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Introduction

This contribution shows, without approximation, that the Hilbert space H# of an A-nucleon
nucleus is a sum of subspaces

H* =Hcm ® ) Haost,

where Hcopm is a centre-of-mass Hilbert space and Hyos7 is the Hilbert space for a microscopic
version of the unified model with an intrinsic state defined by an eigenstate with the quantum
numbers {0y,03,09} of a triaxial harmonic oscillator: S and T are spin and isospin quantum
numbers, and a is a multiplicity index.

The subspaces H,r,sr are defined such that there are no isoscalar E2 transitions and no
non-zero matrix elements of the many-nucleon kinetic energy of a nucleus between the states
of different subspaces. Thus, they are ideal collective model subspaces and it is possible, by
a simple algebraic extension of mean-field theory to explore their dynamics and energy-level
spectra.

A first result to emerge is that the low-energy rotational states of heavy strongly deformed
nuclei lie predominantly in spherical harmonic-oscillator shells of energy ~ 20hw above those
of a standard valence shell. A second result is the large number of coexisting states of widely
different deformation that fall into the low-energy region of a nucleus, very few of which could
be coupled by a two-body interaction.

Particularly significant is the observation that the many developments in the beyond-mean-field
and Monte-Carlo methods, reviewed at this workshop by Bender, Rodriguez and Otsuka, already
provide the essential computational methods needed for applications of the algebraic mean-field
developments.
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Shape co-existence and algebraic mean-field theory

Nuclear shapes were among the first properties of nuclei to be measured.
T. Schmidt. Naturwiss, 28:565, 1940

(see K. Lieb: Hyperfine Interactions,

10 LW 136/137:783-802, 2001)
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The early days of the spherical shell model

The general perception

CLOSED AND SINGLY-CLOSED SHELL NUCLEI ARE ESSENTIALLY SPHERICAL
NUCLEI IN THE MIDDLE OF DOUBLY OPEN SHELL ARE DEFORMED
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Shape coexistence

*  Strongly deformed nuclei are not restricted to the middles of doubly open-shell nuclei.
e.g., the first excited state of 160 is the ground state of a rotational band (Morinaga 1956).
*  They are now observed in essentially all nuclei (shape coexistence: Heyde and Wood 1983, 1992 ).
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THE ALGEBRAIC STRUCTURE OF NUCLEAR PHYSICS

Many-nucleon guantum mechanics as an algebraic model.

It is really simple compared with it might have been.
The spherical shell model perspective.
Three classes of nuclear states.

Pair coupling of nucleons --- spherical nuclei.
Singly closed-shell states are spherical.

Deformation aligned coupling of nucleons --- deformed rotational

nuclei.
Doubly open-shell states are deformed.

The standard Hartree-Fock and Hartree-Fock-Bogolyubov mean-
field theories.

ALGEBRAIC MEAN-FIELD THEORY:

It is a unification and generalization of Lie algebra and mean-field theory.
It also provides a microscopic version of the unified model and an
understanding of shape coexistence.



Many-nucleon quantum mechanics
is an algebraic model

It starts with the quantization of nucleon position and momentum coordinates

{Inﬁ}: {pni}i n':lu“'aAa 3:1:2:3

Tni —* Tni, Pni —* Pni,

e,
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This gives the Heisenberg-Weyl (HW) Lie algebra of quantum mechanics
[:ﬁﬂﬁ;ﬁmj] = ihﬁn,mat’,j

The quantum mechanics of an A-nucleon nucleus is a fully anti-symmetric tensor
product of A copies of the single-particle representations of the group

HW x SU(2) ¢ x SU(2),,.

The many-nucleon Hilbert space is spanned by independent-particle
—> states (Slater determinants). Note, however, that an independent-
particle basis does not imply an independent-particle approximation.
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the spherical harmonic-oscillator shell model

Three classes of nuclear states in
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The shell model is a very poor approximation for doubly open-shell states



Pair-coupling of nucleons in singly closed-shell states

There are two basic coupling schemes in nuclear physics (Mottelson 1962)
PAIR COUPLING AND DEFORMATION-ALIGNED COUPLING

Pair coupling is the standard jj coupling-scheme of the spherical shell model.
It favours the coupling of nucleon in pairs to states of zero angular momentum.

Basis states for this coupling scheme are generated by the raising operators of
Kerman's so-called quasi-spin algebra acting on quasi-spin lowest-weight states.
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Pair coupling is favoured for nucleons of the same type,
as in singly closed-shell states.



Deformation-aligned coupling of nucleons in doubly

open-shell states

It is apparent, from numerous experimental observations, that states, in
which there are both neutrons and protons in open shells, are deformed and
rotational. This is attributed to the lowering in energy of states in which the
densities of many nucleons have maximal overlaps with one another.

