

THE AUSTRALIAN NATIONAL UNIVERSITY

What we can learn from EO transitions and how?

T. Kibèdi (ANU)

Outline

> Emission of EO transitions
$>$ New tabulation of $\Omega_{C E}(E O)$
> e- γ angular correlations of EO + M1+E2 transitions
$>$ EO transitions and the evolution of shape co-existence
W W-Os-Pt-Hg (Z=82, N=126)
$\square \mathrm{Fe}(\mathrm{Z}=\mathrm{N}=28)$
$\square 12 C(Z=N=8)$
$>$ Monopole transitions in atomic nuclei - new review

E0 transitions - 75 years on

The Absolute Intensities and Internal Conversion Coefficients of the γ-Rays of Radium B and Radium C.

By C. D. Ellis, F.R.S., Fellow of Trinity College, Cambridge, and G. H. Aston, M.A., B.Sc., Trinity Hall, Cambridge.
Proc. Roy. Soc. (London) 129 (1931) 180-207
Highly converted K, L1, M1 lines corresponding to 1.426 MeV transition

$$
\begin{gathered}
1.4155 \mathrm{MeV} \mathrm{E} 0 \text { in }{ }^{214} \mathrm{Po} \\
\mathrm{~T}_{1 / 2}=99(3) \mathrm{ps} ; \rho^{2}=0.0013(2)
\end{gathered}
$$

6.05 MeV EO pairs in ${ }^{16} \mathrm{O}$

Fowler \& Lauritsen, Phys. Rev. 56 (1939) 840
6.05 MeV EO $\left({ }^{16}\right.$ O) E1+M1 double photon Gorodetzky et al., Phys. Rev. Lett. 7 (1961) 170

CONSTITUTION OF

OXFORD
AT THE CLARENDON PRESS 1931

1931:
 $0 \rightarrow 0$ transition: quantum transition forbidden

Formation of EO transitions

$>$ "Normal conversion" ($\mathrm{L}>0$):

- Small contribution from inside the nucleus \square Inner part of the atom (K-L-M shells)

> EO conversion electrons:
\square Monopole potential localised inside the nucleus
- Point nucleus approx.: $\mathrm{W}_{\mathrm{EO}} \Rightarrow$ vanishes
- Purely penetration effect

EO transitions

Transition probability

$$
\mathrm{W}_{\mathrm{T}}=\mathbf{W}_{\gamma}+\mathrm{W}_{\mathrm{CE}}+\mathrm{W}_{\pi}
$$

Conversion coefficient

$$
\alpha_{\mathrm{ce}, \pi}=\mathbf{W}_{\mathrm{ce}, \pi} / \mathbf{W}_{\gamma}
$$

CE \& π

$$
\mathbf{W}_{\mathrm{ce}, \pi}=\mathbf{W}_{\gamma} \quad \times \alpha_{\mathrm{ce}, \pi}
$$

EO

$$
\mathrm{W}_{\mathrm{ce}, \pi}=\rho^{2}\left(\mathbf{0}^{+} \rightarrow \mathbf{0}^{+}\right) \times \Omega_{\mathrm{ce}, \pi}(\mathrm{Z}, \mathrm{\kappa})
$$

Monopole strength parameter
$\rho=\frac{\left\langle\mathbf{0}_{f}^{+}\right| \sum e_{j} r_{r}^{2}\left|\mathbf{0}_{\boldsymbol{i}}^{+}\right\rangle}{e \boldsymbol{R}^{2}}=\frac{\left\langle\mathbf{0}_{\boldsymbol{f}}^{+}\right| \boldsymbol{m}(E \mathbf{E})\left|\mathbf{0}_{\boldsymbol{i}}^{+}\right\rangle}{\boldsymbol{e R ^ { 2 }}}$
Reduced transition probability $B(E O)=e^{2} R^{4} \rho^{2}$

