ESNT Workshop＂Shape coexistence and electric monopole transitions in atomic nuclei＂
Oct． 24 （23－27）， 2017 CEA－Saclay b703 Orme des Merisiers

Shape coexistence and quantum phase transition in the Monte－Carlo Shell Model

Takaharu Otsuka
RIKEN／University of Tokyo／KU Leuven／MSU
Yusuke Tsunoda（CNS，Tokyo），Tomoaki Togashi（CNS，Tokyo）
Noritaka Shimizu（CNS，Tokyo），Takashi Abe（Tokyo）
\＃visinin東京大学 THE UNIVERSITY OF TOKYO

This work has been supported by MEXT and JICFuS as a priority issue（Elucidation of the fundamental laws and evolution of the universe）to be tackled by using Post＇ K ＇Computer

Outline
I Introduction
II Presently used numerical methodology of many-body problems

III First application of MCSM to shape coexistence: Ni isotopes

IV An example from Quantum Phase Transition in Zr isotopes

V Basic mechanism
VI Shape coexistence and/or critical phenomena in $\mathrm{Hg} / \mathrm{Pb}$ isotopes

VII Remarks

Collective modes : various types \rightarrow in the case of the quadrupole deformation

Assembly of protons and neutrons

Vibration between sphere and ellipsoid

Rigid Ellipsoidal Deformation and its Rotation

Single－particle states ：shell structure and magic numbers due to a＂potential＂

Nuclear Shell Structure，p．58，Wiley，New York， 1955 からとった．

single-particle states and correlations

Protons and neutrons are orbiting in the mean potential like a "vase"
\rightarrow single-particle states

Lower orbits form the inert core (or closed shell) (shaded parts in the figure)

Upper orbits are partially occupied and nucleons are active
(valence orbits and nucleons).
proton

- shell gap

Correlations due to nucleon-nucleon interaction produce the mixing of various configurations of single-particle states.

Various shapes appear as a function of $N($ or Z) : How can we describe it ?
2^{+}and 4^{+}level properties of $\mathrm{Sm}(Z=62)$ isotopes
Ex (2+) :
excitation energy of first 2^{+}state

$$
\mathrm{R}_{4 / 2}=\operatorname{Ex}\left(4^{+}\right) / \operatorname{Ex}\left(2^{+}\right)
$$

Neutron number, N

Atomic nucleus is a quantum
Fermi liquid :
The nucleus is composed of almost free nucleons interacting weakly via residual forces in a (solid) (mean) potential like a solid "vase".

Landau

The shape of atomic nucleus
can be described by the deformation of the "vase", a la Nilsson model.

A. Bohr Mottelson Nilsson
T. Schaefer, Fermi Liquid theory: A brief survey in memory of Gerald E. Brown, NPA 2014)

One of Gerry's main scientific pursuits was to understand the nuclear few and many-body problem in terms of microscopic theories based on the measured two and three-nucleon forces. One of the challenges of this program is to understand how the observed single-particle aspects of finite nuclei, in particular shell structure and the presence of excited levels which carry the quantum numbers of single particle states, can be reconciled with the strong nucleon-nucleon force, and how single particle states can coexist with collective modes. A natural framework for
 addressing these questions is the Landau theory of Fermi liquids. Landau Fermi liquid theory

Additional deformed field : Nilsson model

Nilsson model Hamiltonian

"Nuclear structure II" by Bohr and Mottelson deformed nuclei, is obtained by a simple modification of the harmonic oscillator (Nilsson, 1955; Gustafson et al., 1967),

$$
H=\frac{\mathbf{p}^{2}}{2 M}+\frac{1}{2} M\left(\omega_{3}^{2} x_{3}^{2}+\omega_{\perp}^{2}\left(x_{1}^{2}+x_{2}^{2}\right)\right)+v_{l l} \hbar \omega_{0}\left(\mathbf{1}^{2}-\left\langle\mathbf{1}^{2}\right\rangle_{N}\right)+v_{l s} \hbar \omega_{0}(\mathbf{1} \cdot \mathbf{s})
$$

quadrupole deformed field

$$
\left\langle\mathbf{1}^{2}\right\rangle_{N}=\frac{1}{2} N(N+3)
$$

spherical field
constant within a region

Figure	Region	$-v_{l s}$	$-v_{l l}$
$5-1$	N and $Z<20$	0.16	0
$5-2$	$50<Z<82$	0.127	0.0382
$5-3$	$82<N<126$	0.127	0.0268
$5-4$	$82<Z<126$	0.115	0.0375
$5-5$	$126<N$	0.127	0.0206

Table 5-1 Parameters used in the single-particle potentials of Figs. 5-1 to 5-5.

