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Introduc9on	



Shape	co-existence	and	algebraic	mean-field	theory	
Nuclear	shapes	were	among	the	first	proper9es	of	nuclei	to	be	measured.	
T.	Schmidt.	Naturwiss,	28:565,	1940	 (see	K.	Lieb:	Hyperfine	Interac9ons,		

																				136/137:783–802,	2001)	

Figure	from	
C.	H.	Townes,	H.	M.	Foley,	and	W.	Low.	Nuclear	
quadrupole	moments	and	nuclear	shell	
structure.	Phys.	Rev.,	76:1415–1416,	1949.	
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The	early	days	of	the	spherical	shell	model	

CLOSED	AND	SINGLY-CLOSED	SHELL	NUCLEI	ARE	ESSENTIALLY	SPHERICAL	
NUCLEI	IN	THE	MIDDLE	OF		DOUBLY	OPEN	SHELL	ARE	DEFORMED	

	(	Figure	from:Marshalek	et	al.	1963)	
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The	general	percep9on	



Shape	coexistence	
•  Strongly	deformed	nuclei	are	not	restricted	to	the	middles	of	doubly	open-shell	nuclei.	

																																			e.g.,	the	first	excited	state	of	16O	is	the	ground	state	of	a	rota9onal	band	(Morinaga	1956).	
•  They	are	now	observed	in	essenCally	all	nuclei		(shape	coexistence:	Heyde		and	Wood	1983,	1992	).	
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EXCITED	STATES	OF	CLOSED-SHELL	NUCLEI	ARE	OPEN-SHELL	STATES	



THE	ALGEBRAIC	STRUCTURE	OF	NUCLEAR	PHYSICS	

•  Many-nucleon	quantum	mechanics	as	an	algebraic	model.	

•  The	spherical	shell	model	perspec9ve.	

•  Pair	coupling	of	nucleons	---	spherical	nuclei.	

•  Deforma9on	aligned	coupling	of	nucleons	---	deformed	rota9onal	
nuclei.	

•  The	standard	Hartree-Fock	and	Hartree-Fock-Bogolyubov		mean-
field	theories.	

•  ALGEBRAIC	MEAN-FIELD	THEORY:	

It	is	really	simple	compared	with	it	might	have	been.	

Three	classes	of	nuclear	states.	

Singly	closed-shell	states	are	spherical.			

Doubly	open-shell	states	are	deformed.		

It	is	a		unificaCon	and	generalizaCon	of	Lie	algebra	and	mean-field	theory.	
It	also	provides	a	microscopic	version	of	the	unified	model	and	an	
understanding	of	shape	coexistence.	

4	



Many-nucleon	quantum	mechanics	
is	an	algebraic	model	

It	starts	with	the	quan9za9on	of	nucleon	posi9on	and	momentum	coordinates		

This	gives	the	Heisenberg-Weyl	(HW)	Lie	algebra	of	quantum	mechanics	

The	quantum	mechanics	of	an	A-nucleon	nucleus	is	a	fully	an9-symmetric	tensor	
product	of	A	copies	of	the	single-par9cle	representa9ons	of	the	group	

The	many-nucleon	Hilbert	space	is	spanned	by	independent-parCcle	
states	(Slater	determinants).	Note,	however,	that	an	independent-
parCcle	basis	does	not	imply	an	independent-parCcle	approximaCon.	

⇒
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Three	classes	of	nuclear	states	in	
the	spherical	harmonic-oscillator	shell	model	
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The	shell	model	is	a	very	poor	approximaCon	for	doubly	open-shell	states	
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Pair-coupling	of	nucleons	in	singly	closed-shell	states	

There	are	two	basic	coupling	schemes	in	nuclear	physics				(Mofelson	1962)		

PAIR	COUPLING	AND	DEFORMATION-ALIGNED	COUPLING	

Pair	coupling	is	the	standard	jj	coupling-scheme	of	the	spherical	shell	model.	
It	favours	the	coupling	of	nucleon	in	pairs	to	states	of	zero	angular	momentum.	

Basis	states	for	this	coupling	scheme	are	generated	by	the	raising	operators	of	
Kerman's	so-called	quasi-spin	algebra	acCng	on	quasi-spin	lowest-weight	states.	