EO transitions

Transition probability $\mathbf{W}_{\mathrm{T}}=\mathrm{W}_{\gamma}+\mathrm{W}_{\mathrm{CE}}+\mathrm{W}_{\pi}$

Conversion Coefficient

$$
\alpha_{\mathrm{ce}, \pi}=\mathbf{W}_{\mathrm{ce}, \pi} / \mathbf{W}_{\gamma}
$$

CE \& π

$$
\mathbf{W}_{\mathrm{ce}, \pi}=\mathbf{W}_{\gamma} \quad \times \alpha_{\mathrm{ce}, \pi}
$$

EO

$$
\mathbf{W}_{\mathrm{ce}, \pi}=\rho^{2}\left(\mathbf{O}^{+} \rightarrow \mathbf{0}^{+}\right) \times \Omega_{\mathrm{ce}, \pi}(\mathrm{Z}, \mathrm{~K})
$$

Separation is less complete! nuclear atomic

Piet Van Isacker (GANIL) talk on Monday

$$
\rho=\sum_{k \in \text { proons }}^{Z}\left\langle\mathrm{f}\left(\frac{r_{k}}{R}\right)^{2}-\sigma\left(\frac{r_{k}}{R}\right)^{4}+\cdots\right) \quad\left(R=r_{0} A^{1 / 3}, r_{0}=1.2 \mathrm{fm}\right)
$$

Transition probability

$$
W_{T}=W_{\gamma}+W_{C E}+W_{\pi}
$$

Conversion Coefficient

$$
\alpha_{\mathrm{ce}, \pi}=\mathbf{W}_{\mathrm{ce}, \pi} / \mathbf{W}_{\gamma}
$$

CE \& π

$$
\mathbf{W}_{\mathrm{ce}, \pi}=\rho^{2}\left(\mathbf{0}^{+} \rightarrow \mathbf{0}^{+}\right) \times \Omega_{\mathrm{ce}, \pi}(\mathrm{Z}, \mathrm{k})
$$

nuclear atomic
$\mathrm{L} \neq 0$: W_{γ} and $\mathrm{W}_{\text {ce, }, ~}$
$L=0$ i.e. EO: only $W_{\text {ce }, \pi}$!
Need to measure electrons and/or electron-positron pairs
$>\Omega_{\kappa, \pi}(\mathrm{E} 0) \sim I_{\kappa, \pi}(\mathrm{E} 0)$
> Only ratios of $\Omega_{\mathrm{K}, \pi}(\mathrm{E} 0)$ could be measured

- K/ π
- K/L, K/LM, K/MN
- L/M

New $\Omega_{C E}$ calculations
Takahe (Jackson Dowie, ANU)

- Modified version of the CATAR code (Puli \& Raff, 1975)
> Relativistic Hartree-Fock-Slater atomic model
> Sliv`s surface current model
- Directional \& polarization particle parameters
> Penetration parameters
> $\Omega_{C E}$ electronic factors
$>Z$ up to 126
$\mathrm{S}_{1 / 2}, \mathrm{P}_{1 / 2}$ and $\mathrm{P}_{3 / 2}$ shells only

$\Omega_{C E}(\mathrm{EO}), \mathrm{Mo}(\mathrm{Z}=42) 1000 \mathrm{keV}$			
	Takahe (2017)	Bell et al. (1972)	 seltrer (1968)
K	$1.454 \mathrm{E}+9$	$1.459 \mathrm{E}+9$	$1.438 \mathrm{E}+9$
L1	$1.629 \mathrm{E}+8$	$1.574 \mathrm{E}+8$	$1.611 \mathrm{E}+8$
L2	$1.358 \mathrm{E}+6$	$1.152 \mathrm{E}+6$	$1.346 \mathrm{E}+6$
M1	$2.913 \mathrm{E}+7$		
M2	$2.566 \mathrm{E}+5$		
N1	$4.983 \mathrm{E}+6$		
N2	$3.788 \mathrm{E}+4$		
O1	$3.807 \mathrm{E}+5$		

E0 Workshop, CEA 2017

$\Omega(E 0)$ - how good are they?