Spin-orbit force

$$
\left.\begin{array}{ll}
A=68 & 1.28 \\
A=100 & 1.12 \\
A=186 & 0.91
\end{array}\right](\mathbf{l} \cdot \mathbf{s})
$$

Main subject of this talk

This effect becomes stronger as the nucleus moves away from the closed shell.

Intuitively speaking, the quadrupole deformation is determined by

resistance power \leftarrow For instance, pairing force. What else?

- The quadrupole force is a part of nuclear forces : quadrupole-quadrupole component in the spin-tensor decomposition.
- Driving force for the rotational spectrum, for instance, in Elliott's SU(3)
- Its mean-field effect \Rightarrow Nilsson model
- Pairing + QQ interaction model

Outline
I Introduction
II Presently used numerical methodology of many-body problems

III First application of MCSM to shape coexistence: Ni isotopes

IV An example from Quantum Phase Transition in Zr isotopes

V Basic mechanism
VI Shape coexistence and/or critical phenomena in $\mathrm{Hg} / \mathrm{Pb}$ isotopes

VII Remarks

Two types of shell-model calculations

$$
\begin{aligned}
& \text { dim. }<\sim 10^{10}
\end{aligned}
$$

> Conventional Shell Model Direct diagonalization all|Slater determinants

For even bigger problem,
$H \approx\left(\begin{array}{lll}* & * & * \\ * & * & * \\ * & * & \cdot \\ \cdot & \cdot & \end{array}\right)$

Monte Carlo Shell Model
bases important for a specific eigenstate important basis vectors

Possible configurations: 10^{23} ways at maximum for Zr isotopes to be discussed

Superposition of original orbits => Select most important ~ 100 ones

Advanced Monte Carlo Shell Model

 qMC and conjugate gradient methods

Step 1 : quantum Monte Carlo type method
\rightarrow candidates of n-th basis vector ($\sigma:$ set of random numbers)

$$
|\phi(\sigma)\rangle=\prod e^{\Delta \beta \cdot h(\sigma)} \cdot\left|\phi^{(0)}\right\rangle
$$

" σ " can be represented by matrix D
Select the one producing the lowest $E(D) \quad$ (rate $<0.1 \%$)
Step 2 : polish D by means of the conjugate gradient method "variationally".

Step 3 : Energy variance extrapolation

MCSM (Monte Carlo Shell Model -Advanced version-)

1. Selection of important many-body basis vectors by quantum Monte-Carlo + diagonalization methods basis vectors: about 100 selected Slater determinants composed of "deformed" single-particle states
2. Variational refinement of basis vectors conjugate gradient method
3. Variance extrapolation method -> exact eigenvalues

+ innovations in algorithm and code (=> now moving to GPU)

K computer (in Kobe) 10 peta flops machine \Rightarrow Projection of basis vectors

Rotation with three Euler angles with about 50,000 mesh points

Example : 8+ ${ }^{68} \mathrm{Ni} 7680$ core $\times 14 \mathrm{~h}$

Outline
I Introduction
II Presently used numerical methodology of many-body problems

III First application of MCSM to shape coexistence: Ni isotopes

IV An example from Quantum Phase Transition in Zr isotopes

V Basic mechanism
VI Shape coexistence and/or critical phenomena in $\mathrm{Hg} / \mathrm{Pb}$ isotopes

VII Remarks

Monte Carlo Shell Model (MCSM) calculation on Ni isotopes

This model space is wide enough to discuss how magic numbers 28,50 and semi-magic number 40 are visible or smeared out.

Interaction:
A3DA interaction is used with minor corrections

Energy levels and B(E2) values of Ni isotopes

Description by the same Hamiltonian Shape coexistence in ${ }^{68} \mathrm{Ni}$

Occupation numbers

Effective s.p.e. by actual occupation numbers

Type II Shell Evolution in ${ }^{68} \mathrm{Ni}(\mathrm{Z}=28, \mathrm{~N}=40)$

Type II shell evolution is suppressed by resetting monopole interactions as

$$
\begin{aligned}
& \pi f_{7 / 2}-v g_{9 / 2}=\pi f_{5 / 2}-v g_{9 / 2} \\
& \pi f_{7 / 2}-v f_{5 / 2}=\pi f_{5 / 2}-v f_{5 / 2}
\end{aligned}
$$

The local minima become much less pronounced.

