

THE AUSTRALIAN NATIONAL UNIVERSITY

# What we can learn from EO transitions and how?





Tibor Kibèdi, Dep. of Nuclear Physics, Australian National University





#### Outline

- Emission of EO transitions
- > New tabulation of  $\Omega_{CE}(EO)$
- > e- $\gamma$  angular correlations of EO+M1+E2 transitions
- > EO transitions and the evolution of shape co-existence
  - □ W-Os-Pt-Hg (Z=82, N=126)
  - □ Fe (Z=N=28)
  - □ 12C (Z=N=8)
- > Monopole transitions in atomic nuclei new review



## E0 transitions - 75 years on

The Absolute Intensities and Internal Conversion Coefficients of the  $\gamma$ -Rays of Radium B and Radium C.

 By C. D. ELLIS, F.R.S., Fellow of Trinity College, Cambridge, and G. H. ASTON, M.A., B.Sc., Trinity Hall, Cambridge.
 Proc. Roy. Soc. (London) 129 (1931) 180-207



Highly converted K, L1, M1 lines corresponding to 1.426 MeV transition

1.4155 MeV E0 in  ${}^{214}$ Po T<sub>1/2</sub>=99(3) ps;  $\rho^2$ =0.0013(2)

CONSTITUTION OF ATOMIC NUCLEI AND RADIOACTIVITY

> BY G. G A M O W



OXFORD AT THE CLARENDON PRESS 1931

6.05 MeV EO pairs in <sup>16</sup>O Fowler & Lauritsen, Phys. Rev. 56 (1939) 840

 $6.05 \text{ MeV EO} (^{16}\text{O}) \text{ E1+M1 double photon}$ Gorodetzky et al., Phys. Rev. Lett. 7 (1961) 170 1931: 0 → 0 transition: quantum transition forbidden

bor Kibèdi, Dep. of Nuclear Physics, Australian National University



# Formation of EO transitions



Tibor Kibèdi, Dep. of Nuclear Physics, Australian National University



#### **EO transitions**



Transition probability  $W_T = W_\gamma + W_{CE} + W_\pi$ Conversion coefficient  $\alpha_{ce.\pi} = W_{ce.\pi} / W_{v}$ **CE** & π  $W_{ce.\pi} = W_{\gamma}$  $\times \alpha_{\mathrm{ce},\pi}$ EO  $W_{ce.\pi} = \rho^2(0^+ \rightarrow 0^+) \times \Omega_{ce.\pi}(Z,\kappa)$ Monopole strength parameter  $= \frac{\left\langle \mathbf{0}_{f}^{+} \right| \sum e_{j} r_{j}^{2} \left| \mathbf{0}_{i}^{+} \right\rangle}{e^{R^{2}}} = \frac{\left\langle \mathbf{0}_{f}^{+} \left| m(E\mathbf{0}) \right| \mathbf{0}_{i}^{+} \right\rangle}{e^{R^{2}}}$ **Reduced transition probability**  $B(EO) = e^2 R^4 \rho^2$ 

Tibor Kibèdi, Dep. of Nuclear Physics, Australian National University



#### **EO** transitions



$$\rho = \sum_{k \in \text{protons}}^{Z} \left\langle f\left(\frac{r_k}{R}\right)^2 - \sigma\left(\frac{r_k}{R}\right)^4 + \cdots \right| i \right\rangle \quad \left(R = r_0 A^{1/3}, r_0 = 1.2 \text{ fm}\right)$$



#### **EO** transitions



Transition probability  $W_T = W_\gamma + W_{CE} + W_\pi$ **Conversion Coefficient**  $\alpha_{ce,\pi} = W_{ce,\pi} / W_{v}$ CE &  $\pi$  $W_{ce,\pi} = W_{\gamma}$  $lpha_{{\sf ce},\pi}$ EO  $W_{ce,\pi} = \frac{\rho^2(0^+ \rightarrow 0^+)}{\text{nuclear}} \times \frac{\Omega_{ce,\pi}(Z,\kappa)}{\text{atomic}}$ L $\neq$ 0:  $W_{\gamma}$  and  $W_{ce,\pi}$ L=0 i.e. E0: only  $W_{ce.\pi}!$ Need to measure electrons and/or electron-positron pairs