E0 vs E2 transitions

> Z and atomic shell dependent
> Increases with energy
> K/L weak dependence on Z (4 to 9)
> Pair conversion dominant at low Z

E0+M1+E2 transitions

Church, Rose and Weneser (1958)
$>$ EO can proceed in competition of E2 \& M1
> e- γ angular correlations: a sensitive test
> First observation: 334.0-356.5 cascade in ${ }^{196} \mathrm{Pt}$ (Gerholm \& Pettersson 1958)

$$
\begin{aligned}
& W(\gamma \gamma, M 1+E 2)=P_{0}+ \\
& \qquad \frac{1}{1+\delta^{2}}\left[A_{2}^{e}+2 \delta A_{2}+\delta^{2} A_{2}^{m}\right] P_{2}+\frac{1}{1+\delta^{2}}\left[A_{4}^{e}\right] P_{4}
\end{aligned}
$$

$$
W(e \gamma, M 1+E 2)=P_{0}+
$$

$$
\frac{1}{1+p^{2}}\left[b_{2}^{e} A_{2}^{e}+2 p b_{2} A_{2}+p^{2} b_{2}^{m} A_{2}^{m}\right] P_{2}+\frac{1}{1+p^{2}}\left[b_{4}^{e} A_{4}^{e}\right] P_{4}
$$

$$
W(e \gamma, E 0+M 1+E 2)=\frac{1+p^{2}}{1+p^{2}+q^{2}} W(e \gamma, M 1+E 2)+
$$

$$
\frac{q^{2}}{1+p^{2}+q^{2}} P_{0}+\frac{q}{1+p^{2}+q^{2}} b_{o} P_{2}
$$

Multi-detector electron- γ arrays
Need to evaluate numerically the e-e/e- γ correlation!

Mixing ratios:

$$
\begin{aligned}
& \delta^{2}=\frac{N_{\gamma}^{E 2}}{N_{\gamma}^{M 1}} \\
& p^{2}=\frac{\alpha_{K}^{M 1}}{\alpha_{K}^{E 2}} \delta^{2}
\end{aligned}
$$

$$
q^{2}=\frac{N_{K}^{E 0}}{N_{K}^{E 2}}
$$

E0+M1+E2 transitions

Mixed EO+M1+E2 conversion coefficients

$$
\begin{aligned}
\alpha_{K}^{e x p}(E 0+M 1+E 2)= & \frac{1}{1+\delta^{2}}\left[\delta^{2}\left[1+q^{2}\right] \alpha_{K}(E 2)+\alpha_{K}(M 1)\right] \\
& \text { Mixing ratios: } \quad \delta^{2}=\frac{N_{\gamma}^{E 2}}{N_{\gamma}^{M 1}} \quad \boldsymbol{q}^{2}=\frac{N_{K}^{E 0}}{N_{K}^{E 2}}
\end{aligned}
$$

Reduced EO matrix element

$$
\rho^{2}(E 0)=\frac{1}{\tau(E 0) \times \Omega(E 0)}=\boldsymbol{q}^{2} \frac{\alpha_{K}(E 2) W_{\gamma}(E 2)}{\Omega(E 0)}
$$

$B(E O) / B(E 2)$ ratio (Rasmussen 1960)

$$
X(E 0 / \mathrm{E} 2)=\frac{\rho^{2}(e 0) e^{2} R_{o}^{4}}{B(E 2)}=\frac{2.54 \times 10^{9} \times A^{4 / 3} E_{\gamma}^{5} q^{2} \alpha_{K}(E 2)}{\Omega_{K}(E 0)}
$$

