Shape coexistence in the ⁶⁸Ni region

global survey of measurements in this mass region: energy levels, electromagnetic moments (B(E..), B(M..), g factors, Qs), masses, radii, delta_r², reaction cross sections, and of course E0 transition strengths

> S.N. Liddick Oct. 24, 2017

States in neutron-deficient Hg isotopes

2

Proton Intruder systematics near ⁶⁸Ni

National Science Foundation Michigan State University

Cu energy systematics

- Selected levels in Cu isotopes.
- Multiple characteristics are present.

Cu

g-factor and magnetic moments across the Cu isotopic chain.

National Science Foundation Michigan State University

Vingerhoets et al., PRC 82, 064311 (2010)

Cu charge radii

- Weak indication for N = 40 sub shell closure
- Interesting next step would be Ni isotopes.

National Science Foundation Michigan State University M.L. Bissell et al., PRC 93, 064318 (2016)

Cu energy systematics

• Multiple 7/2- states present in odd-Cu isotopes

National Science Foundation Michigan State University

C.J. Chiara *et al.*, PRC **85**, 024309 (2012)

Cu energy systematics

 One set of positive parity 9/2+ states carry significant strength in (³He,d) reactions.

National Science Foundation Michigan State University R.M. Britton and D.L. Watson, NPA **272**, 91 (1976) C.J. Chiara *et al.*, PRC **85**, 024309 (2012)

Potential Energy Surfaces along the Ni elemental chain

National Science Foundation Michigan State University

Y. Tsunoda et al., Phys. Rev. C 89, 031301 (2014).

Expected Energy Systematics in the Ni isotopes

National Science Foundation Michigan State University

Y. Tsunoda et al., Phys. Rev. C 89, 031301 (2014).

Expected Branching ratios and lifetimes in the Ni isotopes

National Science Foundation Michigan State University

S. Leoni et al., PRL **118**, 162502 (2017) B.P. Crider et al., PLB **764**, 108 (2016)

Level Schemes for ^{66,68,70}Ni isotopes

National Science Foundation Michigan State University

S. Leoni et al., PRL **118**, 162502 (2017) B.P. Crider et al., PLB **764**, 108 (2016)

(t,p) reactions to Ni isotopes

National Science Foundation Michigan State University Elseviers J 2014 PhD Thesis KU Leuven

and of course E0 transition strengths

National Science Foundation Michigan State University

S. Suchyta *et al.*, PRC **89**, 021301 (2014) E.L Church and J. Weneser PR **103**, 1035 (1956)

Co isotopes

- Excitations across Z = 28 in Co isotopes.
- Odd-mass nuclei as probes.

National Science Foundation Michigan State University

- D. Pauwels *et al.*, PRC **78**, 041307 (2008).
 D. Pauwels *et al.*, PRC **79** 044309 (2009).
- F. Recchia *et al.*, PRC **85**, 064305 (2003).

Shape Coexistence and electric monopole transitions in atomic nuclei– Oct. 2014

S_{1/2}

Co isotopes: high-spin energy systematics

F. Recchia et al., PRC 85, 064305 (2012).

National Science Foundation Michigan State University

Co isotopes: high-spin B(E2)

2500

2000

1500

1000

500

· □· Ni - E(2⁺)

- Co - E(9/2)

Energy (keV)

- Ground state 7/2⁻ spin and ulletparity. Assigned as a hole in proton $f_{7/2}$.
- $9/2^{-}$ and $11/2^{-}$ excitation ۲ attributed to coupling with 2⁺ in adjacent Ni isotopes.

National Science Foundation Michigan State University

- F. Recchia et al., PRC 85, 064305 (2012).
- V. Modamio et al., PRC 88, 044326 (2013)

A. Dijon et al., PRC 83, 064321 (2011)

Shape Coexistence and electric monopole transitions in atomic nuclei- Oct. 2014 17

36

38

40

42

⁶⁷Co: low-spin ¹/₂-

 Excited 1/2- state follows systematics of 9/2⁻ up to N = 38

National Science Foundation Michigan State University

- D. Pauwels et al., PRC 78, 041307 (2008).
- D. Pauwels *et al.*, PRC **79** 044309 (2009). F. Recchia *et al.*, PRC **85**, 064305 (2012).

⁶⁹Co – Multiple beta-decaying states present

National Science Foundation Michigan State University SNL et al., PRC 92, 024319 (2015)

⁷⁰Co – an example of what is next

National Science Foundation Michigan State University A.I. Morales et al., PLB 765, 328 (2017).

Mass surface

- Mass surface for Z = 21 29 around N = 40.
- Errors are still large.
- Need to take proper account of isomeric states in region.
- Multiple beta-decaying isomers
 - ^{67,68,69,70}Со

A. Estrade et al., PRL 107, 172503 (2011)

Summary

- Need to search for remaining states in nuclei with neutron numbers beyond N = 40.
- Need to push beyond energy systematics in lighter-Z nuclei.
- Mass measurements / laser spectroscopy are needed in Co isotopes.
- Branching ratio and lifetime measurements are important.
 - Branches are small
- What is necessary to connect regions?