Thus, for neutrons with wave functions {Wﬁ,';)} and protons with wave functions
{1//“’)} , the strongly interacting alignhed combinations are of the form

j'm

— ) 4, (1) (n) (n) (p) (p) (p) (p)
Y= "4 j,1/2w j,—1/2l// j,3/2l// j=32 Y j',1/2l// j’,—1/2l// P3RY =320 (prolate)
or
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More generally one can have deformation-aligned states of many j values. Such
states are Slater determinants of the type that emerge in Hartree-Fock theory:
they define the intrinsic state of a fully quantal unified model.

The Pauli principle allows two unlike nucleons (a neutron and a
proton) to be in the same state. Thus, aligned coupling is more
effective than pair coupling for doubly open-shell states.



Mean-field theory from a Lie algebra perspective
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Any Slater determinant of occupied single-particle states is a lowest-weight state for
a unitary irrep of the Lie algebra of one-body operators with raising and lowering
operators given, respectively, by particle-hole creation and particle-hole
annihilation operators

The set of all lowest-weight states is a very special manifold:

it is an orbit of the group of one-body unitary transformation,

it is a classical phase space. and

it spans the Hilbert space for the quantum mechanics of the Lie algebra.
The minimum-energy lowest-weight is even more special:

it is a minimum-uncertainty coherent state.



Properties of a minimum-energy particle-hole state

Starting from any lowest-weight state for an irrep of a Lie algebra and a set of raising operators,
one can construct a basis for the Hilbert space of the irrep.

A minimal energy lowest-weight state is special because it is not coupled by the Hamiltonian to
any state excited from the lowest-weight state by an elementary (e.g., particle-hole) raising

tor, e.g., A
PR e @1 H a’d"19)=0

The smooth manifold of A-particle Slater determinants is a classical phase space and the infinite
set of A-particle Slater determinants spans the Hilbert space of the A-nucleon nucleus.

A Hartree-Fock minimum-energy Slater determinant, if spherically symmetric, is in one-to-one
correspondence with a classical equilibrium state and is a variational approximation to the
guantum-mechanical ground state of the nucleus.

The small-amplitude time-dependent Hartree-Fock ‘normal-mode’ equations correspond, in
quantum mechanics, to the one-phonon vibrational excitations of the RPA (Random Phase
Approximation), as shown in 1966.

If the minimum-energy Slater determinant is not spherically symmetric, its rotated states are all
stationary states of zero angular momentum consistent with the Nambu-Goldstone interpretation
of a broken symmetry. The rotated stationary states are then all classical equilibrium states and
rotational states in quantum mechanics.

The RPA/normal-mode equations then give the intrinsic vibrational states of a microscopic version
of the unified model.

Parallel properties apply to the minimum-energy
lowest-weight state of any algebraic model.



Mean-field theory for an algebraic model

Mean-field methods can be applied to any irreducible representation
of a Lie algebra that has a lowest- (and/or highest-) weight state.

(It can also be applied to irreps without lowest or highest
weight states but it then has fewer and less useful properties.)

If G is the dynamical group of an algebraic model, a set of all
possible lowest-weight states is an orbit of the group G; i.e.,
it is the set of states generated by the transformations of a
given lowest-weight state by the elements of the G.

This set of lowest-weight states is the classical phase space
of all possible mean-field states and it spans a Hilbert space
for its quantisation

A minimum-energy lowest-weight state invariably
has additional and invaluable properties.

11



Algebraic mean-field theory

Algebraic mean-field theory is simply the extension of Hartree-Fock theory to any
algebraic model whose dynamical group has a lowest-weight state. The lowest-
weight state then corresponds to a particle-hole vacuum state, and the raising and

lowering operators, correspond to particle-hole creation and annihilation operators.

Such an extension is useful when the Hilbert space of a nucleus can be expressed as a
sum of the Hilbert space for irreps of a suitable algebraic collective model.

It is particularly useful when the irreps are those of a collective model that has a
dynamical group and a Lie algebra that contains the nuclear quadrupole moments,
the angular-momentum operators, and the nuclear kinetic energy. The smallest Lie
group that satisfies these condition in the so-called symplectic group Sp(3,R).

The decomposition of the Hilbert space of a nucleus into irreducible Sp(3,R)
subspaces is optimal because these Hilbert subspaces are ideal collective model
spaces in the sense that they have no non-zero E2 transitions nor matrix elements of
the nuclear kinetic energy between their states.

The plan is to calculate the properties of the pure unmixed collective model
states for a reasonable many-nucleon Hamiltonian, and subsequently
explore the mixing of these states both theoretically and experimentally.

12



The Sp(3,R) Lie algebra

The Sp (3,R)Lie algebra consists of all bilinear combinations of the nucleon position
and momentum operators. It includes the following:

(monopole, quadrupole moments)

with n summed over the effective number of A-1 nucleons (with exclusion of the
linear combinations that involve the nuclear centre-of-mass degrees of freedom).

