Experimental status of the N=20 region around ³²Mg

Riccardo Raabe

KU Leuven, Instituut voor Kern- en Stralingsfysica

Shape coexistence and electric monopole transitions in atomic nuclei 23-27 October 2017 – CEA-Saclay

KU LEUVEN

Riccardo Raabe – KU Leuven

The evidence in ³¹Mg

At the border of the island?

- Spin-parity assignment: direct measurement of the ground state combined *g*-factor from β -NMR and μ from laser spectroscopy
- Other spins from β -decay and reactions
- μ very sensitive to structure \rightarrow 2p3h
- Anchor points: spin-parity of ³¹Na gs, ³²Al gs Coherent picture from many data sets

31Mg+n

 $\pi = +$

-0-0-0-

2p3h

(3/2-,7/2-,1/2-) (1/2+,3/2+,5/2+,7/2+)

³¹Na (3/2⁺) β-decay (strong) —

³¹Na β-decay (weak) –

Coulex \square

n-knockout *

³²Na β-delayed n decay –

KU LEUVEN

Riccardo Raabe – KU Leuven

32Mg (0+) → 31Mg+n

v(sd)

 $\pi = -$

1p2h

••• $v(f_{7/2}p_{3/2})$ •

The evidence in ³³Mg

The ground-state parity puzzle

- I = 3/2 by β -NMR and from laser spectroscopy
- Combined β-decay, in-beam spectroscopy, Coulex, laser spectroscopy, n-knockout suggest negative parity
- Theory indicates 3p2h configuration for the gs and 484-keV state

Ground state has 2 neutrons across N = 20 as in 31,32 Mg

 Suggestion to use transfer reactions to constrain spins

KU LEUVEN

G Neyens et al, PRC 84 (2011) 064310

The shape coexistence picture

KU LEUVEN

G Neyens et al, JPG 43 (2016) 024007

Riccardo Raabe – KU Leuven

g-factor and quadrupole moment in ³⁴Al^m

Z.Y. Xu et al, in preparation

³⁴Al: transitional nucleus?

- g-factor in ³⁴Al^g suggests 0p0h-2p2h mixing
 P. Himpe et al., PLB 658 (2008) 203
- 1⁺ predicted with a 2p1h structure
- Recently observed at 46 keV
 R. Liča et al. PRC 95 (2017) 021301(R)
- β -NMR/NQR at GANIL/LISE $\rightarrow g$ -factor and quadrupole moment

M. De Rydt et al NIMA 612 (2009) 112

g-factor and quadrupole moment in ³⁴Al^m

Z.Y. Xu et al, in preparation

Riccardo Raabe – KU Leuven

g-factor and quadrupole moment in ³⁴Al^m

Z.Y. Xu et al, in preparation

Transfer reactions in Mg: ³⁰Mg(d,p)

V Bildstein, PhD thesis, TUM (2010)

- ³⁰Mg beam at REX-ISOLDE, 3 MeV/nucleon
- T-REX charged-particle detector
- Miniball γ -ray array

KU LEUVEN

Riccardo Raabe – KU Leuven

Transfer reactions in Mg: ³⁰Mg(d,p)

V Bildstein, PhD thesis, TUM (2010)

KU LEUVEN

Riccardo Raabe – KU Leuven

Riccardo Raabe – KU Leuven

K Wimmer et al., PRL 105 (2010) 252501

Looking for the second, spherical 0⁺ in ³²Mg:

³⁰Mg(t,p)³²Mg

- ³⁰Mg beam at REX-ISOLDE, 1.8 MeV/nucleon (below fusion barrier for Ti)
- Tritium-implanted Ti foil (t: 40 μg/cm²)
- T-REX charged-particle detector
- Miniball γ -ray array

K Wimmer et al., PRL 105 (2010) 252501

³⁰Mg(t,p)³²Mg

Two states identified, well separated (despite poor resolution)

³⁰Mg(t,p)³²Mg

• Angular distributions: *l*=0

K Wimmer et al., PRL 105 (2010) 252501

³⁰Mg(t,p)³²Mg

- Angular distributions: *l*=0
- γ-ray coincidences with excited state:
 no 2⁺ (18 cts expected from 2⁺ at 886 keV)

K Wimmer et al., PRL 105 (2010) 252501

Riccardo Raabe – KU Leuven

³⁰Mg(t,p)³²Mg USD ³⁰Mg SDPF-M :8 10 6 USD ³²Mg SDPF-M $2s_{1/2}$ $1d_{3/2}$ $2p_{3/2}$ $1f_{7/2}$ 1d_{5/2} "naïve" 2-level no-mixing does not work $(p_{3/2})^2$ component both in the gs and excited state