© ANU
 Evolution of shape co-existence

Evolution of shape co-existence W-Os-P†

From radioactive decay: $\gamma, \gamma-9$, CE

174Pt: Dracoulis, et al., PRC 44, R1246 (1991)
176Pt: Dracoulis, et al., J. Phys. G 12, L97 (1986)
${ }^{172}$ Os: Davidson, et al., Nucl. Phys. A568, 90 (1994)
${ }^{174-182}$ Os: Kibedi, et al., Nucl. Phys. A567, 183 (1994)
172-178W: Kibedi, et al., Nucl. Phys. A 688669 (2001)

Evolution of shape co-existence W-Os-Pt

172-178W: Kibedi, et al.,
Nucl. Phys. A 688669 (2001)
$>0+-0+$ EO transitions (4)
$>\mathrm{J}+-\mathrm{J}+(\mathrm{J}=2,4,6) \mathrm{EO}+\mathrm{M} 1+\mathrm{E} 2$ transitions (19)

No T1/2 - only $X=B(E O) / B(E 2)$

Table 6
E0 component of $J_{\mathrm{i}}^{+} \rightarrow J_{\mathrm{f}}^{+}$transitions in $A=170$ to 178 tungsten isotopes (only for K-conversion electron lines have been considered)

$J_{\mathrm{i}}^{+} \rightarrow J_{\mathrm{f}}^{+}$	A	$\begin{gathered} E_{\gamma} \\ {[\mathrm{keV}]} \end{gathered}$	$\begin{gathered} \alpha_{K}(\exp) \\ \times 100 \end{gathered}$	$\begin{gathered} \alpha_{K}(\mathrm{E} 2) \\ \quad \times 100 \end{gathered}$	$\begin{gathered} \alpha_{K}(\mathrm{M} 1) \\ \times 100 \end{gathered}$	$\delta(\mathrm{E} 2 / \mathrm{M} 1)$	$q^{2}(\mathrm{E} 0 / \mathrm{E} 2)$	$X(\mathrm{E} 0 / \mathrm{E} 2)$
$0_{\beta}^{+} \rightarrow 0_{g}^{+}$	172	761.6	E0				3.6(11)	0.060(18)
	174	792.2	E0				2.1(4)	0.041(2)
	176	844.0	E0				2.5(6)	0.058(15)
$\begin{aligned} 0_{3}^{+} & \rightarrow 0_{g}^{+} \\ 2_{\beta}^{+} & \rightarrow 2_{g}^{+} \end{aligned}$	178	1294.4	E0				26(2)	1.73(12)
	172	743.7	4.52(20)	0.677	1.78	$-10.3{ }_{-7.0}^{+3.0}$	5.7(3)	0.153(8)
	174	777.0	8.4(9)	0.618	16.0	$-4.5{ }_{-1.3}^{+0.9}$	13.1(15)	0.39(5)
	176	822.2	5.6(4)	0.551	1.38	$-2.7_{-0.5}^{+0.4}$	$10.2_{-1.1}^{+1.3}$	$0.346_{-0.038}^{+0.042}$
	178	976.5	0.76(5)	0.392	0.902	$-12.3_{-6.4}^{+2.8}$	$0.94{ }_{-0.13}^{+0.13}$	$0.045_{-0.006}^{+0.006}$
$2_{\gamma}^{+} \rightarrow 2_{g}^{+}$	172	807.1	1.14(15)	0.572	1.45	$+7.6_{-7.4}^{+2.5}$	7.4(19)	0.17(4)
	176	932.4	0.83(16)	0.429	1.01	$\begin{array}{r} -1.4 \\ +3.0_{-0.7}^{+1.0} \end{array}$	$0.89_{-0.47}^{+0.42}$	$0.039_{-0.018}^{+0.018}$
	178	1004.6	0.90(8)	0.370	0.840	$>+2$	$1.5_{-0.3}^{+0.3}$	$0.076_{-0.013}^{+0.014}$
$\begin{aligned} 2_{4}^{+} & \rightarrow 2_{g}^{+} \\ 4_{\beta}^{+} & \rightarrow 4_{g}^{+} \end{aligned}$	178	1311.5	1.49(13)	0.223	0.436	$1>\left.2\right\|^{\text {a }}$	$6.9{ }_{-1.7}^{+0.7}$	$0.61_{-0.15}^{+0.07}$
	170	739.8	4.6(11)	0.684	1.81	$-3.3+1.6$	6.1(18)	0.16(5)
	172	715.0	7.0(7)	0.735	1.97	$-4.1_{-1.9}^{+3.6}$	8.9(11)	0.221(26)
	174	739.4	5.8(9)	0.685	1.81	-4.2 ${ }_{-1.1}^{+0.7}$	7.8(14)	0.21(4)
	176	768.7	6.6(7)	0.632	1.64	$-2.2_{-1.2}^{+0.6}$	$11.1_{-2.2}^{+3.0}$	$0.33_{-0.06}^{+0.09}$
	178	932.4	1.76(11)	0.429	1.01	$-6.6_{-3.0}^{+1.5}$	$3.15{ }_{-0.28}^{+0.30}$	$0.140_{-0.013}^{+0.013}$
$4_{\gamma}^{+} \rightarrow 4_{g}^{+}$	172	865.1	1.4(4)	0.497	1.22	$+4.2_{-2.6}^{+1.1}$	$1.8(9)$	0.007(3)
	178	1037.4	0.51(5)	0.497	1.22	$-1.9_{-1.2}^{+0.7}$	0.7(5)	0.014(18)
$\begin{aligned} 4_{4}^{+} & \rightarrow 4_{g}^{+} \\ 6_{\beta}^{+} & \rightarrow 6_{g}^{+} \end{aligned}$	178	1255.1	1.01(8)	0.242	0.485	$1>\left.2\right\|^{\text {a }}$	$3.7{ }_{-0.9}^{+0.4}$	$0.30_{-0.07}^{+0.03}$
	170	702.8	6.7(15)	0.762	2.06	$-1.7_{-2.5}^{+0.8}$	10(3)	0.23(7)
	172	694.1	6.4(14)	0.782	2.12	$-5.0_{-}^{+3.2}$	10(3)	0.23(7)
	176	696.6	4.9(9)	0.776	2.10	$1>\left.2\right\|^{\text {a }}$	$6.2{ }_{-2.1}^{+1.5}$	$0.15{ }_{-0.05}^{+0.04}$