Shape coexistence is enhanced by type II shell evolution because the same quadrupole interaction can work more efficiently.

Underlying mechanism of the appearance of low-lying deformed states

 : Type II Shell EvolutionTO and Y. Tsunoda, J. Phys. G: Nucl. Part. Phys. 43 (2016) 024009

Bohr-model calc. by HFB with Gogny force, Girod, Dessagne, Bernes, Langevin, Pougheon

Shape or structure evolution of Ni isotopes

Low-lying O^{+}in ${ }^{70} \mathrm{Ni}$: prediction and verification

PHYSICAL REVIEW C 92, 061302 (R) (2015)
C. J. Prokop, ${ }^{1,2, *}$ B. P. Crider, ${ }^{1}$ S. N. Liddick, ${ }^{1,2}$

Physics Letters B 763 (2016) 108-113

Shape coexistence from lifetime and branching-ratio measurements in ${ }^{68,70} \mathrm{Ni}$
B.R Crider ${ }^{\text {a,* }}$, C.J. Prokop ${ }^{\text {a,b }}$, S.N. Liddick ${ }^{\text {a,b }}$, M. Al-Shudifat ${ }^{\text {c }}$, A.D. Ayangeakaa ${ }^{\text {d }}$,
M.P. Carpenter ${ }^{\text {d }}$, J.J. Carroll ${ }^{\text {e }}$, J. Chen ${ }^{\text {a }}$, C.J. Chiara ${ }^{\mathrm{f}}$, H.M. David ${ }^{\text {d, }}$, A.C. Dombos ${ }^{\text {a,g }}$, S. Go ${ }^{\text {c }}$, R. Grzywacz ${ }^{\text {c,h }}$, J. Harker ${ }^{\text {d,i}}$, R.V.F. Janssens ${ }^{\text {d }}$, N. Larson ${ }^{\text {a,b }}$, T. Lauritsen ${ }^{\text {d }}$, R. Lewis ${ }^{\text {a,b }}$, S.J. Quinn ${ }^{\text {a,s }}$, E. Recchia $^{\text {j }}$, A. Spyrou ${ }^{\text {a,g }}$, S. Suchyta ${ }^{\text {k }}$, W.B. Walters ${ }^{\text {i }}$, S. Zhu ${ }^{\text {d }}$

Upon addition of just two neutrons leading to ${ }^{/ 0} \mathrm{Ni}$, the expectations for shape coexistence differ. Some models predict sphericalprolate shape coexistence [$10,19,16]$ while others predict no shape coexistence at all [23-25]. The recent observation of a tentative 0^{+}state at 1567 keV in ${ }^{70} \mathrm{Ni}$ [11] suggested a drop in excitation energy of the prolate potential minimum, in line with theoretical expectations for the neutron-rich, even-Ni isotopes. The measure-
[10] S. Suchyta, S.N. Liddick, Y. Tsunoda, T. Otsuka, M.B. Bennett, A. Chemey, M. Honma, N. Larson, CJ. Prokop, S.J. Quinn, N. Shimizu, A. Simon, A. Spyrou, V. Tripathi, Y. Utsuno, J.M. VonMoss, Shape coexistence in ${ }^{68}$ Ni, Phys. Rev. C 89 (2014) 021301, http://dx.doi.org/ 10,1103/PhysRevC.89.021301.
[19] Y. Tsunoda, T. Otsuka, N. Shimizu, M. Honma, Y. Utsuno, Novel shape evolution in exotic Ni isotopes and configuration-dependent shell structure, Phys. Rev. C 89 (2014) 031301, http://dx.doi.org/10.1103/PhysRevC.89.031301.
[16] F. Flavigny. D. Pauwels, D. Radulov, IJ. Darby. H. De Witte, J. Diriken, D.V. Fedorov, V.N. Fedosseev, L.M. Fraile, M. Huyse, V.S. Ivanov, U. Köster, BA. Marsh, T. Otsuka, L. Popescu, R. Raabe, M.D. Seliverstov, N. Shimizu, A.M. Sjödin, Y. Tsunoda, P. Van den Bergh, P. Van Duppen, J. Van de Walle, M. Venhart, W.B. Walters, K. Wimmer, Characterization of the low-lying 0^{+}and 2^{+}states in ${ }^{68}$ Ni via β decay of the low-spin ${ }^{68}$ Co isomer, Phys. Rev. C 91 (2015) 034310 , http://dx.doi.org/10.1103/PhysRevC.91.034310.