Ŝ+
j = ajm

†

m

j

∑ ajm
† = (−1) j+m

m
∑ ajm

† aj ,−m
† ,

Ŝ−
j = (Ŝ+

j )† = (−1) j+m
m
∑ a j ,−ma j ,m ,

Ŝ0
j = 1
2
(

m
∑ ajm

† a jm −1).

Pair	coupling	is	favoured	for	nucleons	of	the	same	type,		
as	in	singly	closed-shell	states.	
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Deforma9on-aligned	coupling	of	nucleons	in	doubly		
open-shell	states	

It	is	apparent,	from	numerous	experimental	observaCons,	that	states,	in	
which	there	are	both	neutrons	and	protons	in	open	shells,	are	deformed	and	
rotaConal.			This	is	afributed	to	the	lowering	in	energy	of	states	in	which	the	
densi9es	of	many	nucleons	have	maximal	overlaps	with	one	another.			

Thus,	for	neutrons	with	wave	func9ons														and	protons	with	wave	func9ons	
												,	the	strongly	interac9ng	aligned		combina9ons	are	of	the	form	

{ψ jm
(n)}

{ψ ′j m
( p)}

 

Ψ =ψ j ,1/2
(n) ψ j ,−1/2

(n) ψ j ,3/2
(n) ψ j ,−3/2

(n) !ψ ′j ,1/2
( p) ψ ′j ,−1/2

( p) ψ ′j ,3/2
( p) ψ ′j ,−3/2

( p) !

or
Ψ =ψ j , j

(n)ψ j ,− j
(n)ψ j , j−1

(n) ψ j ,− j+1
(n) !ψ ′j , ′j

( p)ψ ′j ,− ′j
( p) ψ ′j , ′j −1

( p) ψ ′j ,− ′j +1
( p) !

(prolate)	

(oblate)	
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More	generally	one	can	have	deforma9on-aligned	states	of	many	j	values.		Such	
states	are	Slater	determinants	of	the	type	that	emerge	in	Hartree-Fock	theory:	
they	define	the	intrinsic	state	of	a	fully	quantal	unified	model.	

The	Pauli	principle	allows	two	unlike	nucleons	(a	neutron	and	a	
proton)	to	be	in	the	same	state.	Thus,	aligned	coupling	is	more	
effecCve	than	pair	coupling	for	doubly	open-shell	states.	



Mean-field	theory	from	a	Lie	algebra	perspec9ve	

Any	Slater	determinant	of	occupied	single-par9cle	states	is	a	lowest-weight	state	for	
a	unitary	irrep	of	the	Lie	algebra	of	one-body	operators	with	raising	and	lowering	
operators	given,	respec9vely,	by	par9cle-hole	crea9on	and	par9cle-hole	
annihila9on	operators	

ap
†ah
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occupied
s.p. states

unoccupied
  s.p. states

particle-hole
   excitation

lowest-weight
         state

particle-hole
         state

The	set	of	all	lowest-weight	states	is	a	very	special	manifold:		
	it	is	an	orbit	of	the	group	of	one-body	unitary	transformaCon,		
	it	is	a	classical	phase	space.	and	

									it	spans	the	Hilbert	space	for	the	quantum	mechanics	of	the	Lie	algebra.	
The	minimum-energy	lowest-weight	is	even	more	special:	

	it	is	a	minimum-uncertainty	coherent	state.	



Proper9es	of	a	minimum-energy	par9cle-hole	state	
•  Star9ng	from	any	lowest-weight	state	for	an	irrep	of	a	Lie	algebra	and	a	set	of	raising	operators,	

one	can	construct	a	basis	for	the	Hilbert	space	of	the	irrep.	

•  A	minimal	energy	lowest-weight	state	is	special	because	it	is	not	coupled	by	the	Hamiltonian	to	
any	state	excited	from	the	lowest-weight	state	by	an	elementary	(e.g.,	par9cle-hole)	raising	
operator,	e.g.,	

•  The	smooth	manifold	of	A-par9cle	Slater	determinants	is	a	classical	phase	space	and	the	infinite	
set	of	A-par9cle		Slater	determinants	spans	the	Hilbert	space	of	the	A-nucleon	nucleus.	

•  A	Hartree-Fock	minimum-energy	Slater	determinant,	if	spherically	symmetric,	is	in	one-to-one	
correspondence	with	a	classical	equilibrium	state	and	is	a	varia9onal	approxima9on	to	the	
quantum-mechanical		ground	state	of	the	nucleus.	