# $\Omega(E0)$ - theory

- $\succ \quad \Omega_{\kappa,\pi}(E0) \sim \mathbf{I}_{\kappa,\pi}(E0)$
- Only ratios of Ω<sub>κ,π</sub>(E0) could be measured
  - Κ/π
  - K/L, K/LM, K/MN
  - L/M
- New  $\Omega_{CE}$  calculations
  - <u>Takahe</u> (Jackson Dowie, ANU)
- Modified version of the CATAR code (Puli & Raff, 1975)
- Relativistic Hartree-Fock-Slater atomic model
- Sliv`s surface current model
- Directional & polarization particle parameters
- Penetration parameters
- $\blacktriangleright \underline{\Omega_{CE}} electronic factors$
- $\succ$  Z up to 126

Tibor Kibèdi, Dep. of Nuclear Physics, Australian National University

 $S_{1/2},\,P_{1/2}$  and  $P_{3/2}$  shells only

| Ω <sub>CE</sub> (E0), Mo (Z=42) 1000 keV |                  |                       |                              |  |  |  |
|------------------------------------------|------------------|-----------------------|------------------------------|--|--|--|
|                                          | Takahe<br>(2017) | Bell et al.<br>(1972) | Hager &<br>Seltzer<br>(1968) |  |  |  |
| K                                        | 1.454E+9         | 1.459E+9              | 1.438E+9                     |  |  |  |
| L1                                       | 1.629E+8         | 1.574E+8              | 1.611E+8                     |  |  |  |
| L2                                       | 1.358E+6         | 1.152E+6              | 1.346E+6                     |  |  |  |
| M1                                       | 2.913E+7         |                       |                              |  |  |  |
| M2                                       | 2.566E+5         |                       |                              |  |  |  |
| N1                                       | 4.983E+6         |                       |                              |  |  |  |
| N2                                       | 3.788E+4         |                       |                              |  |  |  |
| 01                                       | 3.807E+5         |                       |                              |  |  |  |



# $\Omega(EO)$ - how good are they?



Tibor Kibèdi, Dep. of Nuclear Physics, Australian National University









Tibor Kibèdi, Dep. of Nuclear Physics, Australian National University



## EO+M1+E2 transitions

Church, Rose and Weneser (1958)
➢ EO can proceed in competition of E2 & M1
➢ e-γ angular correlations: a sensitive test
➢ First observation: 334.0-356.5 cascade in <sup>196</sup>Pt (Gerholm & Pettersson 1958)

$$W(\gamma\gamma, M1 + E2) = P_0 + \frac{1}{1+\delta^2} [A_2^e + 2\delta A_2 + \delta^2 A_2^m] P_2 + \frac{1}{1+\delta^2} [A_4^e] P_4$$

$$W(e\gamma, M1 + E2) = P_0 + \frac{1}{1+p^2} [b_2^e A_2^e + 2p b_2 A_2 + p^2 b_2^m A_2^m] P_2 + \frac{1}{1+p^2} [b_4^e A_4^e] P_4$$

$$W(e\gamma, E0 + M1 + E2) = \frac{1+p^2}{1+p^2+q^2} W(e\gamma, M1 + E2) +$$

Multi-detector electron- $\gamma$  arrays Need to evaluate numerically the e-e/e- $\gamma$  correlation!

 $\frac{1}{2}P_0 + \frac{4}{1+n^2}$ 

 $b_o P_2$ 

Tibor Kibèdi, Dep. of Nuclear Physics, Australian National University



#### Mixing ratios:









#### EO+M1+E2 transitions

#### Mixed EO+M1+E2 conversion coefficients

$$\alpha_{K}^{exp}(E0 + M1 + E2) = \frac{1}{1 + \delta^{2}} [\delta^{2}[1 + q^{2}]\alpha_{K}(E2) + \alpha_{K}(M1)]$$
  
Mixing ratios:  $\delta^{2} = \frac{N_{\gamma}^{E2}}{N_{\gamma}^{M1}}$   $q^{2} = \frac{N_{K}^{E0}}{N_{K}^{E2}}$ 

Reduced EO matrix element

$$\rho^2(E0) = \frac{1}{\tau(E0) \times \Omega(E0)} = q^2 \frac{\alpha_K(E2)W_{\gamma}(E2)}{\Omega(E0)}$$