Type II shell evolution $A=70$ isobars from the $N \geq 40$ island of

 inversionA.I. Morales ${ }^{\text {a,b,* }}$, G. Benzoni ${ }^{\text {a }}$, H. Watanabe ${ }^{\text {c,d }}$, Y. Tsunoda ${ }^{\text {e }}$, T. Otsuka ${ }^{\text {f.g.h }}$, S. Nishimura ${ }^{\text {d }}$, F. Browne ${ }^{\mathrm{i}, \mathrm{d}}$, R. Daido ${ }^{\mathrm{j}}$, P. Doornenbal ${ }^{\mathrm{d}}$, Y. Fang ${ }^{\mathrm{j}}$, G. Lorusso ${ }^{\mathrm{d}}$, Z. Patel ${ }^{\mathrm{k}, \mathrm{d}}$, S. Rice ${ }^{\mathrm{k}, \mathrm{d}}$, L. Sinclair ${ }^{1, d}$, P.-A. Söderström ${ }^{\text {d }}$, T. Sumikama ${ }^{\text {m }}$, J. Wu ${ }^{\text {d }}$, Z.Y. Xu ${ }^{\text {f.d }}$, A. Yagi ${ }^{\mathrm{j}}$, R. Yokoyama ${ }^{\text {f }}$, H. Baba ${ }^{\text {d }}$, R. Avigo ${ }^{\text {a,b }}$, F.L. Bello Garrote ${ }^{\text {n }}$, N. Blasi ${ }^{\text {a }}$, A. Bracco ${ }^{\text {a,b }}$, F. Camera ${ }^{\text {a,b }}$, S. Ceruti ${ }^{\text {a,b }}$, F.C.L. Crespi ${ }^{\text {a,b }}$, G. de Angelis ${ }^{0}$, M.-C. Delattre ${ }^{\mathrm{p}}$, Zs. Dombradi ${ }^{\text {q }}$, A. Gottardo ${ }^{\circ}$, T. Isobe ${ }^{\text {d }}$, I. Kojouharov ${ }^{\text {r }}$, N. Kurz ${ }^{\text {r }}$, I. Kuti ${ }^{\text {q }}$, K. Matsui ${ }^{\text {f }}$, B. Melon ${ }^{\text {s }}$, D. Mengoni ${ }^{\text {t,u }}$,
T. Miyazaki ${ }^{\mathrm{f}}$, V. Modamio-Hoybjor ${ }^{0}$, S. Momiyama ${ }^{\mathrm{f}}$, D.R. Napoli ${ }^{\circ}$, M. Niikura ${ }^{\mathrm{f}}$,
R. Orlandi ${ }^{\text {h, }, ~}$, H. Sakurai ${ }^{\text {d,f }}$, E. Sahin ${ }^{\mathrm{n}}$, D. Sohler ${ }^{\mathrm{q}}$, H. Schaffner ${ }^{\mathrm{r}}$, R. Taniuchi ${ }^{\mathrm{f}}$,
J. Taprogge ${ }^{\text {w,x }}$, Zs. Vajta ${ }^{\text {q }}$, J.J. Valiente-Dobón ${ }^{0}$, O. Wieland ${ }^{\mathrm{a}}$, M. Yalcinkaya ${ }^{\mathrm{y}}$

${ }^{2}$ Isrinuro Nozionale di Fisice Nucleare, Seziane di Milano, Via Celario 16, 20133 Milano, Iraly
${ }^{\text {b }}$ Dipartimento đi Fisica, Universint deghti Sudid di Milana, Via Ceforio 16, 20133 Milana, Iroly

$\mathrm{Q}_{\mathrm{g}}=12295(298) \mathrm{keV}$

MCSM basis vectors on Potential Energy Surface

eigenstate

Slater determinant of deformed
s. p. states \rightarrow intrinsic shape

- PES is calculated
by CHF for the shell-model Hamiltonian
- Location of circle : quadrupole deformation of unprojected MCSM basis vectors
- Area of circle :
overlap probability
between each
projected basis and
eigen wave function

Called T-plot in reference to
Y. Tsunoda, et al.