K Wimmer et al., PRL 105 (2010) 252501

Riccardo Raabe – KU Leuven

Around N=20 ••••• Transfer Mg •••••• Transfer Ni •OOOOOO Transfer Pb OOOOO Summary O

Transfer reactions towards ⁶⁸Ni: ⁶⁶Ni(d,p) J. Diriken et al, PLB 736 (2014) 533 PRC 91 (2015) 054321

⁶⁶Ni(d,p) 2.85 MeV/nucleon

Transfer Mg **OOOOO** Transfer Ni **OOOOO** Transfer Pb OOOOO Summary O Around N=20

J. Diriken et al, PLB 736 (2014) 533 Transfer reactions towards ⁶⁸Ni: ⁶⁶Ni(d,p)

PRC 91 (2015) 054321

Transfer reactions towards ⁶⁸Ni: ⁶⁶Ni(d,p) J. Diriken et al, PLB 736 (2014) 533 PRC 91 (2015) 054321

Riccardo Raabe – KU Leuven

ESNT Workshop – Saclay, 27/10/2017

Transfer reactions towards ⁶⁸Ni: ⁶⁶Ni(d,p)

PRC 91 (2015) 054321

Around N=20 OCOC Transfer Mg OCOCO Summary O

Transfer reactions towards ⁶⁸Ni: ⁶⁶Ni(t,p) J Elseviers, PhD Thesis, KUL, 2014

⁶⁶Ni(t,p)⁶⁸Ni at 2.6 MeV/nucleon

- Few γ's to ground state
- No p-γ-γ coincidences

Around N=20 ••••• Transfer Mg •••••• Transfer Ni ••••••0000 Transfer Pb 00000 Summary 0

Transfer reactions towards ⁶⁸Ni: ⁶⁶Ni(t,p) J Elseviers, PhD Thesis, KUL, 2014

⁶⁶Ni(t,p)⁶⁸Ni at 2.6 MeV/nucleon

Riccardo Raabe – KU Leuven

Around N=20 ••••• Transfer Mg •••••• Transfer Ni •••••• Transfer Pb OOOOO Summary O

Transfer reactions towards ⁶⁸Ni: ⁶⁶Ni(t,p) J Elseviers, PhD Thesis, KUL, 2014

⁶⁶Ni(t,p)⁶⁸Ni at 2.6 MeV/nucleon

- Two-neutron overlap amplitudes from MCSM (T. Otsuka) pf+g_{9/2}+d_{5/2} both protons and neutrons
- Works well for the 0⁺s does not reproduce the 2⁺₁

Since the monopole effect is linear, four neutrons in the j' orbit as shown in figure 1(c) Riccardo Reame – KU Lexhibited in figure 1(b). Thus, the proton ESNT Workshifting Sectores 27/10/2017

T Otsuka and Y Tsunoda, JPG 43 (2016) 024009

KU LEUVEN

Riccardo Raabe – KU Leuven

T Otsuka and Y Tsunoda, JPG 43 (2016) 024009

1-n transfer in Hg

- ^{185g,m}Hg (d,p) and (p,d)
- Beam intensity $\approx 10^5$ pps \rightarrow feasible!

T Otsuka and Y Tsunoda, JPG 43 (2016) 024009

up to 50 deg in cm

1-n transfer in Hg

- ^{185g,m}Hg (d,p) and (p,d)
- Beam intensity $\approx 10^5$ pps \rightarrow feasible!

 $(d,p)^{186}$ Hg 10 MeV/nucleon, *Q*-value +8.2 MeV

KU LEUVEN

175

180

50 45 40

> 15 10

> > 5

T Otsuka and Y Tsunoda, JPG 43 (2016) 024009

up to 80 deg in cm

1-n transfer in Hg

- ^{185g,m}Hg (d,p) and (p,d)
- Beam intensity $\approx 10^5$ pps \rightarrow feasible!

 $(p,d)^{184}$ Hg 10 MeV/nucleon, *Q*-value –5.7 MeV

KU LEUVEN

Riccardo Raabe – KU Leuven

ESNT Workshop – Saclay, 27/10/2017

50 45 40

20

Around N=20 🗢 🗢 🗢 Transfer Mg 🗢 🗢 🕶 Transfer Ni 🗢 🗢 🗢 Transfer Pb 🗢 🗢 Summary 🗢

Summary

- Data from all sort of techniques are necessary Importance of "anchor points"
- Transfer reactions with radioactive beams are feasible, but they remain very challenging!
- Choose cases accurately
 Aim for good-quality data on accessible nuclei
- γ-ray detection often essential Resolution vs efficiency
- Spectroscopic factors not always reliable (unknown reaction mechanism)
 Use relative quantities to interpret cross sections