•  The	small-amplitude	9me-dependent	Hartree-Fock	‘normal-mode’	equa9ons	correspond,	in	
quantum	mechanics,	to	the	one-phonon	vibra9onal	excita9ons	of	the	RPA	(Random	Phase	
Approxima9on),	as	shown	in	1966.	

•  If	the	minimum-energy	Slater	determinant	is	not	spherically	symmetric,	its	rotated	states	are	all	
sta9onary	states	of	zero	angular	momentum	consistent	with	the	Nambu-Goldstone	interpreta9on	
of	a	broken	symmetry.	The	rotated	sta9onary	states	are	then	all	classical	equilibrium	states	and	
rota9onal	states	in	quantum	mechanics.	

•  The	RPA/normal-mode	equa9ons	then	give	the	intrinsic	vibra9onal	states	of	a	microscopic	version	
of	the	unified	model.	
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〈φ | Ĥ  ap
†ah |φ〉 = 0

Parallel	properCes	apply	to	the	minimum-energy	
lowest-weight	state	of	any	algebraic	model.	



Mean-field	theory	for	an	algebraic	model	

A	minimum-energy	lowest-weight	state	invariably		
has	addiConal	and	invaluable	properCes.	

11	

Mean-field	methods	can	be	applied	to	any	irreducible	representaCon	
of	a	Lie	algebra	that	has	a	lowest-	(and/or	highest-)	weight	state.	

If	G	is	the	dynamical	group	of	an	algebraic	model,	a	set	of	all	
possible	lowest-weight	states	is	an	orbit	of	the	group	G;	i.e.,	
it	is	the	set	of	states	generated	by		the	transformaCons	of	a	
given	lowest-weight	state	by	the	elements	of	the	G.	

This	set	of	lowest-weight	states	is	the	classical	phase	space	
of	all	possible	mean-field	states	and	it	spans	a	Hilbert	space	
for	its	quanCsaCon	

(It	can	also	be	applied	to	irreps	without	lowest	or	highest	
weight	states	but	it	then	has	fewer	and	less	useful	proper9es.)	



Algebraic	mean-field	theory	
Algebraic	mean-field	theory	is	simply	the	extension	of	Hartree-Fock	theory	to	any	
algebraic	model	whose	dynamical	group	has	a	lowest-weight	state.	The		lowest-
weight	state	then	corresponds	to	a	parCcle-hole	vacuum	state,	and	the	raising	and	
lowering	operators,	correspond	to	parCcle-hole	creaCon	and	annihilaCon	operators.	

Such	an	extension	is	useful	when	the	Hilbert	space	of	a	nucleus	can	be	expressed	as	a	
sum	of	the	Hilbert	space	for	irreps	of	a	suitable	algebraic	collec9ve	model.	

It	is	parCcularly	useful	when	the	irreps	are	those	of	a	collecCve	model	that	has	a	
dynamical	group	and	a	Lie	algebra	that	contains	the	nuclear	quadrupole	moments,	
the	angular-momentum	operators,	and	the	nuclear	kineCc	energy.		The	smallest	Lie	
group	that	saCsfies	these	condiCon	in	the	so-called	symplecCc	group	Sp(3,R).	

The	decomposi9on	of	the	Hilbert	space	of	a	nucleus	into	irreducible	Sp(3,R)												
subspaces	is	op9mal	because	these	Hilbert	subspaces	are	ideal	collec9ve	model	
spaces	in	the	sense	that	they	have	no	non-zero	E2	transi9ons	nor	matrix	elements	of	
the	nuclear	kine9c	energy	between	their	states.	

The	plan	is	to	calculate	the	properCes	of	the	pure	unmixed	collecCve	model	
states	for	a	reasonable	many-nucleon	Hamiltonian,	and	subsequently	
explore	the	mixing	of	these	states	both	theoreCcally	and	experimentally.	
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The	Sp								Lie	algebra	 (3,!)

The	Sp											Lie	algebra	consists	of	all	bilinear	combina9ons	of	the	nucleon	posi9on	
and	momentum	operators.		It	includes	the	following:	

with					summed	over	the	effec9ve	number	of	A-1	nucleons	(with	exclusion	of		the	
linear	combina9ons	that		involve	the	nuclear	centre-of-mass	degrees	of	freedom).	