PRC 89, 031301 (R) (2014)

General properties of T-plot :

Certain number of large circles in a small region of PES
\Leftrightarrow pairing correlations
Spreading beyond this can be due to shape fluctuation
Example : shape assignment to various 0^{+}states of ${ }^{68} \mathrm{Ni}$

$\left\langle Q_{0}\right\rangle\left[\mathrm{fm}^{2}\right]$

Energy of prolate state comes down. Barrier becomes low.

${ }^{74} \mathrm{Ni}$
${ }^{76} \mathrm{Ni}$
The ground state is always like seniority-zero (BCS-type)
spherical state.

Multifaceted Quadruplet of Low-Lying Spin-Zero States in ${ }^{66} \mathrm{Ni}$: Emergence of Shape Isomerism in Light Nuclei

S. Leoni,,${ }^{1,2, *}$ B. Fornal, ${ }^{3}$ N. Mărginean, ${ }^{4}$ M. Sferrazza, ${ }^{5}$ Y. Tsunoda, ${ }^{6}$ T. Otsuka, ${ }^{6,7,8,9}$ G. Bocchi, ${ }^{1,2}$ F.C. L. Crespi, ${ }_{4}^{1,2}$
A. Bracco, ${ }^{1,2}$ S. Aydin, ${ }^{10}$ M. Boromiza, ${ }^{4,11}$ D. Bucurescu, ${ }^{4}$ N. Cieplicka-Oryǹczak, ${ }^{2,3}$ C. Costache, ${ }^{4}$ S. Călinescu, ${ }^{4}$ N. Florea, ${ }^{4}$ D. G. Ghiţă, ${ }^{4}$ T. Glodariu, ${ }^{4}$ A. Ionescu, ${ }^{4,11}$ ŁW. Iskra, ${ }^{3}$ M. Krzysiek, ${ }^{3}$ R. Mărginean, ${ }^{4}$ C. Mihai, ${ }^{4}$ R. E. Mihai, ${ }^{4}$ A. Mitu, ${ }^{4}$ A. Negreţ, ${ }^{4}$ C. R. Niţă, ${ }^{4}$ A. Olăcel, ${ }^{4}$ A. Oprea, ${ }^{4}$ S. Pascu, ${ }^{4}$ P. Petkov, ${ }^{4}$ C. Petrone, ${ }^{4}$ G. Porzio, ${ }^{1,2}$ A. Şerban, ${ }^{4,11}$
C. Sotty, ${ }^{4}$ L. Stan, ${ }^{4}$ I. Ştiru, ${ }^{4}$ L. Stroe, ${ }^{4}$ R. Şuvăilă, ${ }^{4}$ S. Toma, ${ }^{4}$ A. Turturicăa, ${ }^{4}$ S. Ujeniuc, ${ }^{4}$ and C. A. Ur ${ }^{12}$
${ }^{1}$ Dipartimento di Fisica, Università degli Studi di Milano, I-20133 Milano, Italy
${ }^{2}$ INFN sezione di Milano via Celoria 16, 20133, Milano, Italy
${ }^{3}$ Institute of Nuclear Physics, PAN, 31-342 Kraków, Poland

Shape or structure evolution of Ni isotopes

Outline
I Introduction
II Presently used numerical methodology of many-body problems

III First application of MCSM to shape coexistence: Ni isotopes

IV An example from Quantum Phase Transition in Zr isotopes

V Basic mechanism
VI Shape coexistence and/or critical phenomena in $\mathrm{Hg} / \mathrm{Pb}$ isotopes

VII Remarks

An example : shapes of $Z r$ isotopes by Monte Carlo Shell Model

- Effective interaction:

JUN45 + snbg3 $+V_{\text {MU }}$
known effective interactions

+ minor fit for a part of T=1 TBME's

Nucleons are excited fully
within this model space (no truncation)

We performed Monte Carlo Shell Model (MCSM) calculations, where the largest case corresponds to the diagonalization of 3.7×10^{23} dimension matrix.

Togashi, Tsunoda, TO et al. PRL 117, 172502 (2016)

Unified shell-model description of nuclear deformation

P. Federman

FIC. 3. Single-particle levels appropriate to a deseription of nuclei in the Zr -Mo region. An ${ }^{2} \mathrm{Sr}$ core is asgamod,

PHYSICAL REVIEW C 79, 064310 (2009)

Shell model description of zirconium isotopes

K. Sieja, ${ }^{1,2}$ F. Nowacki, ${ }^{3}$ K. Langanke, ${ }^{2,4}$ and G. Martínez-Pinedo ${ }^{1}$

In this paper, we perform for the first time a SM study of Zr isotopes in an extended model space $\left(1 f_{5 / 2}, 2 p_{1 / 2}\right.$, $\left.2 p_{3 / 2}, 1 g_{9 / 2}\right)$ for protons and $\left(2 d_{5 / 2}, 3 s_{1 / 2}, 2 d_{3 / 2}, 1 g_{7 / 2}\right.$, $\left.1 h_{11 / 2}\right)$ for neutrons, dubbed hereafter $\pi(r 3-g), v(r 4-h)$.