Evolution of shape co-existence W-Os-Pt

Level systematics

Evolution of shape co-existence W-Os-Pt

Kibedi, et al., Nucl. Phys. A 688669 (2001)

4-band mixing calculations
$>\mathrm{K}=0$ g.s. unperturbed ground-state rotation
$>\mathrm{K}=0$ "deformed" band
$>\mathrm{K}=2 \mathrm{~g}$-band
> K=0 "s"-band, unperturbed rotation-aligned band, back banding observed in (HI,xn)

P Parameters to fit excitation energies:
] Moment of inertia (VMI)
U Unperturbed band-head energies
Spin-independent interactions
\square aligned angular momentum of the s-band

Evolution of shape co-existence W-Os-P†

Kibedi, et al., Nucl. Phys. A 688669 (2001)
> Interactions:

- 150 keV ($\mathrm{g}-\mathrm{d}$)
- 30 keV ($\mathrm{g}-\gamma$)
- $5 \mathrm{keV}(\mathrm{d}-\gamma)$

4-band mixing calculations rotation
> K=0 "deformed" band
$>\mathrm{K}=2 \mathrm{~g}$-band
> K=0 "s"-band, unperturbed rotation-aligned band, back

$$
5 \operatorname{kev}(d-\gamma)
$$

$>\mathrm{K}=0$ g.s. unperturbed ground-state banding observed in (HI,xn)

