ESNT, October 2017 Saclay, France

Coexistence of nuclear shapes: mean-field and beyond

Tamara Nikšić University of Zagreb

Supported by: Croatian Science Foundation

Theoretical framework: energy density functionals

✓ the nuclear many-body problem is effectively mapped onto a one-body problem without explicitly involving internucleon interactions

✓ the exact density functional is approximated with powers and gradients of ground state densities and currents

✓ universal density functionals can be extended from relatively light systems to superheavy nuclei and from the valley of stability to the particle drip line

✓ the coupling parameters of the EDF are fine-tuned to empirical data

Covariant nuclear energy density functionals

✓ covariant EDFs – built from densities and currents bilinear in the Dirac spinor field of the nucleon

✓ unique parameterization of time-odd components (currents) of the nuclear mean-field

It the distinction between scalar and vector self-energies leads to a natural saturation mechanism for nuclear matter

In a tural inclusion of the spin degree of freedom -> spin-orbit potential with empirical strength

Basic implementation: self-consistent mean-field method

 produces energy surfaces as functions of intrinsic deformation parameters

- includes static correlations: deformations and pairing
- does not include collective correlations originating from symmetry restoration and quantum fluctuations around mean-field minima

Beyond mean-field correlations: Collective Hamiltonian

Prog. Part. Nucl. Phys. 66, 519 (2011). Phys. Rev. C 79, 034303 (2009).

... nuclear excitations determined by quadrupole vibrational and rotational degrees of freedom

$$egin{split} H_{
m coll} &= \mathcal{T}_{
m vib}(eta,\gamma) + \mathcal{T}_{
m rot}(eta,\gamma,\Omega) + \mathcal{V}_{
m coll}(eta,\gamma) \ \mathcal{T}_{
m vib} &= rac{1}{2} B_{etaeta}\dot{eta}^2 + eta B_{eta\gamma}\dot{eta}\dot{\gamma} + rac{1}{2}eta^2 B_{\gamma\gamma}\dot{\gamma}^2 \ \mathcal{T}_{
m rot} &= rac{1}{2}\sum_{k=1}^3 \mathcal{I}_k \omega_k^2 \end{split}$$

The entire dynamics of the collective Hamiltonian is governed by the seven functions of the intrinsic deformations β and γ : the collective potential, the three mass parameters: $B_{\beta\beta}$, $B_{\beta\gamma}$, $B_{\gamma\gamma}$, and the three moments of inertia I_k .

... collective eigenfunction:
$$\Psi^{IM}_{\alpha}(\beta,\gamma,\Omega) = \sum_{K\in\Delta I} \psi^{I}_{\alpha K}(\beta,\gamma) \Phi^{I}_{MK}(\Omega)$$

✓ the full model space of occupied states can be used; no distinction between core and valence nucleons. no need for

valence nucleons, **no need for** effective charges!

✓ an intuitive interpretation of mean-field results in terms of *intrinsic shapes* and *single-particle states*

Prog. Part. Nucl. Phys. 66, 519 (2011).

Coexisting shapes in N=28 isotones

J. Phys. G: Nucl. Part. Phys. 43 (2016) 024005

Coexisting shapes in N=28 isotones

J. Phys. G: Nucl. Part. Phys. 43 (2016) 024005

Probability distributions in the β-y plane

46

0.4

 3_{1}^{+}

0.6

	K = 0	K = 2	Q_{spec}
2^{+}_{1}	89%	11%	-10.8
2^{+}_{2}	21%	79%	8.2
2^{+}_{3}	78%	22%	-7.3

0.4

 $\beta^{0.6}$

0.4 0.6 в

Shape evolution and triaxiality in germanium isotopes

Phys. Rev. C 89, 044325 (2014).

Quadrupole collective Hamiltonian based on the functional DD-PCI

The level of K-mixing is reflected in the staggering in energy between odd- and even-spin states in the y band:

$$S(J) = \frac{E[J_{\gamma}^{+}] - 2E[(J-1)_{\gamma}^{+}] + E[(J-2)_{\gamma}^{+}]}{E[2_{1}^{+}]}$$

Deformed γ -soft potential \Rightarrow S(J) oscillates between negative values for even-spin states and positive values for odd-spin states.

 γ -rigid triaxial potential \Rightarrow S(J) oscillates between positive values for even-spin states and negative values for odd-spin states.

The mean-field potential of ⁷⁶Ge is γ soft. The inclusion of collective correlations (symmetry restoration and quantum fluctuations) drives the nucleus toward triaxiality, but they are not strong enough to stabilize a $\gamma \approx 30^{\circ}$ triaxial shape.