B(E0)/B(E2) ratio (Rasmussen 1960)  

$$X(E0/E2) = \frac{\rho^2(e0)e^2R_o^4}{B(E2)} = \frac{2.54 \times 10^9 \times A^{4/3}E_{\gamma}^5 q^2 \alpha_K(E2)}{\Omega_K(E0)}$$



# Evolution of shape co-existence







From radioactive decay:  $\gamma$ ,  $\gamma$ -g, CE

<sup>174</sup>Pt: Dracoulis, et al., PRC 44, R1246 (1991)
<sup>176</sup>Pt: Dracoulis, et al., J. Phys. G 12, L97 (1986)
<sup>172</sup>Os: Davidson, et al., Nucl. Phys. A568, 90 (1994)
<sup>174-182</sup>Os: Kibedi, et al., Nucl. Phys. A567, 183 (1994)
<sup>172-178</sup>W: Kibedi, et al., Nucl. Phys. A 688 669 (2001)



#### <sup>172-178</sup>W: Kibedi, et al.,

Nucl. Phys. A 688 669 (2001)

- > 0+ 0+ E0 transitions (4)
- J+ J+ (J=2,4,6) E0+M1+E2 transitions (19)
- > No T1/2 only X=B(E0)/B(E2)

Table 6

E0 component of  $J_i^+ \rightarrow J_f^+$  transitions in A = 170 to 178 tungsten isotopes (only for *K*-conversion electron lines have been considered)