Evolution of shape co-existence W-Os-P†

> Smooth evolution across $\mathrm{Z}=80$ to 74 and $\mathrm{N}=98$ to 106
> Differences in deformation
> Unperturbed γ and d bands shifted down in energy as Z >> 82

Evolution of shape co-existence W-Os-Pt

Evolution of shape co-existence x (EO/E2) systematics

$\rho^{2}(E O)$
$0_{2}-0_{1}$
$B(E 0) / B(E 2)$
$\mathrm{O}_{2}-\mathrm{O}_{1}$

B(EO)/B(E2)
$2_{2}-2_{1}$
B(E0)/B(E2)
$2_{\gamma}-2_{1}$

15 data

42 data

39 data

24 data

Shape co-existence around $\mathrm{N}=\mathrm{Z}=28$

Heyde \& Wood, Rev. Mod. Phys. 83 (2011) 1467
$\mathrm{N}=\mathrm{Z}=28$ double magic
Shape co-existence "could emerge"
\square Excited 0^{+}around $\mathrm{N}=\mathrm{Z}=28$: from mp -mh excitations from the $1 f_{7 / 2}$ to the $1 f_{5 / 2}, 2 p_{1 / 2}$ and $2 p_{3 / 2}$ orbits

E0 transitions: not very well known

A Aim: Characterise E0 transitions in $\mathrm{Z}=26, \mathrm{~N}=28,30,32$

- E0`s in Ni isotopes talk by Adam Garnsworthy

$\square\left(p, p^{\prime}\right)$ reaction, $E_{p}=6.7-7 \mathrm{MeV}$ DC beam
- $1-2 \mathrm{mg} / \mathrm{cm}^{2} 54,56,58 \mathrm{Fe}$ targets
\square Singles gamma, conversion electron and pair conversion (Super-e)
$\varepsilon_{\mathrm{CE}}=0.1-0.5 \%$
$\varepsilon_{\mathrm{IPF}}=0.01 \%$

E $[\mathrm{keV]}$	CEK/IPF $(\mathbf{Z}=26)$
1500	1.6
2500	0.066
4000	0.009

Extended level schemes

Extended level schemes

Angular correlation of $0-2-0$ cascades

$$
\begin{gathered}
\mathrm{W}_{\mathrm{yY}}(\theta)=\mathrm{N}\left(1+\mathrm{a}_{2} \cos ^{2}(\theta)+\mathrm{a}_{4} \cos ^{4}(\theta)\right) \\
0^{+} \rightarrow 2^{+} \rightarrow 0^{+} \\
\mathrm{a}_{2}=-3, \mathrm{a}_{4}=4
\end{gathered}
$$

	a_{2}	a_{4}
${ }^{54} \mathrm{Fe}$	$-2.8(6)$	$3.9(7)$
${ }^{56} \mathrm{Fe}$	$-2.6(9)$	$3.7(10)$
${ }^{58} \mathrm{Fe}$	$-2.8(8)$	$3.8(9)$

 EO transitions - 56 Fe

EO transitions in $54,56,58 \mathrm{Fe}$

Experimental monopole strength

$$
\rho^{2}(E 0)=\frac{1}{\Omega(E 0) \times \tau(E 0)}
$$

$$
\varrho^{2}(E 0)=\frac{Z^{2}}{R_{0}^{4}} a^{2}\left(1-a^{2}\right)\left[\Delta\left\langle r^{2}\right\rangle\right]^{2}
$$

		$10^{3} \mathrm{r}^{2}(\mathrm{E} 0)$
54 Fe	$2561\left(0_{2}-\mathrm{O}_{1}\right)$	<80
	$4291\left(0_{3}-\mathrm{O}_{1}\right)$	$92(+22-23)$
56 Fe	$2942\left(0_{2}-\mathrm{O}_{1}\right)$	$3.2(11)$
58 Fe	$2258\left(0_{2}-\mathrm{O}_{1}\right)$	<12