FIG. 12. Systematics of the experimental and theoretical first excited 2^{+}states along the zirconium chain.

Quantum Phase Transition in the Shape of $\mathbf{Z r}$ isotopes

Tomoaki Togashi, ${ }^{1}$ Yusuke Tsunoda, ${ }^{1}$ Takaharu Otsuka, ${ }^{1,2,3,4}$ and Noritaka Shimizu ${ }^{1}$

Can this be a "Phase Transition" ?

Phase Transition:

A macroscopic system can change qualitatively from a stable state (e.g. ice for $\mathrm{H}_{2} \mathrm{O}$) to another stable state (e.g., water for $\mathrm{H}_{2} \mathrm{O}$) as a function of a certain parameter (e.g., temperature).

The phase transition implies this kind of phenomena of macroscopic systems consisting of almost infinite number of molecules.

Quantum Phase Transition (QPT)

The concept of the phase transition cannot be applied to microscopic systems
as it is. The QPT has been introduced as an abrupt change (of order parameter)
in the ground state of a many-body system by varying a physical (i.e., control) parameter at zero temperature. (cf., Wikipedia)

$B\left(E 2 ; 2^{+}->0^{+}\right)$systematics

New data from Darmstadt, Kremer et al. PRL 117, 172503 (2016)

First Measurement of Collectivity of Coexisting Shapes Based on Type II Shell Evolution: The Case of ${ }^{96} \mathbf{Z r}$
C. Kremer, ${ }^{1}$ S. Aslanidou, ${ }^{1}$ S. Bassauer, ${ }^{1}$ M. Hilcker, ${ }^{1}$ A. Krugmann, ${ }^{1}$ P. von Neumann-Cosel, ${ }^{1}$ T. Otsuka, ${ }^{2,3,4,5}$ N. Pietralla, ${ }^{1}$ V. Yu. Ponomarev, ${ }^{1}$ N. Shimizu, ${ }^{3}$ M. Singer, ${ }^{1}$ G. Steinhilber, ${ }^{1}$ T. Togashi, ${ }^{3}$ Y. Tsunoda, ${ }^{3}$ V. Werner, ${ }^{1}$ and M. Zweidinger ${ }^{1}$

FRDM: S. Moeller et al. At. Data Nucl. Data Tables 59, 185 (1995).
IBM: M. Boyukata et al. J. Phys. G 37, 105102 (2010).
HFB: R. Rodriuez-Guzman et al. Phys. Lett. B 691, 202 (2010).

Outline
I Introduction
II Presently used numerical methodology of many-body problems

III First application of MCSM to shape coexistence: Ni isotopes

IV An example from Quantum Phase Transition in Zr isotopes

V Basic mechanism
VI Shape coexistence and/or critical phenomena in $\mathrm{Hg} / \mathrm{Pb}$ isotopes

VII Remarks

Reminder I : Jahn -Teller effect for nuclear deformation

(Self-consistent) quadrupole deformed field $\propto Y_{2,0}(\theta, \phi)$ mixes the orbits below

$$
\Psi\left(J_{z}=1 / 2\right)=\mathrm{c}_{1}\left|\mathrm{~g}_{7 / 2} ; j_{z}=1 / 2>+\mathrm{c}_{2}\right| \mathrm{d}_{3 / 2} ; j_{z}=1 / 2>+\mathrm{c}_{3} \mid \mathrm{d}_{5 / 2} ; j_{z}=1 / 2>
$$

stronger mixing $=$ larger quadrupole deformation
Mixing depends not only on the strength of the $Y_{2,0}(\theta, \phi)$ field, but also the spherical single-particle energies $\varepsilon_{1}, \varepsilon_{2}, \varepsilon_{3}$, etc.