| $J_{\rm i}^+ \rightarrow J_{\rm f}^+$ | Α   | $E_{\gamma}$<br>[keV] | $\alpha_K(\exp) \times 100$ | $\alpha_K(E2)$<br>×100 | $\alpha_K(M1) \times 100$ | $\delta(\text{E2/M1})$ | $q^{2}(E0/E2)$         | <i>X</i> (E0/E2)              |
|---------------------------------------|-----|-----------------------|-----------------------------|------------------------|---------------------------|------------------------|------------------------|-------------------------------|
| $0^+_\beta \rightarrow 0^+_g$         | 172 | 761.6                 | E0                          |                        |                           |                        | 3.6(11)                | 0.060(18)                     |
| Ρυ                                    | 174 | 792.2                 | E0                          |                        |                           |                        | 2.1(4)                 | 0.041(2)                      |
|                                       | 176 | 844.0                 | E0                          |                        |                           |                        | 2.5(6)                 | 0.058(15)                     |
| $0^+_3 \rightarrow 0^+_g$             | 178 | 1294.4                | E0                          |                        |                           |                        | 26(2)                  | 1.73(12)                      |
| $2^+_\beta \rightarrow 2^+_g$         | 172 | 743.7                 | 4.52(20)                    | 0.677                  | 1.78                      | $-10.3^{+3.0}_{-7.0}$  | 5.7(3)                 | 0.153(8)                      |
| r -                                   | 174 | 777.0                 | 8.4(9)                      | 0.618                  | 16.0                      | $-4.5^{+0.9}_{-1.3}$   | 13.1(15)               | 0.39(5)                       |
|                                       | 176 | 822.2                 | 5.6(4)                      | 0.551                  | 1.38                      | $-2.7^{+0.4}_{-0.5}$   | $10.2^{+1.3}_{-1.1}$   | $0.346^{+0.042}_{-0.038}$     |
|                                       | 178 | 976.5                 | 0.76(5)                     | 0.392                  | 0.902                     | $-12.3^{+2.8}_{-6.4}$  | $0.94^{+0.13}_{-0.13}$ | $0.045^{+0.006}_{-0.006}$     |
| $2^+_{\gamma} \rightarrow 2^+_g$      | 172 | 807.1                 | 1.14(15)                    | 0.572                  | 1.45                      | $+7.6^{+2.5}_{-7.4}$   | 7.4(19)                | 0.17(4)                       |
| , -                                   | 176 | 932.4                 | 0.83(16)                    | 0.429                  | 1.01                      | $+3.0^{+1.0}_{-0.7}$   | $0.89^{+0.42}_{-0.47}$ | $0.039^{+0.018}_{-0.018}$     |
|                                       | 178 | 1004.6                | 0.90(8)                     | 0.370                  | 0.840                     | > +2                   | $1.5^{+0.3}_{-0.3}$    | $0.076^{+0.014}_{-0.013}$     |
| $2^+_4 \rightarrow 2^+_g$             | 178 | 1311.5                | 1.49(13)                    | 0.223                  | 0.436                     | $ >2 ^{a}$             | $6.9_{-1.7}^{+0.7}$    | $0.61^{+0.07}_{-0.15}$        |
| $4^+_\beta \rightarrow 4^+_g$         | 170 | 739.8                 | 4.6(11)                     | 0.684                  | 1.81                      | $-3.3^{+1.6}$          | 6.1(18)                | 0.16(5)                       |
| r -                                   | 172 | 715.0                 | 7.0(7)                      | 0.735                  | 1.97                      | $-4.1^{+3.6}_{-1.9}$   | 8.9(11)                | 0.221(26)                     |
|                                       | 174 | 739.4                 | 5.8(9)                      | 0.685                  | 1.81                      | $-4.2^{+0.7}_{-1.1}$   | 7.8(14)                | 0.21(4)                       |
|                                       | 176 | 768.7                 | 6.6(7)                      | 0.632                  | 1.64                      | $-2.2^{+0.6}_{-1.2}$   | $11.1^{+3.0}_{-2.2}$   | $0.33^{+0.09}_{-0.06}$        |
|                                       | 178 | 932.4                 | 1.76(11)                    | 0.429                  | 1.01                      | $-6.6^{+1.5}_{-3.0}$   | $3.15_{-0.28}^{+0.30}$ | $0.140^{+0.013}_{-0.013}$     |
| $4^+_{\gamma} \rightarrow 4^+_g$      | 172 | 865.1                 | 1.4(4)                      | 0.497                  | 1.22                      | $+4.2^{+1.1}_{-2.6}$   | 1.8(9)                 | 0.007(3)                      |
| , -                                   | 178 | 1037.4                | 0.51(5)                     | 0.497                  | 1.22                      | $-1.9^{+0.7}_{-1.2}$   | 0.7(5)                 | 0.014(18)                     |
| $4^+_4 \rightarrow 4^+_g$             | 178 | 1255.1                | 1.01(8)                     | 0.242                  | 0.485                     | > 2  <sup>a</sup>      | $3.7^{+0.4}_{-0.9}$    | $0.30\substack{+0.03\\-0.07}$ |
| $6^+_\beta \rightarrow 6^+_g$         | 170 | 702.8                 | 6.7(15)                     | 0.762                  | 2.06                      | $-1.7^{+0.8}_{-2.5}$   | 10(3)                  | 0.23(7)                       |
| , -                                   | 172 | 694.1                 | 6.4(14)                     | 0.782                  | 2.12                      | $-5.0^{+3.2}_{-}$      | 10(3)                  | 0.23(7)                       |
|                                       | 176 | 696.6                 | 4.9(9)                      | 0.776                  | 2.10                      | $ >2 ^{a}$             | $6.2^{+1.5}_{-2.1}$    | $0.15_{-0.05}^{+0.04}$        |





Tibor Kibèdi, Dep. of Nuclear Physics, Australian National University

206





4-band mixing calculations

- K=0 g.s. unperturbed ground-state rotation
- K=0 "deformed" band
- ➤ K=2 g-band
- K=0 "s"-band, unperturbed rotation-aligned band, back banding observed in (HI,xn)
- Parameters to fit excitation energies:
  - □ Moment of inertia (VMI)
  - Unperturbed band-head energies
  - □ Spin-independent interactions
  - aligned angular momentum of the s-band





- 4-band mixing calculations
- K=0 g.s. unperturbed ground-state rotation
- K=0 "deformed" band
- K=2 g-band
- K=0 solution-aligned band, back banding observed in (HI,xn)
- Interactions:
   150 keV (g-d)
   30 keV (g-γ)
   5 keV (d-γ)





- Smooth evolution across Z=80 to 74 and N=98 to 106
- Differences in deformation
- Unperturbed γ and d bands
   shifted down in energy as Z >> 82

Tibor Kibèdi, Dep. of Nuclear Physics, Australian National University





Kibedi, et al., Nucl. Phys. A 688 669 (2001) Tibor Kibèdi, Dep. of Nuclear Physics, Australian National University