${ }^{54} \mathrm{Fe} 1758\left(2_{2}-2_{1}\right)$ $\alpha_{k}=4.9 E-5(3) M 1+E 2$ Small/negligible EO

Summary

Z	20	22	24	26	28	30	32	34	36
Ge	32								
Zn	30							3.8_{4}	$0.19-54$
Ni	28					0.0063_{10}	$1-27$		
Fe	26				<80	3.2_{11}	<12		
Cr	24								
Ti	22								
Ca	20	25.6_{7}	140_{12}	140_{50}	14.5_{9}				

\square New results in $54,56,58 \mathrm{Fe}$: extended level schemes, new $\mathrm{T} 1 / 2, \delta(E 2 / \mathrm{M} 1)$, EO transitions, ρ^{2} (EO)
\square Future: look for EOs between $\mathrm{J}>0$ states to characterise bands built on excited 0^{+}states
\square Interpretation within the bandmixing approach
$\square E O s$ in $\mathrm{Cr}(Z=24)$ and $\mathrm{Ti}(Z=22)$ to explore $\mathrm{N}=28$ isotones

The Hoyle state

Heyde \& Wood, Rev. Mod. Phys. 83 (2011) 1467
Hoyle state: not a typical excited 0^{+}at south-west from the double magic ${ }^{16} \mathrm{O}$

The Hoyle state

D.J. Marín-Lámbarri, et al., PRL 113 (2014) 012502

- $\Gamma\left(0_{2}\right)=9.3(9) \mathrm{eV} ; \mathrm{T}_{1 / 2}\left(0_{2}\right)=3.5(3) \times 10^{-17} \mathrm{~s}$
["Extended object" (Brink 1966) RMS=2.89(4) fm = 1.2* RMS(g.s.) PRC 80 (2009) 054603
- $\rho^{2}(E 0)=500(81)$ ADNDT 89 (2005) 77
- 2^{+}at 9.8 MeV

Nucl. Phys. A738, (2004) 268; Phys. Rev. C 84 (2011) 054308; 80 (2009) 041303(R); 84 (2011) 027304; 86 (2012) 034320; PRL 113 (2014) 012502

- 4^{+}at 13.3 MeV

Phys. Rev. C83 (2011) 034314
$\square 0_{3}{ }^{+}$at $10.3 \mathrm{MeV} ; \Gamma\left(0_{3}\right)=2.7 \mathrm{MeV}$ Nucl. Phys. A738, (2004) 268
\square Microscopic α-cluster model /exp
$\mathrm{E}\left(\mathrm{O}_{2}\right)-\mathrm{E}_{3 \alpha}=0.23 / 0.38 \mathrm{MeV}$
$\Gamma\left(0_{2}\right)=7.6 / 9.3(9) \mu \mathrm{eV}$
$M(E 0)=6.3 / 5.4(2) \mathrm{fm}^{2}$
Yasuro Funaki, Phys. Rev. C 94 (2016) 024344

The radiative width of the Hoyle state

Unc. \#
[\%] exp

$$
\begin{aligned}
& r_{3 \alpha} \propto\left[\Gamma_{r a d}\right] \exp \left(-\left[Q_{3 \alpha}\right] / k T\right) \\
& \Gamma_{r a d}=\left[\frac{\Gamma_{r a d}}{\Gamma}\right] *\left[\frac{\Gamma}{\Gamma_{-}(E 0)}\right]<\left[\Gamma_{\pi}(E 0)\right]
\end{aligned}
$$

		Unc. [\%]	\# exp
$\Gamma_{\mathrm{rad}} / \Gamma\left(\times 10^{-4}\right)$	$4.19(11)$	8	
$\Gamma_{\pi}(\mathrm{E} 0) / \Gamma\left(\times 10^{-6}\right)$	$6.7(6)$	4	
$\Gamma_{\pi}(\mathrm{E} 0)(\mu \mathrm{eV})$	$62.3(20)$	8	