These elements of the Sp(3,R) Lie algebra are all required
elements of a many-nucleon theory of collective states.

13



The Sp(3,R)Lie algebra is a spectrum generating algebra
for any three-dimensional harmonic oscillator

If the nucleon position and momentum coordinate are expressed in terms of harmonic
oscillator raising and lower operators

1
:\/Ea (c;.+cm.), p —1h\/§(cm_cni)

where a, = /M ®, /i are arbitrary units of inverse length for a generally tri-axial
harmonic oscillator with a triple of frequencies {®,,®,,®,}. The Sp(3,R) Lie
algebra is expressed in terms of the operators

ﬂ Ecm n]’ ZJ = ji = chicnj’
n
—1(C.+C.
Z(Cmcn] +— 51 ]) l] -2 (CU + Cﬂ)

with n summed over the effective number of A-1 nucleons (with exclusion of the
linear combinations that involve the nuclear centre-of-mass degrees of freedom).

Note that the above basis for the Sp(3,R) Lie algebra is
defined for any choice of the harmonic-oscillator frequencies.



Sp(3,IR) irreps from a mean-field perspective

An Sp(3,IR)irrep is defined by the quantum numbers (0,,0,,0,) of a
lowest-weight state | ¢), for which
Bi1¢Y=0, i,j=1,2.3,
Ciley=0, i<j=1,2,3,
Cilo)=0,19), i=1,2,3,
However, there are many lowest-weight states, which satisfy these equations: they are
given by the eigenstates

ﬁo(w) = %zhwi&ii

for arbitrary values of @ ={w,,0,,0,}.

Thus, for a given nuclear Hamiltonian, one can select the lowest-weight state for which
the energy (¢p(w)| H |¢p(w)) is @ minimum. This minimum-energy lowest-weight state
will be given when the mean-field that it generates has the same shape as its density
distribution; i.e., when the shape-consistency condition is satisfied:

0,0, =0,, =0;300,

Together with a knowledge of the desired nuclear volume, the shape-consistent mean-
field state is simple to determine, whether or not it is a Slater determinant: it is an
eigenstate of a harmonic oscillator.



Some predictions of Sp(3,R) mean-field theory?

The Hilbert space of a nucleus is a sum of ideal collective model spaces: i.e., irreducible Sp(3,R)
subspaces for which there are no E2 transition matrix elements between different subspaces.

Each irrep has a lowest-weight state that is an eigenstate of a spherical harmonic-oscillator Hamiltonian

of energy N ,iw,and a shape-consistent lowest-weight state of triaxial harmonic—oscillator energy
E ho,=(0,0,+0,0,+0,0,)ho,.

The magnitude of the difference (N, — E, )iiw, is remarkably large for irreps of large deformation as
characterised by the values of 24+ u . Also remarkable is the number and the wide range of strongly
deformed irreps that are predicted to fall into and below the expectations of the spherical shell model.

12C
No (A Tpl2x+u] E,
245 0 4] 4 |23.75
2851210 24 |24.27
265 6 |2 14 |24.68
30511021 22 |26.91
3251221 26 |27.90

160
No [Aul2A+pul E,
34500 0 13450
3858 (4] 20 |35.68
1365|412 10 |35.78
46.5(24(0| 48 136.30
4251612 34 36.61
405|104 | 28 |36.86

IBSEI.

A"g A H QA'.";L Eo'

8125 30 | 8 68 |811.11
824.5| 96 |20 212 |[811.38
822.5| 82 |26| 190 |[811.47
826.5(104 20| 228 |[811.49
814.5| 40 |16 96 |[811.51
820.5| 70 |28 | 168 |[811.53
816.5| 52 |20| 124 |[811.58
818.5| 60 |26| 146 |[811.59
828.5(114|16| 244 |[811.66

N,=o0,+0,+0,, A=0,-0,, U=0,—0,

E.=hwo,+0,0,+0,0;)
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The inclusion of spin and isospin

Irreducible Sp(3,R) subspaces can be further labelled by their spins and
isospins and classified by the quantum numbers of the groups

Sp(3,R)xU(4) o Sp(3,R)xSU(2) x SU(2),

where U(4) is Wigner’s supermultiplet group.

The inclusion of these extra degrees of freedom is essential for a
complete algebraic mean-field theory of doubly open-shell nuclei.
However, for present purposes, it will suffice to note that the lowest-
energy states of nuclei are predominantly those of maximum space
symmetry.

17



The unified model

A unified model of nuclear rotational states is characterised by an intrinsic state | ¢)

that is an eigenstate of each of its commuting quadrupole moments. The orientation of
the intrinsic state is then uniquely defined, to within the rotations of an intrinsic
symmetry group that leaves its quadrupole moments invariant.