#### Evolution of shape co-existence x(E0/E2) systematics



Kibedi, et al., Nucl. Phys. A 688 669 (2001) Tibor Kibèdi, Dep. of Nuclear Physics, Australian National University



# Shape co-existence around N=Z=28



Heyde & Wood, Rev. Mod. Phys. 83 (2011) 1467

N=Z=28 double magic Shape co-existence "could emerge"

Tibor Kibèdi, Dep. of Nuclear Physics, Australian National University

Dracoulis PRC 49 (1994) 3324 E0 Workshop, CEA 2017



#### Motivation

- □ Excited 0<sup>+</sup> around N=Z=28: from mp-mh excitations from the  $1f_{7/2}$ to the  $1f_{5/2}$ ,  $2p_{1/2}$  and  $2p_{3/2}$  orbits
- E0 transitions: not very well known
- ☐ <u>Aim</u>: Characterise E0 transitions in Z=26, N=28,30,32
- E0`s in Ni isotopes talk by <u>Adam</u> <u>Garnsworthy</u>









#### Experiments

ANU HEAVY ION ACCELERATOR FACILITY

- $\Box$  (p,p') reaction, E<sub>p</sub>=6.7-7 MeV DC beam
- $\Box$  1-2 mg/cm<sup>2</sup> <sup>54,56,58</sup>Fe targets
- □ Singles gamma, conversion electron and pair conversion (Super-e)





#### Extended level schemes



Tibor Kibèdi, Dep. of Nuclear Physics, Australian National University

#### Extended level schemes









#### Angular correlation of 0-2-0 cascades



Tibor Kibèdi, Dep. of Nuclear Physics, Australian National University

#### EO transitions - <sup>54</sup>Fe





#### E0 transitions - <sup>56</sup>Fe







#### EO transitions in <sup>54,56,58</sup>Fe





|    | Ζ  | 20                | 22                | 24                | 26 | 28                | 30                   | 32   | 34               | 36      |
|----|----|-------------------|-------------------|-------------------|----|-------------------|----------------------|------|------------------|---------|
| Ge | 32 |                   |                   |                   |    |                   |                      |      |                  |         |
| Zn | 30 |                   |                   |                   |    |                   |                      |      | 3.8 <sub>4</sub> | 0.19-54 |
| Ni | 28 |                   |                   |                   |    |                   | 0.0063 <sub>10</sub> | 1-27 |                  |         |
| Fe | 26 |                   |                   |                   |    | <80               | 3.2 <sub>11</sub>    | <12  |                  |         |
| Cr | 24 |                   |                   |                   |    |                   |                      |      |                  |         |
| Ti | 22 |                   |                   |                   |    |                   |                      |      |                  |         |
| Са | 20 | 25.6 <sub>7</sub> | 140 <sub>12</sub> | 140 <sub>50</sub> |    | 14.5 <sub>9</sub> |                      |      |                  |         |

- □ New results in <sup>54,56,58</sup>Fe: extended level schemes, new T1/2,  $\delta$ (E2/M1), E0 transitions,  $\rho^2$ (E0)
- Future: look for EOs between J>O states to characterise bands built on excited O<sup>+</sup> states
- □ Interpretation within the bandmixing approach
- $\Box$  EOs in Cr (Z=24) and Ti(Z=22) to explore N=28 isotones



## The Hoyle state



Heyde & Wood, Rev. Mod. Phys. 83 (2011) 1467

```
Hoyle state: not a typical excited 0^+ at south-west from the double magic {}^{16}O
```



# The Hoyle state





**1**  $\Gamma(0_2)=9.3(9) \text{ eV}; T_{1/2}(0_2)=3.5(3) \times 10^{-17} \text{ s}$ 

- "Extended object" (Brink 1966)
   RMS=2.89(4) fm = 1.2\* RMS(g.s.)
   PRC 80 (2009) 054603
- $\rho^2(E0)=500(81)$  Adnut **89** (2005) 77

#### □ 2<sup>+</sup> at 9.8 MeV

Nucl. Phys. **A738**, (2004) 268; Phys. Rev. **C 84** (2011) 054308; **80** (2009) 041303(R); **84** (2011) 027304; **86** (2012) 034320; *PRL 113 (2014) 012502* 