PES (β-γ plane) in N=90 rareearth nuclei calculated with the DD-PC1 EDF. J. Phys. G: Nucl. Part. Phys. 43 (2016) 024005

J. Phys. G: Nucl. Part. Phys. 43 (2016) 024005

Solid black lines: B(E2) values in Weisskopf units. Dashed red lines: E0 transitions with the corresponding ϱ^2 (E0) x 10³ values

J. Phys. G: Nucl. Part. Phys. 43 (2016) 024005

Solid black lines: B(E2) values in Weisskopf units. Dashed red lines: E0 transitions with the corresponding ϱ^2 (E0) x 10³ values

Lowest 0^+ excitations in N=90 rare-earth nuclei

J. Phys. G: Nucl. Part. Phys. 43 (2016) 024005

Solid black lines: B(E2) values in Weisskopf units. Dashed red lines: E0 transitions with the corresponding ϱ^2 (E0) x 10³ values

Probability distributions in the β - γ plane for the lowest collective 0⁺ states of the ¹⁵²Sm isotope.

J. Phys. G: Nucl. Part. Phys. 43 (2016) 024005 50 0.5 40 E=0.87 MeV 0.4 $\chi (deg)$ β 0.3 20 0.2 10 0.1 0.1 0.2 0.3 0.4 0.5 0.6 0.6 50 0.5 40 E=1.81 MeV 0.4 γ (deg) eta0.3 20 0.2 10 0.1

0.2

0.1

0.3

 β

0.4

0.5

0.6

J. Phys. G: Nucl. Part. Phys. 43 (2016) 024005

Probability distributions in the β - γ plane for the band-head of the K=2 γ -band of the ¹⁵²Sm isotope.

...quadrupole-octupole collective Hamiltonian:

$$\begin{split} H_{coll} &= -\frac{\hbar^2}{2\sqrt{w\mathcal{I}}} \left[\frac{\partial}{\partial\beta_2} \sqrt{\frac{\mathcal{I}}{w}} B_{33} \frac{\partial}{\partial\beta_2} - \frac{\partial}{\partial\beta_2} \sqrt{\frac{\mathcal{I}}{w}} B_{23} \frac{\partial}{\partial\beta_3} - \frac{\partial}{\partial\beta_3} \sqrt{\frac{\mathcal{I}}{w}} B_{23} \frac{\partial}{\partial\beta_2} + \frac{\partial}{\partial\beta_3} \sqrt{\frac{\mathcal{I}}{w}} B_{22} \frac{\partial}{\partial\beta_3} \right] \\ &+ \frac{\hat{J}^2}{2\mathcal{I}} + V(\beta_2, \beta_3) \end{split}$$

J. Phys. G: Nucl. Part. Phys. 43 (2016) 024005

... systematics of energy spectra of the positive-parity ground- state band $(K^{\pi} = 0^+)$ and the lowest negative-parity $(K^{\pi} = 0^-)$ sequences in ^{224–232}Th.

J. Phys. G: Nucl. Part. Phys. 43 (2016) 024005

J. Phys. G: Nucl. Part. Phys. 43 (2016) 024005

Some other recent applications...

 Ievel of accuracy (rms deviation of experimental masses) of covariant EDFs is still below the state-of-the-art non-relativistic HFB mass models: Should additional terms be included in the EDF? (price to pay: increased model complexity)

J. Phys. G. 42, 034008 (2015)

✓ quantification of theoretical uncertainties within the EDF framework

Phys. Rev. C 95, 054304 (2017)
 Phys. Rev. C 94, 024333 (2016)
 Is it possible to systematically reduce the number of parameters defining
 the EDF? → manifold boundary approximation method

Extrapolation to superheavy elements (energy gaps; sparation energies; Q_{α} -values; K-isomers...)

Phys. Rev. C 91, 034324 (2015) Phys. Rev. C 89, 024312 (2014)

Description of fission dynamics (fission barriers, paths and lifetimes; induced fission dynamics)
Phys. Rev. C 96, 024319 (20)

Phys. Rev. C 96, 024319 (2017) Phys. Rev. C 93, 044315 (2016) Phys. Rev. C 89, 064315 (2015)

Summary

NEDFs provide an economic, global and accurate microscopic approach to nuclear structure that can be extended from relatively light systems to superheavy nuclei, and from the valley of β -stability to the particle drip-lines.

NEDF-based structure models that take into account collective correlations \rightarrow microscopic description of low-energy observables: excitation spectra, transition rates, changes in masses, isotope and isomer shifts, related to shell evolution with nuclear deformation, angular momentum, and number of nucleons.

Collaborators

✓ UniZg: Dario Vretenar, Kosuke Nomura (University of Tsukuba), Jie Zhao (China Academy of Engineering Physics, Chengdu), Vaia Prassa (Thessaloniki)

✓ PKU, CAS, Southwest University: Jie Mong, Shan-Gui Zhou, Bing-Nan Lu, Zhipan Li, Jiangming Yao