  
Q̂ij = x̂ni

n
∑ x̂nj =

1
2a2
(2Q! ij +A! ij +B! ij),

  
K̂ij = p̂ni

n
∑ p̂nj = 1

2 a
2!2 (2Q" ijA" ij −B" ij ),

  
P̂ij = (x̂ni p̂nj + p̂ni x̂nj )

n
∑ = i!(A" ij −B" ij ),

n
  
!Lij = (x̂ni p̂nj − p̂ni x̂nj )

n
∑ = −i(C" ij − C" ji ),

(monopole, quadrupolemoments)

(kinetic energy tensor)

(infinitesimal generators of deformation)

(angular momentum operators)

 (3,!)
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These	elements	of	the	Sp(3,R)	Lie	algebra	are	all	required	
elements	of	a	many-nucleon	theory	of	collecCve	states.	



					The	Sp											Lie	algebra	is	a	spectrum	genera9ng	algebra	
for	any	three-dimensional	harmonic	oscillator	

If	the	nucleon	posi9on	and	momentum	coordinate	are	expressed	in	terms	of	harmonic	
oscillator	raising	and	lower	operators	

 (3,!)

 
x̂ni =

1
2 ai

(cni
† + cni ), p̂ni = i!

ai
2
(cni
† − cni )

where																												are	arbitrary	units	of	inverse	length	for	a	generally	tri-axial	
harmonic	oscillator	with	a	triple	of	frequencies																							.	The	Sp											Lie	
algebra	is	expressed	in	terms	of	the	operators	

with					summed	over	the	effec9ve	number	of	A-1	nucleons	(with	exclusion	of		the	
linear	combina9ons	that		involve	the	nuclear	centre-of-mass	degrees	of	freedom).	

 ai = Mω i / !
{ω1,ω 2 ,ω 3}  (3,!)

  

A! ij = A! ji = cni
†

n
∑ cnj

† , B! ij = B! ji = cni
n
∑ cnj ,

C" ij = (
n
∑ cni

† cnj +
1
2
δ i, j), Q! ij = 1

2 (C" ij + C" ji)
n
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Note	that	the	above	basis	for	the	Sp(3,R)	Lie	algebra	is	
defined	for	any	choice	of	the	harmonic-oscillator	frequencies.		



Sp												irreps	from	a	mean-field	perspec9ve	 (3,!)
	An	Sp											irrep	is	defined	by	the	quantum	numbers																						of	a	
lowest-weight	state						,	for	which	

However,	there	are	many	lowest-weight	states,	which	sa9sfy	these	equa9ons:	they	are	
given	by	the	eigenstates	

for	arbitrary	values	of																															.	

Thus,	for	a	given	nuclear	Hamiltonian,	one	can	select	the	lowest-weight	state	for	which	
the	energy																																	is	a	minimum.		This	minimum-energy	lowest-weight	state	
will	be	given	when	the	mean-field	that	it	generates	has	the	same	shape	as	its	density	
distribu9on;		i.e.,	when	the	shape-consistency	condiCon	is	saCsfied:								

Together	with	a	knowledge	of	the	desired	nuclear	volume,	the	shape-consistent	mean-
field	state	is	simple	to	determine,	whether	or	not	it	is	a	Slater	determinant:	it	is	an	
eigenstate	of	a	harmonic	oscillator.																													

 (3,!) (σ 1,σ 2 ,σ 3)
|φ〉

  B
!
ij |φ〉 = 0, i, j = 1,2,3,

  C
!
ij |φ〉 = 0, i < j = 1,2,3,

  C
!
ii |φ〉 =σ i |φ〉, i = 1,2,3,
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Ĥ 0 (ω ) = 1

2 !
i
∑ ω iC
"
ii

ω = {ω1,ω 2 ,ω 3}

〈φ(ω ) | Ĥ |φ(ω )〉

σ1ω1 =σ 2ω2 =σ 3ω 3



Some	predic9ons	of	Sp(3,			)	mean-field	theory?	
The	Hilbert	space	of	a	nucleus	is	a	sum	of	ideal	collec9ve	model	spaces:	i.e.,	irreducible		
subspaces	for	which	there	are	no	E2	transi9on	matrix	elements	between	different	subspaces.	

Each	irrep	has	a	lowest-weight	state	that	is	an	eigenstate	of	a	spherical	harmonic-oscillator	Hamiltonian	
of	energy													and	a	shape-consistent	lowest-weight	state	of	triaxial	harmonic–oscillator	energy											
																																																								.			