**4**<sup>+</sup> at **13.3 MeV** Phys. Rev. **C83** (2011) 034314

- **Ο**<sub>3</sub><sup>+</sup> at 10.3 MeV; Γ(0<sub>3</sub>)=2.7 MeV Nucl. Phys. **A738**, (2004) 268
- Microscopic α-cluster model /exp E(0<sub>2</sub>)-E<sub>3α</sub>=0.23 / 0.38 MeV Γ(0<sub>2</sub>)=7.6 / 9.3(9) μeV M(E0)= 6.3 / 5.4(2) fm<sup>2</sup> Yasuro Funaki, Phys. Rev. C 94 (2016) 024344

Dracoulis PRC 49 (1994) 3324



#### The radiative width of the Hoyle state





# The radiative width from $p-\gamma-\gamma$





# The radiative width from pair conversion measurements



α<sub>π</sub>(E2)=8.765E-4



# The radiative width from pair conversion measurements





E0 Workshop, CEA 2017

## Properties of Monopole transitions in atomic nuclei

#### Motivation:

# New data since the last evaluations First pass of ENSDF: 174 j-j (j>0) transitions Eg=[41.9:1877] keV J<sub>i</sub>=1[8], 2[109], 3[4], 4[32], 5[3], 6[6], 8[2], 9[1], 10[1], 16[1]



Tibor Kibèdi, Dep. of Nuclear Physics, Australian National University

#### With J.L. Wood and A. Garnsworthy



## AUSTRALIAN NATIONAL UNIVERSITY Properties of Monopole transitions in atomic nuclei

With J.L. Wood and A. Garnsworthy

#### Approach

> Consistent treatment of the data known

- $\hfill\square$  Combine data on  $0^{\scriptscriptstyle +} \to 0^{\scriptscriptstyle +}$  and  $J^{\scriptscriptstyle +} \to J^{\scriptscriptstyle +}$  (J>0) transitions
- Collect and adopt T1/2, EM branching ratios, multipolarities, mixing ratios, experimental conversion coefficients <u>from</u> <u>original references</u>
- Accept data if: T1/2, ICC and mixing ratio are known
- New conversion coefficients, Ω(E0) electronic factors

<sup>238</sup>U 966.1 keV 2<sup>+</sup>  $T_{1/2}$ =2.4(+17-7) ps 921.2 keV E0+M1+E2  $\alpha_{K} = 0.191(30)$  $\alpha_{K}(M1)$ = 0.0390  $\alpha_{K}(E2)$ = 0.00966





| Collaborators (ANU)       | Collaborators (Oslo) | Students                                       |
|---------------------------|----------------------|------------------------------------------------|
| A.E. Stuchbery            | M. Guttormsen        | T.K. Eriksen (12C pairs, <sup>54</sup> Fe)     |
| M.W. Reed                 | A. Görgen            | B. Alshahrani (12Ċ pyy)                        |
| S.S. Hota                 | S. Siem              | A Akber                                        |
| G.J. Lane                 | A.C. Larsen          | T Dowie (Oracalculations)                      |
| A.J. Mitchell             | F. Giacoppo          | <u>J. Dowie (sz<sub>ct</sub> culculations)</u> |
| T.G. Tornyi               | A. Morales Lopez     | M. Gerainy                                     |
| Collaborators (TRIUMF)    | E. Sahin             | B.Q. Lee                                       |
| A. Garnsworthy            | G.M. Tveten          | M. de Vries                                    |
| L.J. Evitts               | F.L. Bello Garrote   | T. Palazzo                                     |
| M. Moukaddam              | L.C. Campo           |                                                |
| J. Smallcombe             | M. Klintetjord       |                                                |
| Collaborators (Georgiated | h) S. Maharramova 🏹  |                                                |
| J.L. Wood                 | H-I. Nyhus           |                                                |
| ANU technical staff       | r. Renstrom          |                                                |
| A. Cooper                 |                      |                                                |
| C. Gudu                   |                      |                                                |
| J. Heighway               | 2                    |                                                |
| D. Tsifakis               | 111                  |                                                |

T. Tunningley

ANU Major Equipment Grans 2011 ARC Discovery (2014-2016) DP140102986