - better time resolution by a factor 5–10
 - very fast \rightarrow high rate measurements

GALATEA array 18 LaBr₃(Ce) detectors ($3" \times 3"$)

TECHNISCHE UNIVERSITÄT DARMSTADT

Introduction

 $\frac{\gamma\gamma \text{ decay: } 0^+ \rightarrow 0^+}{\gamma\gamma/\gamma\text{-Decay}}$ Experiment
Signatures
Obstacles
LaBr3 Detectors
GALATEA
Experimental Setup
137Cs
Results

Summary

Experimental Setup

- 5 LaBr₃(Ce) detectors
- 72°: 5 detector pairs
- 144°: 5 detector pairs
- $\epsilon_{FE}(662 \text{ keV}) = 1.5\%$
- $\epsilon_{\gamma\gamma} \approx 4 \cdot 10^{-4}$
- $\Delta E=3\%$ (FWHM)
- $\Delta t = 1 \; \mathrm{ns}$ (FWHM)
- on disk: 53 days
- source: ¹³⁷Cs (600 kBq)
- thick Pb blocks between detectors

Source of (two-)photons: ¹³⁷Cs (gamma calibration standard)

Introduction	
$\gamma\gamma$ decay: $0^+ \rightarrow 0^+$	
$\gamma\gamma/\gamma$ -Decay	
Experiment	
Results	
Time and Energy	
Subtracted Energy	
Compton excluded?	Doculto
Compton excluded? (2)	Πεομιο
Other Observables	
Single Energy	
Transition ME	
Single Energy (2)	
Angular correlation	
Fit result	
QPM	
QPM running sum	
Summary	

Time and Energy Spectra

TECHNISCHE UNIVERSITÄT DARMSTADT

random coincidences dominant

Gaussian + background $\theta = 144^{\circ}$ $\theta = 72^{\circ}$ 1000 600 background 900 500 Counts per 12.5 keV800 Jounts per 7.5 keV 700 400 600 300 500400 200 300 100 2000 100 0 550600 650 750550600 650 750700 700 $E_{1} + E_{2} (keV)$ $E_1 + E_2$ (keV) 693(95) counts ($\sigma = 7.3$) 325(76) counts ($\sigma = 4.3$) $\Gamma_{\gamma\gamma}/\Gamma_{\gamma} = 1.56(23) \cdot 10^{-6}$ $\Gamma_{\gamma\gamma}/\Gamma_{\gamma} = 0.70(18) \cdot 10^{-6}$

Random subtracted energy spectra

Results

observation of the competitive double-gamma decay

very pronounced angular correlation

H. Scheit, The competitive double-gamma nuclear decay

CEA Saclay, October 26, 2017, -26

TECHNISCHE UNIVERSITÄT DARMSTADT

Compton Scattering excluded?

• Compton scattering should be visible in time spectrum

data is not compatible with Compton scattering

Compton Scattering excluded? (2)

TECHNISCHE UNIVERSITÄT

Other Observables

H. Scheit, The competitive double-gamma nuclear decay

CEA Saclay, October 26, 2017, -29

Other Observables Individual Energies

- Introduction $\gamma\gamma$ decay: $0^+ \rightarrow 0^+$
- $\gamma\gamma/\gamma$ -Decay
- Experiment
- **Results**
- Time and Energy Subtracted Energy Compton excluded? Compton excluded? (2) Other Observables Single Energy Transition ME Single Energy (2) Angular correlation Fit result QPM QPM running sum
- Summary

- \bullet transitions of multipolarities λ_1 and λ_2
- like two individual γ transitions: $\Gamma_{\gamma\gamma} \propto E_1^{2\lambda_1+1} E_2^{2\lambda_2+1}$
- E2M2: $E_1^5 E_2^5$

• E3M1: $E_1^7 E_2^3 + E_1^3 E_2^7$

Transition Matrix Elements Transition Polarizabilities α

- $\alpha_{S'L'SL}$ can be
- obtained from theory (e.g. shell model, QPM)
- fit parameter

QPM

Other Observables Individual Energies (2)

• influence of the matrix elements (propagator)

Non-symmetric Angular Correlation (about 90°)

Introduction

- $\gamma\gamma$ decay: $0^+ \rightarrow 0^+$
- $\gamma\gamma/\gamma$ -Decay
- Experiment
- Results
- Time and Energy Subtracted Energy Compton excluded? Compton excluded? (2) Other Observables Single Energy Transition ME Single Energy (2) Angular correlation Fit result QPM
- QPM running sum
- Summary

- single gamma decay: symmetric about 90° (e.g. 2 γ rays of γ-cascade)
- $\gamma\gamma$ decay: **non-symmetric** angular correlation
- ¹³⁷Ba: $11/2^- \rightarrow 3/2+$: change of parity: one interaction must be M and one must be E

• interference of M2 and E2

Fit result

$$\frac{\mathrm{d}\Gamma_{\gamma\gamma}^2}{\mathrm{d}\omega\mathrm{d}\theta} = A_{qq}(\alpha_{E2M2}^2) + A_{od}(\alpha_{M1E3}^2) + A_x(\alpha_{E2M2} \cdot \alpha_{M1E3})$$

• only the dominant α_{E2M2} and α_{M1E3} considered in simultaneous fit • A_{qq} , A_{od} and A_x exhibit characteristic dependence on ω and θ

Quasi-particle phonon model

H. Scheit, The competitive double-gamma nuclear decay, Nature 526, 406 (2015) + supplement

QPM running sum

Introduction	
$\gamma\gamma$ decay: $0^+ ightarrow 0^+$	
$\gamma\gamma/\gamma$ -Decay	
Experiment	
Results	
Summary	
Summary	
	Summary
	Carimary

Summary and Outlook

Introduction $\gamma\gamma$ decay: 0⁺ \rightarrow 0⁺ $\gamma\gamma/\gamma$ -Decay Experiment Results

Summary

Summary

• **Observation** of the competitive double-gamma decay

$$\Gamma_{\gamma\gamma}/\Gamma_{\gamma} = 2.05(31) \cdot 10^{-6}$$

- well described by QPM
- first step to a systematic study of transition polarizabilites
- with **improved** experimental setup
 - search for cases dominated by E1E1 transitions with
 - revisit ¹³⁷Ba, ⁹⁰Zr
- Collaborators
 - Christopher Walz (experimental setup, data taking, data analysis)
 - Norbert Pietralla, Tom Aumann, Ronan Lefol, Vladimir Yu. Ponomarev (QPM)

Main Reference

LETTER

doi:10.1038/nature15543

Observation of the competitive double-gamma nuclear decay

C. Walz¹, H. Scheit¹, N. Pietralla¹, T. Aumann¹, R. Lefol^{1,2} & V. Yu. Ponomarev¹

406 | NATURE | VOL 526 | 15 OCTOBER 2015

©2015 Macmillan Publishers Limited. All rights reserved

• plus extended supplement

Introduction	
$\gamma\gamma$ decay: $0^+ \rightarrow 0^+$	
$\gamma\gamma/\gamma$ -Decay	
Experiment	
Results	
Summary	
	The End