The	magnitude	of	the	difference																								is	remarkably	large	for	irreps	of	large	deforma9on	as	
characterised	by	the	values	of														.	Also	remarkable	is	the	number	and	the	wide	range	of	strongly	
deformed	irreps	that	are	predicted	to	fall	into	and		below	the	expecta9ons	of	the	spherical	shell	model.	

 !
 Sp(3,!)

N0 =σ 1 +σ 2 +σ 3, λ =σ 1 −σ 2 , µ =σ 2 −σ 3,

 Eσ = !(ω1σ 1 +ω 2σ 2 +ω 3σ 3)
16	

 N0!ω 0

 Eσ!ω 0 = (σ 1ω1 +σ 2ω 2 +σ 3ω 3)!ω 0

2λ + µ
 (N0 − Eσ )!ω 0



The	inclusion	of	spin	and	isospin	

 Sp(3,!)×U(4) ⊃  Sp(3,!)× SU(2)S × SU(2)T

17	

Irreducible	Sp(3,R)	subspaces	can	be	further	labelled	by	their	spins	and	
isospins	and	classified	by	the	quantum	numbers	of	the	groups	

where	U(4)	is	Wigner’s	supermul9plet	group.	

The	inclusion	of	these	extra	degrees	of	freedom	is	essen9al	for	a	
complete	algebraic	mean-field	theory	of	doubly	open-shell	nuclei.		
However,	for	present	purposes,	it	will	suffice	to	note	that	the	lowest-
energy	states	of	nuclei	are	predominantly	those	of	maximum	space	
symmetry.	



The	unified	model	

A	unified	model	of	nuclear	rota9onal	states	is	characterised	by	an	intrinsic	state									
that	is	an	eigenstate	of	each	of	its	commu9ng	quadrupole	moments.		The	orienta9on	of	
the	intrinsic	state	is	then	uniquely	defined,	to	within	the	rota9ons	of	an	intrinsic	
symmetry	group	that	leaves	its	quadrupole	moments	invariant.	

|φ〉

|φ〉→|φ(Ω)〉

〈φ |φ(Ω)〉 = δ (Ω)

Thus,	for	a	small	rota9on																											of	a	triaxial	
intrinsic	state,	it	is	understood	in	the	unified	model	
that																				

This	is	only	possible	in	quantum	mechanics	in	a	
delta-func9on	limit.		

The	remarkable	fact	is	that	this	limit	is	achieved	in	
the	symplec9c	model	in	the	large-deforma9on	limit.		
Thus,	the	algebraic	mean-field	treatment	of	the	
symplec9c	model	is	a	many-nucleon	version	of	the	
unified	model	

18	



Some	preliminary	results	
We	can	now	construct	the	intrinsic	states	for	all	collecCve	model	irreps	
of	a	nucleus	and	have	the	potenCal	to	calculate	the	properCes	of	the	
states	of	these	irreps	and	their	mixing	with	the	states	of	other	irreps.			

fνL

ν

The	figure	shows	the	angular-momentum	components	of	states	spread	over											
spherical	harmonic-oscillator	shells	of	which	the	lowest	is	at	an	energy	of																
in	spherical	harmonic	oscillator	units	above	that	of	a	conven9onal	shell	model	
calcula9on	for	this	nucleus.																		

~15
 ~10!ω

Amplitudes	of	the	angular-momentum	
states	projected	from	a	shape-
consistent	state	for	an	166Er	irrep	with	

N0 = 826.5 λ = 78, µ = 0,
,		
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Kine9c-energy	moments	of	iner9a	
It	is	now	possible	(and	straighnorward	for	axially	symmetric	irreps)	to	calculate	the	
intrinsic	expecta9on	values	of	any	element	of	the	Sp										Lie	algebra.			

For	example,	the	following	table	gives	the	expecta9on	values	of	the	nuclear	kine9c	
energy	in	the	above	determined	rota9onal	states		for	166Er.	

 (3,!)

The	kine9c-energy	contribu9on	to	the	moments	of	
iner9a	for	the	2+	rota9onal	state	(lep).	

Below	are	comparisons	with	observed	moment-of-
iner9a	values	for	rigid	and	irrota9onal-flow	rota9ons	

Note	that		the	kineCc	energies,	for	this	calculaCon	(which	are	accurately	
calculated	subject	to	mistakes),	are	less	than	half	the	excitaCon	energies	
of	the	observed	rotaConal	states	and	close	to	those	of	rigid-body	flow.	