"traditional approach"
${ }^{12} \mathrm{C}$
$\Gamma_{\text {rad }}=3.9(4) \times 10^{-3} \mathrm{eV}$ EM
branching: 0.042%

The radiative width from $p-\gamma-\gamma$

$$
\begin{aligned}
& r_{3 \alpha} \propto\left[\Gamma_{r a d}\right] \exp \left(-\left[Q_{3 \alpha}\right] / k T\right) \\
& \Gamma_{r a d}=\left[\frac{\Gamma_{r a d}}{\Gamma}\right] \times\left[\frac{\Gamma}{\Gamma_{\pi}(E 0)}\right] \times\left[\Gamma_{\pi}(E 0)\right]
\end{aligned}
$$

$\frac{\text { Events in } 12 \text { days: }}{\square \text { Total: } 6.0 \mathrm{E}+9}$
p-singles $(7.65): 2.72 \mathrm{E}+8$
$\mathrm{p}-\gamma-\gamma(7.65): 260(16)$
$\left[\frac{\Gamma_{\text {rad }}}{\Gamma}\right]=2.76(21) \mathrm{E}-4$

The radiative width from pair conversion measurements

$$
\alpha_{\pi}(\mathrm{E} 2)=8.765 \mathrm{E}-4
$$

The radiative width from pair conversion measurements

Properties of Monopole transitions in atomic nuclei

Properties of Monopole transitions in atomic nuclei

Motivation:
> New data since the last evaluations First pass of ENSDF: $174 \mathrm{j}-\mathrm{j}$ ($\mathrm{j}>0$) transitions
Eg=[41.9:1877] keV
$\mathrm{J}_{\mathrm{i}}=1[8], 2[109], 3[4], 4[32], 5[3], 6[6]$, 8[2], 9[1], 10[1], 16[1]

Heyde \& Wood., Rev. Mod. Phys. 83 (2011) 1467
EO strength model independent probe of co-existing structures -spin dependence

With J.L. Wood and A. Garnsworthy

Properties of Monopole transitions in atomic nuclei

With J.L. Wood and A. Garnsworthy
Approach
$>$ Consistent treatment of the data known
\square Combine data on $\mathrm{O}^{+} \rightarrow \mathrm{O}^{+}$and $\mathrm{J}^{+} \rightarrow \mathrm{J}^{+}$ ($J>0$) transitions
Collect and adopt T1/2, EM branching ratios, multipolarities, mixing ratios, experimental conversion coefficients from original references
\square Accept data if: T1/2, ICC and mixing ratio are known
$>$ New conversion coefficients, $\Omega(E 0)$ electronic factors

238U $966.1 \mathrm{keV} 2^{+}$
$T_{1 / 2}=2.4(+17-7) \mathrm{ps}$
$921.2 \mathrm{keV} \mathrm{EO}+\mathrm{M} 1+\mathrm{E} 2$
$\alpha_{k}=0.191(30)$
$\alpha_{k}(M 1)=0.0390$
$\alpha_{k}(E 2)=0.00966$

Collaborators (ANU)
A.E. Stuchbery
M.W. Reed
S.S. Hota
G.J. Lane
A.J. Mitchell
T.G. Tornyi

Collaborators (TRIUMF)
A. Garnsworthy
L.J. Evitts
M. Moukaddam
J. Smallcombe

Collaborators (Georgiatech) J.L. Wood

ANU technical staff
A. Cooper
C. Gudu
J. Heighway
D. Tsifakis
T. Tunningley

ANU Major Equipment Grans 2011 ARC Discovery (2014-2016) DP140102986

Students

T.K. Eriksen (${ }^{12} \mathrm{C}$ pairs, ${ }^{54} \mathrm{Fe}$) B. Alshahrani (${ }^{12} \mathrm{C}$ p γ)
A. Akber
J. Dowie ($\Omega_{C E}$ calculations)
M. Gerathy
B.Q. Lee
M. de Vries
T. Palazzo