large (or maybe realistic) splitting is certainly an enemy of deformation

Reminder II: Monopole interaction

A part of the nucleon-nucleon interaction.
Between a proton in the orbit j and a neutron in the orbit $j j^{\prime}$, it is written as

$$
\mathrm{v}\left(\mathrm{j}, \mathrm{j}^{\prime}\right) n_{j}^{\mathrm{p}} n^{\mathrm{n}}{ }_{j}
$$

$\mathrm{v}(\mathrm{j}, \mathrm{j})$: monopole matrix element, $\quad n_{j}^{\mathrm{p}} \& n_{j}^{\mathrm{n}}$: number operators

Ex. Monopole effect from tensor force

1. Proportional to occupation number (linear scaling)

Its effect can be magnified.
2. Single-particle energies are changed effectively
Ex: $\Delta \varepsilon_{j}{ }_{j}=\mathrm{v}\left(\mathrm{j}, \mathrm{j}^{\prime}\right) \Delta n^{\mathrm{n}}{ }_{j^{\prime}}$
3. Also for holes with the opposite sign
4. $\mathrm{v}(\mathrm{j}, \mathrm{j}$ ') not uniform central and tensor forces

Variation of monopole matrix element from a central force : $A=70$

Variation of monopole matrix element from tensor force : $\mathrm{A}=70$

Figure 34 Monopole matrix elements of the tensor force in the $T=0$ channel. The orbit labeling is abbreviated like f 7 for $1 f_{7 / 2}$, etc. The orbits are from valence shell for $A=70$.

Anatomy of this effect : ${ }^{98} \mathrm{Zr}$ spherical $0^{+}{ }_{1}$ and deformed $0^{+}{ }_{2}$
PES with T-plot

Use them as constant SPEs independent of configurations, putting monopole int. aside
\rightarrow Frozen monopole treatment

Type II shell evolution is a simplest and visible case of

Quantum Self Organization

Atomic nuclei can "organize" their single-particle energies by taking particular configurations of protons and neutrons optimized for each eigenstate, thanks to orbit-dependences of monopole components of nuclear forces (e.g., tensor force).
\rightarrow an enhancement of Jahn-Teller effect.

Single-particle levels and the number of particles
determines
the shapes

Prolate - rigid-triaxial shape coexistence

different shell structures ~ like "different nuclei"

$\mathrm{Sr} \& \mathrm{Kr}$ isotopes within the scope but not yet done well

$$
\text { PHYSICAL REVIEW C 95, } 054319 \text { (2017) }
$$

Abrupt shape transition at neutron number $N=60: B(E 2)$ values in ${ }^{94,96,98} \mathrm{Sr}$ from fast $\boldsymbol{\gamma} \boldsymbol{-} \boldsymbol{\gamma}$ timing

J.-M. Régis, ${ }^{1,{ }^{*}}$ J. Jolie, ${ }^{1}$ N. Saed-Samii, ${ }^{1}$ N. Warr, ${ }^{1}$ M. Pfeiffer, ${ }^{1}$ A. Blanc, ${ }^{2}$ M. Jentschel, ${ }^{2}$ U. Köster, ${ }^{2}$ P. Mutti, ${ }^{2}$ T. Soldner, ${ }^{2}$

FIG. 7. Comparison between level schemes from MCSM calculations and experimental values for the lowest two excited $I^{\pi}=0^{+}, 2^{+}, 4^{+}, 6^{+}$ states in ${ }^{94,96,98} \mathrm{Sr}$. Oblate (prolate) deformed states are given in blue (red) and triaxial ones in purple. The experimental data are taken from Refs. [21,26].

Outline
I Introduction
II Presently used numerical methodology of many-body problems

III First application of MCSM to shape coexistence: Ni isotopes

IV An example from Quantum Phase Transition in Zr isotopes

V Basic mechanism
VI Shape coexistence and/or critical phenomena in $\mathrm{Hg} / \mathrm{Pb}$ isotopes

VII Remarks

Moving to heavier nuclei

${ }^{186}$ Pb Andreyev et al., Nature 405, 430 (2000)

MCSM calculation setup

All these orbits are included in the MCSM calculation.
30 protons activated $15\left({ }^{177} \mathrm{Hg}\right)-24\left({ }^{188} \mathrm{Hg}\right)$ neutrons activated
max dimension in conventional diagonalization $\sim 2 \times 10^{42}$ (feasible in 60 years)
$p-p, n-n$ effective interactions are taken from
B.A. Brown, PRL 85, 5300 (2000)
p-n effective interaction is taken from
T. Otsuka, PRL 104, 012501 (2010) (VMU: central + tensor) + 2body LS from M3Y

Single-particle structure is self-organized in prolate states:
proton $\mathrm{h}_{9 / 2}-$ neutron $\mathrm{i}_{13 / 2}$ monopole interaction is particularly strong due to the central + tensor force.