The	difference	from	experimental	observaCons	must	be	due	to	potenCal	
energy	contribuCons	and/or	mixing	of	irreps.	
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Remaining	challenges	

•  The	standard	spherical-shell	model	in	a	pair-coupling	scheme	is	expected	to	describe	the	
structure	of	the	spherical	states	of	closed	and	singly-closed-shell	states	of	nuclei	reasonably	well	
but	requires	an	impossibly	large	space	to	begin	to	describe	the	doubly	open-shell	rota9onal	
states	of	almost	any	nucleus.	

•  In	contrast,	the	deforma9on-aligned	symplec9c	coupling	scheme	is	tailor	made	for	the	doubly	
open-shell	states	of	all	nuclei.	

•  The	relevance	of	the	symplec9c	coupling-scheme	is	exposed,	as	a	result	of	three	major	
developments:	the	experimental	observa9on	of	shape	coexistence	associated	with	doubly	open-
shell	states	of	almost	all	nuclei	(Wood	and	Heyde	2016);		the	emergence	of	Sp(3,R)	as	an	
extraordinarily	good	dynamical	symmetry	in	the	doubly	open-shell	states	of	light	nuclei	(Dytrych	
et	al.,	LSU),	and	its	applica9on	in	terms	algebraic	mean-field	theory.	

•  Algebraic	mean-field	theory	now	provides	a	simple	and	rigorous	framework	for	understanding	
the	collecCve	structure	of	the	doubly	open-shell	states	of	essenCally	all	nuclei.		

Conclusions	

•  Develop	the	necessary	technology	for	applicaCons	of	the	algebraic	mean	theory:		
								e.g.,	efficient	angular-momentum	projecCon	methods	that	exploit	the	harmonic							
								oscillator	and	SU(3)	substructure	of	the	intrinsic	states	as	already	done	for	axially	

symmetric	irreps.	

•  Develop	the	theory	for	irreps	with	non-zero	intrinsic	spin	states	and	for	all	nuclei:	even,	
odd	and	odd-odd.	

•  Develop	the	techniques	for	mixing	different	collecCve	states	within	the	framework	of	
quasi-dynamical	symmetry.		Find	out	why	nuclear	rotaCons	are	(or	appear	to	be)	axially	
symmetric.	
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An	addendum	per9nent	to	the	final	
discussions	on	a	rela9onship	between	

isospin	and	nuclear	deforma9on	

22	



A	rela9onship	between	isospin	and	nuclear	deforma9on	
per9nent	to	the	final	discussion		

Closed-	and	singly	closed-shell	states	of	nuclei,	e.g.									,		are	states	of	isospin															.	
Moreover,	by	a	sequence	of	charge	exchange	reac9ons	one	can	iden9fy	a	sharply	defined												
isobaric	analog	of	the										ground	state	in	each	of	the	other	isobaric	nuclei	listed	below.	

However,	whereas	the	four	extra	closed-shell	core	neutrons	in										are	all	in												an9-
symmetric	combina9ons,	the	neutrons	and	protons	in									,									and										can	also	be	in	
states	of												and										can	also	be	in	a												state.		

The	Young	diagrams	shows	that,	in	a	state	of	maximal	isospin,	the	nucleons	are	maximally	
an9symmetric,	hence	pair-coupled	and	and	the	nucleus	is	spherical.		Similarly	in	a	states	of	
minimum	isospin	the	nucleons	are	maximally	symmetric	and	the	nucleus	is	most	likely	to	be	
deformed.		This	is	illustrated	drama9cally	by	the	energy	level	spectrum	of									.	

T = 1
2 (N − Z )

T = 2

T = 1

T = 0

44Ca20
44Sc21

44Ti22
44V23

44Cr24

44Ca
44Ca T = 2

T = 1

T0 = 2																																							1														0												-1														-2	

44Sc 44 Ti 44Cr
44 Ti T = 0

44 Ti

44Ca

23	



 0 0+

 1083 2+

 1904 0+

 2531 2+

 3364 4+
 3176 3-
 3646 4-
 4060 (3,5)-
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 6849 (6)+   

T=2  DIAS of  

T=1 IAS of  

T=0  states of  

44Ca20     24

44Ti22   22

44V23  21

The	energy	levels	and	isospins	
of												;	
note	that,	whereas	the	double	
isobaric	analog	T=2	state	is		
spherical	the	lower-energy	T=0	
states	exhibit	rota9onal	bands.	
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