Thus, for a small rotation | @) —I| ¢(Q2)) of a triaxial
intrinsic state, it is understood in the unified model

that
(P19(Q)) =0(£2)

This is only possible in quantum mechanics in a
delta-function limit.

The remarkable fact is that this limit is achieved in
the symplectic model in the large-deformation limit.
Thus, the algebraic mean-field treatment of the

symplectic model is a many-nucleon version of the
unified model

18



Some preliminary results

We can now construct the intrinsic states for all collective model irreps
of a nucleus and have the potential to calculate the properties of the
states of these irreps and their mixing with the states of other irreps.

0.40

0.30 Amplitudes of the angular-momentum

states projected from a shape-
consistent state for an °Er irrep with

N,=8265 A=78,1u=0,

and N,=o0,+0,+0,

Sz 020

0.10

0 5 10 15 20

The figure shows the angular-momentum components of states spread over ~15
spherical harmonic-oscillator shells of which the lowest is at an energy of ~107®

in spherical harmonic oscillator units above that of a conventional shell model
calculation for this nucleus.
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Kinetic-energy moments of inertia

It is now possible (and straightforward for axially symmetric irreps) to calculate the
intrinsic expectation values of any element of the Sp(3,R) Lie algebra.

For example, the following table gives the expectation values of the nuclear kinetic
energy in the above determined rotational states for 1%°Er.

L|KE.|IL(L+1)/K.E.
2 30 99.5
4| 101 99.3

6| 212 99.1

8| 364 98.9

10| 568 98.5
12| 795 98.1
141,076 97.6
161,401 97.1

The kinetic-energy contribution to the moments of
inertia for the 2+ rotational state (left).

Below are comparisons with observed moment-of-
inertia values for rigid and irrotational-flow rotations

Fp/h? =995 MeV ™,  F/h =37.6MeV .
e /W2 =844 MeV ™, A /h* =58MeV .

Note that the kinetic energies, for this calculation (which are accurately
calculated subject to mistakes), are less than half the excitation energies
of the observed rotational states and close to those of rigid-body flow.

The difference from experimental observations must be due to potential
energy contributions and/or mixing of irreps.
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Conclusions

The standard spherical-shell model in a pair-coupling scheme is expected to describe the
structure of the spherical states of closed and singly-closed-shell states of nuclei reasonably well
but requires an impossibly large space to begin to describe the doubly open-shell rotational
states of almost any nucleus.

In contrast, the deformation-aligned symplectic coupling scheme is tailor made for the doubly
open-shell states of all nuclei.

The relevance of the symplectic coupling-scheme is exposed, as a result of three major
developments: the experimental observation of shape coexistence associated with doubly open-
shell states of almost all nuclei (Wood and Heyde 2016); the emergence of Sp(3,R) as an
extraordinarily good dynamical symmetry in the doubly open-shell states of light nuclei (Dytrych
et al., LSU), and its application in terms algebraic mean-field theory.

Algebraic mean-field theory now provides a simple and rigorous framework for understanding
the collective structure of the doubly open-shell states of essentially all nuclei.

Remaining challenges

Develop the necessary technology for applications of the algebraic mean theory:
e.g., efficient angular-momentum projection methods that exploit the harmonic

oscillator and SU(3) substructure of the intrinsic states as already done for axially
symmetric irreps.

Develop the theory for irreps with non-zero intrinsic spin states and for all nuclei: even,
odd and odd-odd.

Develop the techniques for mixing different collective states within the framework of
quasi-dynamical symmetry. Find out why nuclear rotations are (or appear to be) axially
symmetric.
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An addendum pertinent to the final
discussions on a relationship between
isospin and nuclear deformation

22



A relationship between isospin and nuclear deformation

pertinent to the final discussion

Closed- and singly closed-shell states of nuclei, e.g.**Ca, are states of isospin T =1(N —2)
Moreover, by a sequence of charge exchange reactions one can identify a sharply defined
isobaric analog of the * Ca ground state in each of the other isobaric nuclei listed below.

. 44 . .

However, whereas the four extra closed-shell core neutronsin “Caare all inT =2 anti-

symmetric combinations, the neutrons and protons in **Sc,* Ti and * Cr can also be in
44 s .

states of 7 =1and " Tican also beina T =0 state.

44 44 44 44 44
»Ca 315¢C 11 1Y 24 Cr

:

LIT T[]
LIT T[]
LIT T[]
[T TT1]
b
\®)

L]
L]
L]

T,=2 1 0 -1 -2
The Young diagrams shows that, in a state of maximal isospin, the nucleons are maximally
antisymmetric, hence pair-coupled and and the nucleus is spherical. Similarly in a states of
minimum isospin the nucleons are maximally symmetric and the nucleus is most likely to be

deformed. This is illustrated dramatically by the energy level spectrum of * Ti.
23
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