If we weaken it to an averaged magnitude of monopole interactions between other orbits, we get (c)

${ }^{186} \mathrm{Hg} \mathrm{O}^{+}{ }_{1}$
 ${ }^{185} \mathrm{Hg} 1 / 2^{-}{ }_{1}$

Remarks

Naïve Fermi liquid picture (a la Landau) is revised, as atomic nuclei are not necessarily like simple solid vases containing almost free nucleons.

Nuclear forces are rich enough to optimize single-particle energies for each eigenstate (especially in the cases of collective-mode states), as referred to as quantum self-organization.

The quantum self-organization produces sizable effects with
(i) two quantum fluids (protons and neutrons),
(ii) two major forces : e.g., quadrupole interaction to drive collective mode monopole interaction to control resistance

Thus, non-specific forces, e.g. monopole interaction, work coherently so that single-particle states are not always enemies but can be friends of collective modes.
Interesting topics may include

- prolate shape is more favored (reason for prolate > oblate ?)
- Majorana force in IBM may be explained for the first time
- more important for heavier nuclei \rightarrow stability of superheavy elements
- time dependent version ... intriguing project

Remarks - continued

Type II shell evolution is a simpler case of the quantum self-organization, involving closed-shell structure (~shape coexistence).
Quantum phase transition, shape coexistence, shape transition (e.g., Sm), superdeformation, fission, ... seem to be relevant.
heavier nuclei : more particles and more orbits => more important
From known examples,
$\mathrm{Ni}(+\mathrm{Co} .$.$) \quad shape coexistence with lowest Ex \sim 1 \mathrm{MeV}$
Zr (+Sr ..) quantum phase transition an $\mathrm{N}=60$
$\mathrm{Hg}(+\mathrm{Pb} .$.$) even-even isotopes : shape coexistence$
even-odd : alternation between spherical/weak oblate and
prolate \rightarrow degeneracy of phases (critical phenomenon)
even or odd of neutron number controls

E2 \& E0 Transition strength of ${ }^{12} \mathrm{Be}$

Cirront ctatus

EO is difficult for the shell model. But could ab initio shell model solve this?

Expt.:
S. Shimoura, et al., Phys. Lett. B 65487 (2007)
N. Imai, et al., Phys. Lett. B 673179 (2009)

Thank you

Shape evolution in Sm isotopes (very preliminary)

Shape coexistence in $\mathrm{Hg} / \mathrm{Pb}$ region
Very Prefiminary
${ }^{181} \mathrm{Hg}$ proton ESPE (MeV)

1/2- levels
11 proton orbits, 13 neutron orbits nn, pp Brown (PRL85, 5300), pn VMU


```
deformation = }\frac{\mathrm{ quadrupole force }}{\mathrm{ resistance power }
resistance power < pairing force
$single-particle energies
```

Analogy to electric current,

Additional remark:

The atomic nucleus can optimize its single-particle properties for actual mode/shape (or any final form of the structure), by choosing favorable configurations.

This aspect of the quantum self-organization may be (one of) the missing correlations Nakatsukasa-san mentioned this morning.

Deformation parameter β_{2} varies as the neutron number N

Neutron number

Sm同位体（Z＝62）のT－plot

- ${ }^{144} \mathrm{Sm}$ から ${ }^{154} \mathrm{Sm}$ にかけて変形度が増加 $\left({ }^{154} \mathrm{Sm}\right.$ な β β～0．3）
- ${ }^{150} \mathrm{Sm}$ から配位が変わり，$\pi \mathrm{Oh}_{11 / 2}, \mathrm{VOg}_{9 / 2}, \mathrm{VOi}_{13 / 2}$ などに励起する

Sm isotopes

proton 8 orbits neutron 10 orbits
Interaction VMU (gaussian central $+\pi+\rho$ tensor)

${ }^{100} \mathrm{Zr}$ prolate $\mathrm{O}^{+}{ }_{1}$ and spherical O_{4}^{+}(T-plot)

${ }^{100} \mathrm{Zr}$ prolate $\mathrm{O}^{+}{ }_{1}$ by frozen S.P.E. (T-plot)

Development of shell-model calculation

